AUSTRALIAN NATIONAL ANTARCTIC RESEARCH EXPEDITIONS

ANARE RESEARCH NOTES

A Computer Data Base for Antarctic Sea Ice Extent T.H. Jacka

AUSTRALIAN NATIONAL ANTARCTIC RESEARCH EXPEDITIONS

```
ANARE
RESEARCH
NOTES
13
A Computer Data Base for Antarctic Sea Ice Extent T.H. Jacka
```

ANTARCTIC DIVISION

ANARE RESEARCH NOIES (ISSN 0729-6533)

This series complements ANARE Reports and incorporates the functions of the now discontinued series of Technical Notes and Antarctic Division Technical Memoranda. The series will allow rapid publication in a wide range of disciplines. Copies of ANARE Research Notes are available from the Antarctic Division.

Any person who has participated in Australian National Antarctic Research Expeditions is invited to publish through this series. Before submitting manuscripts authors should obtain a style guide fram:

The Publications Office Antarctic Division Channel Highway Kingston Tasmania 7150 Australia.

CONIENIS

ABSTRACT 1

1. PAST OBSERVATIONS OF SEA ICE EXTENT 3
2. THE SATELLITE ERA 3
3. ANALYSIS TECHNIQUES 5
3.1 AIMS 5
3.2 MAP DIGITISATION 6
3.3 MAP INIERPRETATION 7
3.4 SPATIAL RESOLUIION OF THE DATA BASE 7
3.5 ICE EXTENT AND AREA CALCULATIONS 7
3.6 CALCULATIONS OVER THE TIME DOMAIN 12
4. RESULTS 12
4.1 MEAN SEA ICE EXTENT 12
4.2 MAXIMUM SEA ICE EXTENT 20
5. DISCUSSION 22
REFERENCES 53
ACKNOWLEDGFMENT 54

APPENDIXES

I Conversion of digitiser coondinates to latitude and longitude 24
II Calculation of sea ice area 26
III Computer program output of mean sea ice latitude and variations for months, January through December 27
IV Computer output of sea ice latitude for each 10° longitude each year for months, January through December 40

FIGURES

1. Sea ice positions noted by Captain James Cook 2
2. The Navy-NOAA Joint Ice Centre map for 15 April 1982 4
3. The digitiser and computer teminal used for analysis of sea ice maps 6
4. Mean ice distribution for each month 13
5. Monthly means of Antarctic sea ice extent 19
6. Annual variation in mean sea ice extent as a function of latitude 19
7. Mean maximum sea ice extent 20
8. Plots of sea ice latitude each week for the maximum period 21
9. Maximum latitude of the sea ice edge for the period 1973-1982 21
10. Schematic diagram of sea ice map on digitiser tablet 25
11. Parameters used for calculation of sea ice area 25
TABLES
12. Digitiser data for the Joint Ice Centre map dated 15 April 1982 8
13. Sea ice longitude, distance from South Pole and latitude resulting from analysis of the data of Table 1 9
14. Computer program output of sea ice extent 10
15. Computer program output from area calculations 11
by
т.H. Jacka

Antarctic Division, Department of Science and Technology, Hobart, Tasmania, Australia

Abstract

A computer technique is described for digitising data from the sea ice maps distributed weekly by the U.S. Navy-NOAA Joint Ice Centre. Monthly maps of the Antarctic region outlining extent of sea ice cover have been available from this source since January 1973. Computer programs for the analysis of this data are described. Maps are presented which illustrate the mean, over ten years, of the extent each month and at maximum. These data have been used as a climate monitor using the relation between sea ice extent and the distribution of anticyclones, Antarctic and ocean temperatures, and atmospheric CO_{2} levels. which have been the topics of many recent studies.

The data are also of relevance to polar transport studies. Ships may need to penetrate, and aircraft may need to overfly, many kilometre of sea ice in order to carry out scientific programs or to gain access to Antarctic stations.

Figure 1. Sea ice positions noted by Captain-James Cook are plotted along with voyage tracks. Also shown are December, January and February sea ice limits fram Mackintosh and Herdman (1940).

The earliest observations of the Antarctic sea ice were made by the expeditions of Captain James Cook from 1772 to 1774. Herdman (1959) has given an account of Cook's sea ice records, while Rubin (1982a) has carried out a detailed study of all the scientific investigations of the expedition. Figure 1 (after Herdman, 1959) shows positions and dates of Cook's sightings of sea ice, superimposed on curves indicating the average sea ice limit for December, January and February, 1929-1936 (Mackintosh and Herdman, 1940). The scientific results, including sea ice observations, of cook and of Bellingshausen have been examined in detail by Rubin (1982a and 1982b).

The earliest estimates of apparent mean monthly position of the sea ice edge for all months are for the period 1929-1936. They have been compiled by Mackintosh and Herdman (1940) and include data from scientific expeditions, in particular, those of the Discovery, and from whaling expeditions (Hansen 1934, 1936).

These same sources were later used to compile the British Admiralty (1943) "Ice Chart of the Southern Hemispheren, and still later, with more modern shipboard, aerial and land-based observations from Soviet, U.S. and Japanese expeditions, to give the sea ice data for the U.S. Navy Hydrographic Office (1957) "Oceanographic Atlas of the Polar Seas" and for the Soviet "Atlas Antarktiki" (Tolstikov et al., 1966 and Yeskin, 1969). In the compiling of these maps preference was given to later observations comprising principally, for the "Atlas Antarktiki", of data collected during the period 1947-1962.

2. THE SATELLITE ERA

Since 1967, various forms of satellite monitoring of sea ice extent have become available. Minimum brightness composite photographs (Booth and Taylor, 1969) for the period 1967-1972 provided the first regular description of the broadscale sea ice characteristics while from 1973 to the present, the U.S. Navy Fleet Weather Facility's Ice Forecasting Group, now called the NavyNOAA Joint Ice Centre, have consistently provided a weekly map not only of the Antarctic sea ice, but also of the concentrations, and occasionally gives the location of the larger icebergs. Figure 2 is a sample map fram this source for 15 April 1982. Note the iceberg near South Georgia and the notation describing concentrations.

The Joint Ice Centre uses several data sets in order to compile the weekly maps (Godin, 1979). Onboard NOAA polar orbiting satellites, Very High Resolution Radiometers which sense visible and infrared wavelengths, can resolve features to 1.0 km . Defence Meteorological Satellite Program satellites, also sensing visible and infrared wavelengths, can resolve features to 4.0 to 5.0 km . Due to darkness and extensive cloud cover, particularly in the winter months these satellites provide only data detectable in the infrared wavelengths much of the time.

Passive microwave images from the Electrically Scanning Microwave Radiometer onboard NASA's NIMBUS V satellite, and from the Scanning Multichannel Microwave Radiameter on NIMBUS VI are especially valuable for sea ice monitoring,

particularly during the winter months since they are not affected by cloud cover. The resolution of these sensors is approximately 32 km (Zwally and Gloerson, 1977).

Sharply contrasting microwave emissivities for sea ice (0.80 to 0.95) against sea water (0.40) allow ocean/sea ice definition from passive microwave imagery (Gloerson, et al., 1978). Ice temperature, concentration and type, snow cover, atmospheric temperature, and water content also affect the sensor received signal.

The Joint Ice Centre maps are produced in near real time from the analysis of microwave brightness temperature data, from the infrared and visible data, and from aerial and shipboard observations when available. From the microwave data, zwally et al. (1982) have carried out subsequent numerical analyses of the raw data, providing a more accurate estimate of the ice characteristics.

Although a near continuous record is available fram the weekly sea ice charts for the period 1973 to present, the quality of data has not been consistent. Some satellite data for 1973 and 1975 are unavailable due to equipment malfunction, and data for 1976 to 1978 suffer from equipment deterioration. In October, 1978 however, NIMBUS VII was placed in orbit, with a new Scanning Multifrequency Microwave Radiometer, and this has improved data reliability.

The provision of a weekly map detailing Antarctic sea ice distribution is a valuable asset for climatological, glaciological and geographical applications. The large amount of data however, requires a more refined storage and analysis technique. This report describes computer programs for the interpretation and analysis of these data. Some results from the analysis are given in both map form and as tabulated computer output.
3. ANALYSIS TECHNIQUES

3.1 AIMS

The computer technique described allows digitisation of the Navy-NOAA sea ice maps at every 10° longitude. Analysis has so far been concerned with the extreme northern edge of the Antarctic sea ice as shown by the weekly maps, and thus includes sea ice of concentrations greater than one tenth. The analysis has not included sea ice thickness or concentration data, and excludes the existence of polynyas. Zwally et al. (1979) have shown that as much as 50% of the Antarctic sea ice region can have an ice concentration of less than 85%. The measurement used however, is thought to give a reasonable measure of the hemispheric ice extent (Streten and Pike, 1980).

Once digitisation of a sea ice map is completed, computer programs are used to calculate the position of the ice edge, the ice extent at different longitudes, the area of sea ice in 10° sectors, and the total sea ice area. Further analysis includes calculation of means of ice extent and area over the time domain.

3.2 MAP DIGITISATION

Map interpretation is carried out using a computer linked digitiser. The digitiser is linked in parallel with an input/output teminal so that data may be transmitted from both the digitiser and the terminal.

The computer used for the analysis at the University of Melbourne is a VAX-II. The digitiser is a Summagraphics Bitpad, which has an active digitising area of $280 \times 280 \mathrm{~mm}$. The speed of the digitiser output is optional, but is usually set at 300 baud. A range of terminals are available at the University, each of them compatible with the digitiser. Figure 3 shows the set up of the equipment used at the University.

Input data files are created from the Navy-NOAA maps for later analysis by the computer programs. An imput file consists of data pertaining to one or more maps. Data for each map consists of first, the date of the map, and second $x-y$ coordinates fram the digitiser defining the sea ice edge.

The digitiser is set such that coordinates are transmitted to the camputer at discrete points when the digitiser stylus is activated. To initiate map digitisation, three data points are read which are used by the interpretation/analysis programs to orient and scale the map.

The first three map points digitised are the South Pole, the point at $65^{\circ} \mathrm{S}, 0^{\circ}$ longitude, and the point at $65^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}$ respectively. This allows the map to be placed at any position and orientation on the digitiser tablet, and the map to be drawn at any scale.

By activating the stylus on the sea ice edge at each 10° of longitude, 36 points are then entered to the data file.

Finally, to indicate the end of the data set, the point at the South Pole is redigitised.

Figure 3. The digitiser and computer teminal used for analysis of sea ice maps.

At the University of Melbourne, a single data file contains all the digitised sea ice information, arranged in chronological order. Table 1 shows the section of the input data set representing the digitisation of the map of Figure 2.

3.3 MAP INIERPRETATION

The raw sea ice data file created as described in the preceding section consists of coordinates of the stylus on the digitiser tablet. These coordinates need now to be interpreted in terms of latitude and longitude of the ice edge. A computer program has been written to perform this task. Appendix I outlines the calculations involved.

The program begins by selecting the date and map sets to be analysed from the total data file. After scaling and orienting each map, longitudes and latitudes of the ice edge are output on computer file for use by further analysis programs. The program also outputs longitude, latitude and distance of the ice edge from the south pole to a file for paper printing. An example of this output, again pertaining to the map of Figure 2, is shown in Table 2.

3.4 SPATIAL RESOLUTIGN OF THE DATA BASE

The resolution of the data maps received from the Navy-NOAA Joint Ice Centre is limited by the lowest resolution satellite used, i.e. 32 km (NIMBUS VI microwave radiometer). Further unknown errors may arise in the interpretation of the satellite data for map production. Zwally et al. (1982) calculated sea ice areas by numerical analysis of the raw microwave data only, without reference to the Joint Ice Centre mops. Comparison between total hemispheric ice areas calculated by Zwally et ars and those calculated for the data base described here, for the months of maximum extent (August, September and October) and for the years 1973 to 1976, reveal discrepancies of less than 10%.

In producing the data base discussed in this paper, inaccuracies may be due to distortion of the plain paper copier versions of maps received and to the resolution limits of the digitising system. These may be of the same order as the resolution limits of the satellite system. Hence, computer output results in the Tables and Appendices quote latitudes only to the nearest 0.1°, distances to 10 km and areas to 103 km .

3.5 ICE EXTENT AND AREA CALCULATIONS

By using the computer linked digitiser and the interpretation program to analyse a map of Antarctica (i.e. with no sea ice), a data file describing the Antarctic coastline may be created. Such a data file is used along with the output data file created by the interpretation progran to calculate the distance from the coast to the sea ice edge (i.e. the sea ice extent). This calculation is done by another program which first selects the maps to be analysed, then checks that longitudes of the Antarctic coast and of the ice edge match. Given this is the case, the extent is calculated by a simple subtraction of distances from the pole at each longitude. The mean ice extent over the 36 digitised longitudes is also calculated for each map. A sample output, for the map of Figure 2, is shown in Table 3.

With the latitude of the Antarctic coast and of the sea ice edge both defined at 10° longitudinal intervals it is possible to estimate the area of the sea

Table 1. Digitiser data for the Joint Ice Centre map dated 15 April 1982.

150482	
1296	14
1297	2241
2068	1446
1297	2128
1420	2163
1533	2116
1649	2075
1745	19
1874	
1959	1841
2065	17
297	15
2118	1449
2144	1293
268	1145
1983	1843
¢22	945
1791	0
1684	759
1555	rot
1405	762
1290	752
1176	765
1062	798
947	233
E77	940
754	1027
788	1112
647	1211
614	1329
592	1453
62E	1575
654	1692
590	1872
647	2013
847	2063
967	2038
1081	$2 ¢ 58$
1179	2132
1295	

Table 2. Sea ice longitude, distance from South Pole and latitude resulting from analysis of the data of Table 1.

DATE IS 150482
LONG
0
DIST.
km
LAT. S
 70 80
58 100
2600.
66.5

Table 3. Computer program output of sea ice extent.

150482

LONC C F	EXTENT km
0	150.
12	320.
20	270.
30	250.
40	140.
50	140.
60	220.
70	510.
98	390.
90	350.
10.8	386.
110	440.
128	280.
138	140.
140	206.
150	410.
160.	540.
170	430.
180	1150.
190	1180.
200	1120.
218	1020.
220	710.
230	578.
240	600.
250	700.
260	460.
270	570
280	550.
298	110.
300	20.
310	1620.
320	1190.
330	930.
349	460.
350	330.

MEAN SEAICE EXTENT $=520 . \mathrm{kM}$.

Table 4. Conputer program output frim area calculations.

DATE IS 15482

ice within each 10° sector. Appendix II gives an outline of the method of calculation of sea ice area. Table 4 is a sample output, again for the map of Figure 2.

3.6 CALCUIATIONS OVER THE TTME DOMAIN

Another computer routine brings together all the data for each of the 12 calendar months, and calculates average sea ice latitudes for each month, at each 10° longitude. In addition, the standard deviation of the ice latitude at each 10° longitude over the years is calculated, along with the greatest and least ice latitude. Input data for this program is the computer file created by the interpretation program.

Appendix III shows the output from this program where one map for each month for each year from 1973 to 1982 inclusive, forms the initial data set. This program also produces a monthly computer file containing the output from the interpretation program in a condensed form so that for a particular year, month and longitude, the sea ice latitude can quickly be obtained. This output is shown in Appendix IV.

4. RESULIS

4.1 MEAN SEA ICE EXIENT

The analysis to date has included data from: (a) one map for each month (where possible, near the middle of the month) for the whole 10 year period for which the Navy-NOAA maps have been available, i.e. 1973 to 1982 inclusive; and (b) every map (i.e. one per week) for the months of August, September and October; the period of maximum ice extent.

Figures 4.1-4.12, drawn from the output of Appendix III, shows the mean monthly position of the Antarctic sea ice. The range bars indicate extreme sea ice positions over the 10 year analysis period. They are calculated for each 10° longitude, independently of the other longitudes, so that the greatest or least extent at one longitude does not necessarily correspond on the time domain to the greatest or least at other longitudes.

Figure 5 summarises Figures 4 , by showing the mean sea ice extent on just two maps, one respresenting the sea ice advance from March to August, and the other, the sea ice retreat from September to February. The mean annual variation in the latitude of the sea ice extent, averaged over all longitudes, is shown in Figure 6, which also includes an area scale. It is evident that the mean minimum sea ice extent occurs during late February to early March, while the longer lived maximum occurs during August to October. Although there is more total sea ice during September than during August or October, from Figure 5, this is not true at all longitudes. Fram Figures 4, it is seen that at minimum, a large portion of East Antarctica may be sea ice free, while the Weddell Sea is rarely completely ice free. Also, during the months of near minimum sea ice cover, there is often an ice build up off the coast of George V Land.

[^0]

Figure 5. Monthly means of Antarctic sea ice extent showing the advance from March to August and the retreat from September to February.

Figure 6. Annual variation in mean sea ice extent as a function of latitude. Also shown is an approximate total area scale.

4.2 MAXIMUM SEA ICE EXTENT

Particular attention has been given to the maximum ice extent as this parameter is more indicative of annual climatic trends rather than shorter lived, localised events (Budd, 1980; Jacka, 1981).

Figure 7 shows the 10 year maximum ice extent, calculated independently at each 10° of longitude. Range bars indicate the size of the interannual variations in the maximum extent.

Plots of the circumpolar mean of the latitude of the ice edge during the maximum period (Figure 8) allow the Navy-NOAA map representing the maximum total ice cover in each year to be chosen. Fram Figure 8 a plot has been constructed of the mean latitude of the northern edge of the sea ice at maximum extent for each year form 1973-1982 (Figure 9). This type of plot has been used as a climate indicator (Jacka, 1981; Kukla et al. 1977; Ackley, 1981). The data exhibits a sharp decrease in the total amount of sea ice at maximum

Figure 7. Mean maximum sea ice extent plotted independently at each 10° of longitude. Also shown are range bars indicating the largest and smallest maximum sea ice latitudes.

Figure 8. Plots of sea ice latitude each week for the maximum period. Points and numbers indicate the map of each year pertaining to the maximum extent that year.

Figure 9. Maximum latitude of the sea ice edge for the period 1973-1982.
extent from 1974 to 1977, followed by an increase fram 1977 to 1981. The mean maximm extent over the ten year period (dashed line of Figure 9) of 60.7° latitude (approximately $18.7 \times 10^{6} \mathrm{~km}^{2}$) is not significantly different fram the maximum extents measured during the period 1967-1972. Variations in sea ice extent are considered sensitive indicators of both regional and global climatic change (Ackley, 1981; Allison, 1982). This parameter is therefore likely to be one of the earliest indicators of any significant climatic change, and the continuation of monitoring programs of the type described here is of particular importance.

5. DISCUSSION

The computer programs, instructiors and data files presented are designed in the hope that other glaciologists, climatologists, geographers, transport engineers and others will make use of the data bank. Copies of the programs and input and output files are available on request.

The Antarctic sea ice extent has been monitored by others. Lemke et al. (1980) have digitised the ice edge at 5° longitudinal intervals, however they have included only areas of ice concentration greater than 5 octas. Streten and Pike (1980) have set criteria similar to those studied here, but have studied only the period 1972-77.

Zwally et al. (1982) have digitised contours of the ice edge such that, unlike this study, account has been taken for enclosed areas of open water, and for polynyas. They used only raw digital data from the Electrically Scanning Microwave Radiometer and while they do not use additional information, due to other measurement techniques utilized in the compilation of the Joint Ice Centre maps, use of raw data adds to the accuracy of their analysis. Kukla and Gavin (1981), using the Joint Ice Centre charts, integrate the sea ice to a resolution equivalent to a 2° latitude square, and also record five classes of sea ice concentration. Their analysis includes data to 1978 and they reported a decrease in the amount of total sea ice in summer months. This conclusion was based on their analysis to the mid 1970's and on the earlier data of Mackintosh and Herdman (1940). However, analysis of the sea ice distribution since 1977 has revealed that that decrease in sea ice extent was not representative of recent ice extent.

The data bank described in this paper supplies a measure of the most northern edge of the Antarctic sea ice. The computer programs and techniques described may, in exactly the same way, be used to detail the distribution of ice of various concentrations as indicated by the Navy-NOAA maps. The maps; however, do not supply infomation on sea ice thickness; and this parameter is of particular importance to climatologists and oceanographers. Allison (1982) has outlined where problems lie and has made recommendations for the collection of further, more useful data sets.

For the planning of future transport needs the above data base supplies information on the latitudes at which sea ice might be expected to exist. Analysis of the Navy-NOAA maps for higher concentrations would help to assess to what distances ships might be able to penetrate the sea ice. Again, however, the sea ice thickness is a particularly important parameter for the design and construction of ships intended for Antaretie waters.

APPENDIX I

CONVERGION OF DIGITISER COORDINATES TO LATITUDE AND LONGITUDE

Let the digitized coordinates at the South pole be (x_{p}, y_{p}); at $65^{\circ} S, 0^{\circ}$ longitude be $\left(x_{N}, y_{N}\right)$; and at $65^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}$ be (x_{E}, y_{E}). Consider also a digitised point (x, y), as shown in Figure 10.

First, translate the system such that $\left(x_{p}, y_{p}\right)$ is translated to $(0,0)$;

$$
\begin{array}{ll}
x^{\prime}=x-x_{P} & y^{\prime}=y-y_{P} \\
x_{N}^{\prime}=x_{N}-x_{P} & y_{N}^{\prime}=y_{N}-y_{P} \\
x_{E}^{\prime}=x_{E}-x_{P} & y_{E}^{\prime}=y_{E}-y_{P} \tag{1}
\end{array}
$$

Rotating the system through angle ϕ,

$$
\begin{equation*}
\tan \phi=\frac{-x_{N}^{\prime}}{y_{N}^{\prime}}=\frac{y_{E}^{\prime}}{x_{E}^{\prime}} \tag{2}
\end{equation*}
$$

Notice that if the map was exact and the digitising measurement exact, we would have

$$
\text { and } \quad \begin{aligned}
x_{E}^{\prime} & =y_{N}^{\prime} \\
y_{E}^{\prime} & =-x_{N}^{\prime}
\end{aligned}
$$

The digitising not being exact, the best measurement to take for ϕ will be from (2).

$$
\tan \phi=\frac{\frac{1}{2}\left(-x_{N}^{\prime}+y_{E}^{\prime}\right)}{\frac{1}{2}\left(x_{E}^{\prime}+y_{N}^{\prime}\right)} ;
$$

and incidentally, the best value to consider in order to scale the map is

$$
\begin{equation*}
{ }^{\frac{1}{2}}\left(x_{E}^{\prime}+y_{N}^{\prime}\right) \tag{3}
\end{equation*}
$$

Now the expression

$$
\begin{equation*}
\tan \phi=\frac{y_{E}^{\prime}-x_{N}^{\prime}}{x_{E}^{\prime}+y_{N}^{\prime}} \tag{4}
\end{equation*}
$$

is used to calculate the angle ϕ, and rotation gives

$$
\begin{align*}
& x^{\prime \prime}=\cos \phi x^{\prime}-\sin \phi y^{\prime} \\
& y^{\prime \prime}=\sin \phi x^{\prime}+\cos \phi y^{\prime} \tag{5}
\end{align*}
$$

Figure 10. Schematic diagram of sea ice map on digitiser tablet.

Figure 11. Parameters used for calculation of sea ice area.

APPENDIX II

CALCULATION OF SEA ICE AREA

Let ${ }^{\theta_{c}}$ and θ_{i} be the mean over the digitised interval of the angle of latitude from the South Pole to the Antarctic coast and to the sea ice edge respectively. Let ℓ_{c} and ℓ_{i} be corresponding distances respectively.
Generally, $\ell=\mathrm{R} \theta$
and $\quad{ }^{\theta_{\mathrm{C}}}={ }^{\ell_{C}} \quad ; \quad \overline{\mathrm{R}} \quad{ }^{\theta}{ }_{\mathrm{i}}={ }^{\ell}{ }_{\mathrm{i}}$
where R is the radius of the Earth, and θ_{c} and θ_{i} are expressed in radians. We wish to find the area of sea ice, S in the sector $A B C D$ of figure 11 .

We have

$$
d S=d x d y
$$

where, from (1),

$$
d x=R d \theta
$$

and

$$
\mathrm{dy}=\mathrm{R} \sin \theta \quad \Delta \lambda
$$

where $\Delta \lambda$ is the digitising interval.
Thus

$$
d S=R^{2} \sin \theta d \theta \Delta \lambda
$$

and

$$
\begin{aligned}
\mathbf{S} & =\int_{\theta_{C}}^{\theta_{i}} R^{2} \sin \theta d \theta \Delta \lambda \\
& =-R^{2} \Delta \lambda \cos \theta_{\mathrm{C}}{ }_{\mathrm{i}}^{\theta_{\mathrm{C}}} \\
\mathbf{S} & =\mathrm{R}^{2} \Delta \lambda\left(\cos \theta_{\mathrm{C}}-\cos \theta_{\mathrm{i}}\right) .
\end{aligned}
$$

For our purposes, $R \simeq 6371 \mathrm{~km}$ and $\Delta \lambda=10^{\circ}=10 \pi / 180$.

APPENDIX•III

COMPUTER PROGRAM OUTPUT OF MEAN SEA ICE LATITUDE AND VARIATIONS FOR MONIHS JANUARY IHROUGH DECEMBER

Dates sampled for calculation of means are shown along with Longitude, mean Latitude, standard deviation, and greatest and least ice latitude, over the 10 year period, 1973 - 1982.

180173
176174
160175
150176 200177
190178 180179 178180 150181
140182

LONG	LAT	TEV	MAX	MIN
0	0	0	0	0
E	S		S	S

0	69.1	0.8	69.8	67.2

$10 \quad 68.5 \quad 1.1 \quad 70.0 \quad 66.6$

20	68.2	1.1	69.6	65.7

30	66.8	1.0	68.3	64.9

40	66.8	0.8	68.1	65.6

50	65.7	0.5	66.7	64.9

60	66.3	0.7	$66 . c$	65.0
70	66.5	1.0	67.5	64.2

80	65.5	0.7	66.6	64.2

90	65.2	0.9	66.8	63.8

$100 \quad 63.9 \quad 0.8 \quad 64.7 \quad 62.4$
$118 \quad 65.2 \quad 0.4 \quad 66.0 \quad 64.8$

120	65.3	0.3	65.7	64.7

130	65.3	0.4	65.8	64.8

140	66.5	0.7	67.2	64.7

150	65.7	1.2	68.8	64.9

$160 \quad 66.2 \quad 2.0 \quad 69.8 \quad 63.9$
$170 \quad 67.7 \quad 1.6 \quad 71.1 \quad 66.1$

180	71.5	6.3	78.4	61.3

$190 \quad 71.0 \quad 4.5 \quad 78.6 \quad 66.7$
$200 \quad 69.5 \quad 3.0 \quad 76.7 \quad 65.8$

210	68.2	2.2	72.5	64.9

220	$6 \varepsilon .6$	1.8	71.7	66.7
230	68.3	1.8	70.1	65.5

240	$6 \varepsilon .6$	1.4	70.7	66.2

250	68.8	1.1	78.4	67.6

$260 \quad 69 . \varepsilon \quad 0.6 \quad 70.7 \quad 68.9$
$276 \quad 68 . \varepsilon \quad 0.9 \quad 70.0 \quad 67.4$

280	$6 \varepsilon . \varepsilon$	1.0	70.3	66.8
298	67.1	1.2	68.2	64.4

$300 \quad 63.6 \quad 0.5 \quad 64.1 \quad 62.4$

310	62.7	1.6	64.7	59.3

320	62.7	3.5	71.0	59.2

330 64.6 $5.8 \quad 72.7 \quad 58.4$
$340 \quad 6 \varepsilon . \varepsilon \quad 4.0 \quad 72.0 \quad 59.8$

MEANS EFE 67.1 1.7 CVFa 18 YFAFS

150273 140274 200275 190276 170277 160278 150279 148280 190281 180282

LONG	LAT	DEV	MAX	MIN
0	0	0	0	0
E	S		S	S

0	69.3	0.6	70.0	68.0
10	69.4	0.4	70.2	69.0
20	69.0	0.8	70.1	67.8
30	68.3	0.8	69.3	67.1
40	67.5	0.7	68.5	66.7
50	65.9	0.6	66.8	65.1
60	66.7	1.0	68.2	64.8
70	67.3	1.1	69.1	65.7
80	66.2	1.1	68.2	64.7
90	66.0	0.7	66.8	64.9
100	64.5	0.8	65.4	62.7
110	65.2	0.9	66.7	63.9
120	65.5	0.9	66.7	63.4
130	65.2	0.9	66.1	62.9
140	66.2	1.8	67.0	64.5
150	65.3	0.9	66.4	64.0
160	66.8	1.4	69.0	64.6
170	70.6	1.5	71.7	67.2
180	74.8	4.1	78.2	69.3
190	72.4	3.4	78.5	69.3
200	73.0	2.9	78.0	69.7
210	72.6	1.7	74.7	69.7
220	72.0	1.8	74.1	68.1
230	70.7	1.1	71.8	68.4
240	70.7	0.9	71.9	69.4
250	70.3	0.9	71.3	68.1
260	70.3	0.5	70.9	69.4
270	69.2	0.9	70.7	68.0
288	69.4	1.2	72.3	67.8
290	67.6	0.5	68.2	66.4
300	64.0	0.2	64.2	63.7
310	63.9	1.6	67.8	61.2
320	67.9	4.3	73.2	59.8
330	70.7	6.3	77.8	59.0
340	71.9	1.3	73.1	69.3
350	70.2	0.7	71.1	69.2

MIANS ARE $68.5 \quad 1.4$ OVER 10 YFARS

MARCF	TATES USFD A		ARE -	
			$\begin{array}{r} 10373 \\ 140374 \\ 200375 \\ 180376 \\ 170377 \\ 160378 \\ 150379 \\ 130380 \\ 190381 \\ 180382 \end{array}$	
LONE	LAT	DEV	MAX	MIN
0	c	0	0	c
E	S		S	S
0	69.3	0.4	69.8	68.8
10	69.1	0.6	69.9	68.1
20	68.7	0.7	70.3	67.8
30	68.2	0.7	69.4	67.0
40	67.3	0.5	68.2	66.7
50	65.7	0.6	67.1	65.0
60	66.2	0.7	67.3	65.1
70	66.4	0.7	67.6	65.1
80	66.1	1.2	67.8	64.5
96	65.1	0.7	66.5	64.3
100	64.3	0.7	65.2	63.5
110	65:2	0.6	66.1	64.2
120	65.3	0.8	66.7	63.7
130	65.2	0.8	66.9	64.0
140	65.8	0.9	67.4	64.7
150	64.8	0.6	65.7	63.8
160	66.8	1.6	68.7	64.2
170	70.5	1.4	71.6	67.6
180	73.2	3.5	77.2	67.3
150	71.5	3.4	77.6	68.0
208	71.9	2.3	76.1	69.8
210	71.7	1.4	74.4	69.4
220	71.8	0.9	73.5	70.4
230	70.3	0.9	71.7	68.9
240	70.3	0.9	71.8	69.1
250	69.8	0.9	71.3	68.0
260	70.0	0.7	71.1	6E. 9
270	69.2	0.8	70.4	68.0
280	69.8	1.2	72.7	68.5
290	68.1	0.6	68.7	66.9
300	63.9	0.3	64.5	63.5
310	64.0	3.3	71.4	59.5
320	67.7	4.2	72.2	59.5
330	71.2	5.0	75.8	58.7
340	71.9	1.5	73.6	69.5
350	69.9	0.9	71.0	68.3
MEANS ARE	68.2	1.3	OVFR	YFA

APRIL DATES USED ARE -
180473
120474
170475
150476
140477 200478 130479 178480 160481 150482

LONG	LAT
C	0
E	S

DEV	MAX
0	C

MIN
c
5 S

0	68.6	0.3	69.0	68.1
10	67.7	0.9	6E. 4	66.3
20	68.8	1.1	69.6	65.7
32	67.8	0.8	68.7	66.2
40	67.3	0.6	68.3	66.4
50	65.5	0.7	66.4	64.1
68	65.4	0.6	66.6	64.6
70	64.9	1.8	66.1	62.7
80	64.9	1.8	$66 . \overline{2}$	63.0
90	64.2	1.2	65.5	61.9
100	63.8	0.7	64.6	62.5
118	64.5	0.7	65.2	63.0
120	64.9	0.5	66.1	63.9
130	65.1	0.5	65.8	64.4
148	65.1	0.5	65.9	64.3
156	64.7	0.5	65.2	63.7
	64.7			

178	68.0	1.2	70.0	66.8

$\begin{array}{lllll}180 & 68.7 & 1.9 & 73.2 & 66.8\end{array}$
$190 \quad 67.9 \quad 1.6 \quad 70.5 \quad 65.5$

20ℓ	68.4	1.6	71.8	66.4
210	68.7	1.7	71.7	66.7

210	68.7	1.7	71.7	66.7
220	69.6	1.3	71.9	68.1

238	69.0	1.2	71.5	67.7

240	68.7	1.1	70.2	66.5

250	69.0	1.1	71.3	67.5

260	69.3	1.2	70.7	67.3

270	68.4	1.1	70.7	67.0

$280 \quad 68.9 \quad 1.0 \quad 70.7 \quad 67.8$

290	67.9	0.8	69.0	66.5

$300 \quad 63.5 \quad 0.4 \quad 63.9 \quad 62.8$

310	61.8	6.9	63.5	60.2
320	65.9	3.0	69.5	61.4

330	68.7	3.0	$72 . c$	61.9

340	70.5	1.5	72.1	67.1

MEANS ARE 66.9 1.1 OVER 10 YEARS

170573
160574
150575
200576
190577
180578
170579
150580
140581
130582

LONG	LAT	DEV	MAX	MIN
0	0	0	0	0
E	S		S	S

\emptyset	67.7	0.9	68.5	65.9
10	66.0	1.0	67.8	64.2
20	66.1	1.8	$6 \varepsilon .1$	63.8
30	66.1	1.6	68.7	64.4
40	65.8	1.6	67.9	62.9
50	64.6	0.8	66.1	63.4
60	63.6	0.9	65.3	62.6
78	62.5	1.2	64.7	60.8
80	63.4	1.4	65.5	61.2
90	62.8	1.3	64.5	60.9
100	62.7	1.0	64.3	61.4
110	63.6	1.0	65.4	62.1
120	64.3	0.9	65.8	62.9
130	64.4	0.6	65.2	63.3
140	64.4	0.8	65.6	63.8
150	63.9	0.8	65.0	62.5
160	63.2	1.0	64.4	61.7
170	65.7	1.9	70.0	63.2
180	65.8	2.3	68.7	60.5
190	66.2	2.0	69.6	62.8
200	65.9	2.7	70.7	61.9
210	65.5	2.1	70.4	62.6
220	67.4	2.2	71.7	64.5
230	67.1	1.5	69.8	64.5
240	67.1	0.9	68.5	65.9
250	67.2	1.3	69.3	65.4
260	67.8	1.4	69.7	64.9
270	67.6	0.6	68.7	66.9
280	6 6. 6	1.1	69.1	65.1
290	66.4	0.8	68.5	65.6
300	63.2	0.6	64.3	62.4
310	60.9	0.8	62.0	59.5
320	62.2	2.6	66.7	59.1
330	63.6	3.8	71.1	58.9
340	66.1	3.4	72.5	62.3
350	67.0	1.8	69.2	63.6

MRANS ARE $65.1 \quad 1.5$ OVER 10 YEARS

140673
200674 190675 176676 160677 150678 210679 120680 180681 170682

LONG	LAT	DEV	MAX	MIN
0	0	0	0	0
E	S		S	S

\emptyset	62.8	2.4	67.6	60.0
10	64.2	2.1	67.1	61.7
20	63.3	2.0	67.9	61.7
30	63.2	2.0	66.8	59.7
40	63.9	1.9	65.6	60.0
50	63.1	1.8	65.2	58.9
60	62.1	0.8	63.3	61.3
76	61.4	1.3	64.9	60.7
80	61.9	1.3	63.8	59.1
90	61.4	1.4	64.6	59.7
100	62.8	0.8	63.0	62.1
110	62.6	0.7	64.2	61.7
120	63.4	1.8	65.2	62.2
130	64.1	0.8	65.4	62.8
142	64.8	0.9	65.2	62.7
150	63.4	1.5	65.7	61.8
160	62.8	1.3	64.8	60.4
170	63.7	2.3	68.7	60.7
188	64.3	2.5	68.1	60.1
150	64.7	1.9	6 C .1	62.0
20.	64.0	2.4	68.5	68.3
210	64.1	3.2	72.1	58.5
226	66.8	2.2	72.4	63.4
238	66.2	1.4	6 E .1	64.9
248	66.2	1.4	68.9	64.2
250	66.6	1.4	69.1	64.6
260	67.0	1.7	69.9	64.6
270	66.5	1.5	6 E .6	64.6
286	65.6	1.6	68.4	63.7
250	64.2	1.4	66.3	62.3
	62.6	0.9	63.7	61.1
310	59.6	0.8	60.9	58.2
320	59.4	1.2	61.7	57.2
330	59.2	1.8	63.4	57.6
340	61.3	3.6	78.8	57.6
350	61.5	3.6	67.8	57.5

MEANS ARE 63.3 1.7 OVER 10 YEARS

JULI
DATES USED ARE -
198773
180774
30775
150776
148777
200778
260779
170780
160781
150782

LONG	LAT	DEV	MAX	MIN
0	0	0	0	0
E	S		S	S

\square	59.2	2.6	64.3	56.8
10	59.6	2.4	63.7	56.6
20	60.3	0.9	61.6	59.0
30	61.6	1.1	63.4	60.1
40	61.5	1.5	63.9	58.8
50	61.3	1.4	63.5	59.6
60	60.8	1.1	62.5	59.2
70	60.5	0.8	61.7	59.5
80	59.2	1.4	60.8	56.2
90	60.9	2.9	62.2	59.8
100	61.1	1.3	63.8	59.3
110	61.7	1.2	64.8	60.8
120	63.0	1.6	65.9	60.4
136	63.8	0.9	64.5	62.8
140	63.3	1.1	64.8	62.1
150	62.7	1.1	64.3	61.2
160	61.6	0.9	62.7	60.1
170	62.3	1.0	63.2	60.6
180	63.2	2.1	65.4	59.6
190	63.8	1.2	65.9	62.6
200	63.8	1.1	65.2	61.2
210	62.5	2.5	67.4	59.3
220	64.9	2.8	69.8	59.7
230	66.1	1.6	69.0	63.3
240	66.1	1.3	68.6	64.2
250	66.4	1.4	69.4	64.6
260	66.4	1.0	67.8	64.4
270	65.8	1.2	67.6	63.6
280	64.3	1.6	66.5	61.7
290	62.6	2.0	66.0	60.3
300	61.3	1.3	63.0	59.5
310	59.3	1.3	61.8	57.6
320	58.7	1.0	60.6	57.4
330	58.2	1.6	61.4	56.2
340	58.7	1.4	62.0	57.3
350	59.7	3.3	67.0	56.8

MEANS ARE 62.1 1.5 CVER 10 YEARS

160873 150874 190876 170877 180878 90879 140280 130881 129882

LONG	LAT	DEV	MAX	MIN
0	0	0	0	0
E	S		S	S

0	56.5	2.4	61.8	54.2
10	56.7	2.4	61.4	53.5
20	57.8	1.4	60.5	56.6
30	59.9	1.2	62.0	58.0
40	50.3	1.2	61.7	57.5
50	68.2	1.5	61.8	57.0
60	60.0	1.4	62.1	57.2
70	59.6	1.8	61.9	58.3
80	58.3	1.6	68.8	55.4
90	59.4	1.3	61.3	57.4
100	59.6	0.9	69.5	58.1
110	61.3	1.5	64.4	59.5
120	62.3	1.3	65.1	60.8
130	62.3	8.8	64.7	62.0
140	63.6	1.2	65.5	62.4

$150 \quad 62.6 \quad 2.8 \quad 65.7 \quad 59.4$

160	62.1	$1 . \overline{2}$	64.1	60.7

178	62.6	1.6	64.3	62.7

$180 \quad 63.9 \quad 0.7 \quad 64.9 \quad 62.8$
$190 \quad 63.6 \quad 0.9 \quad 65.6 \quad 62.5$
$200 \quad 62.8 \quad 1.2 \quad 65.5 \quad 61.5$
$210 \quad 61.1 \quad 2.7 \quad 66.7 \quad 57.9$

220	63.9	2.9	70.7	60.7

230	65.3	1.8	69.5	62.6

240	65.6	2.0	$69 . \varepsilon$	62.6

250	66.3	1.3	68.5	64.3

$26066.5 \quad 0.5 \quad 66.9 \quad 65.5$
$270 \quad 65.7 \quad 1.2 \quad 67.2 \quad 63.3$
$2 \varepsilon 664.7 \quad 1.4 \quad 67.7 \quad 63.1$

290	62.5	1.7	64.6	60.1

$300 \quad 59.7 \quad 1.5 \quad 62.0 \quad 57.8$

310	58.6	1.4	61.1	57.1

320	57.8	1.5	60.2	55.9

330	56.6	1.2	58.2	54.8
340	56.7	1.2	56.3	54.6

340	56.7	1.2	$5 \varepsilon .3$	54.6
350	56.8	1.4	58.8	54.7

MEANS ARE $61.2 \quad 1.4$ OVER 9 YEARS

SIPTEMBER DATFS USFD ARE -

280973
120974
250975
90976
220977
210978
130579
188980
170981
160982

IONG	LAT	DEV	MAX	MIN
0	0	0	0	0
E	S		S	S

\emptyset	56.0	1.2	57.6	54.1
10	55.6	1.5	57.8	54.0
28	57.0	1.5	68.1	54.6
30	59.3	1.2	61.1	57.5
40	59.4	1.4	61.5	57.0
50	59.4	1.3	61.1	57.1
60	59.0	1.2	60.5	57.3
70	59.0	1.3	61.5	57.1
88	57.2	2.0	59.9	52.8
90	59.2	1.8	60.4	56.8
100	59.6	1.6	62.1	56.9
110	60.4	1.1	62.7	$5 \varepsilon .6$
120	61.7	1.6	63.7	59.0
130	62.6	1.4	64.6	60.5
140	63.2	1.6	64.7	60.2
150	63.2	1.4	64.9	60.9
160	63.0	1.5	65.3	60.6
170	63.3	1.1	65.1	61.8
180	64.1	1.3	66.9	62.6
190	63.8	1.2	66.4	62.6
200	63.3	0.9	64.5	61.9
210	61.9	1.4	63.4	59.6
220	61.8	2.4	66.3	57.9
230	64.1	1.6	67.2	61.5
240	65.3	1.1	66.8	63.8
250	65.5	1.0	67.3	64.0
260	65.8	0.7	66.8	64.7
270	65.4	1.4	68.1	63.7
280	64.6	1.0	66.7	63.0
290	63.8	1.2	65.8	61.3
300	60.6	1.2	62.8	58.8
310	58.5	1.2	60.7	56.9
320	57.3	2.8	60.6	53.3
330	56.7	2.3	59.8	51.7
340	56.9	1.2	58.8	54.4
350	56.8	1.1	58.4	55.4

MFANS ARE $60.9 \quad 1.4$ OVER 10 YEARS

181073
171874 161075 141076 201077 191078 181079 161080 151081 141082

LONG	Lat	DEV	MAX	MIN
0	0	0	0	0
F	5		S	S
0	56.3	1.2	57.9	53.9
10	55.3	1.1	56.4	52.9
20	55.5	1.5	58.0	53.6
30	58.6	1.2	61.1	57.3
40	59.1	1.4	61.2	57.3
50	58.8	1.3	60.8	57.2
60	58.6	1.4	60.5	56.7
70	58.8	0.9	59.9	57.4
80	57.9	2.0	61.3	53.4
96	59.5	1.6	60.9	55.6
100	59.8	2.8	62.1	55.9
110	60.3	1.3	63.1	59.0
120	61.6	1.6	63.9	59.4
130	62.4	1.4	64.6	59.9
140	62.4	1.4	64.5	60.7
158	62.8	1.1	64.3	61.5
160	62.9	0.9	64.1	61.7
170	63.7	1.1	66.3	62.3
180	64.5	0.8	65.5	63.3
190	64.0	0.7	64.9	63.8
200	64.2	0.9	65.5	63.2
218	63.6	1.4	65.6	61.1
220	63.3	2.0	66.4	60.1
230	64.4	2.2	68.3	60.2
240	65.2	1.7	67.5	61.4
250	66.1	1.2	68.6	64.9
260	66.5	1.4	69.3	65.4
270	66.2	1.2	67.9	64.4
280	65.7	1.4	69.4	64.2
290	64.2	1.4	67.3	61.8
300	61.7	1.5	63.5	58.3
310	59.9	1.8	62.5	57.8
320	58.1	1.1	60.1	56.3
330	56.8	1.8	59.4	53.9
340	57.3	1.6	59.5	54.6
350	56.8	1.1	57.7	54.6

MEANS ARE 61.2 1.4 OVER 18 YEARS

LONG	LAT	DEV	MAX	MIN
0	0	0	0	0
E	S		S	S

0	60.4	2.7	66.8	57.8
10	60.7	3.1	66.6	57.5
20	60.1	2.8	63.6	57.6
30	62.5	1.7	64.9	58.5
40	63.1	1.8	65.4	60.3
50	63.2	1.3	64.8	61.4
60	64.0	1.0	65.8	61.8
70	64.1	1.8	65.5	62.5
80	64.3	0.9	65.7	63.2
90	63.8	1.0	65.3	62.3
100	62.7	1.1	63.8	60.3
110	63.7	1.4	65.2	60.9
120	64.6	0.5	65.1	63.6
130	64.4	0.4	65.2	63.6
140	65.8	1.8	67.4	63.8
150	65.0	0.7	66.4	63.9
160	64.0	0.6	65.2	63.1
170	65.0	1.5	67.1	62.2
186	66.9	1.6	69.7	64.9
190	67.8	1.0	70.1	63.0
200	66.2	2.1	F9.E	62.8
210	65.9	1.9	69.9	63.2
220	65.9	2.1	69.1	62.0
230	65.8	1.8	67.8	62.6
240	66.5	1.5	68.6	63.2
250	67.4	1.1	69.4	66.1
260	68.1	1.3	6¢. 6	65.8
270	67.9	Q. 8	6E. C	66.6
280	67.8	1.1	6 C .7	66.1
290	66.4	0.9	67.9	64.6
300	63.8	0.5	64.3	62.8
310	62.6	1.8	63.8	61.8
320	60.3	1.1	61.8	57.7
332	59.2	1.1	60.9	57.3
340	60.8	3.8	71.1	57.4
350	68.9	3.2	ce.e	56.8

APPENDIX IV
COMPUIER OUTPUT OF SEA ICE LATITUDE FOR EACH 10° LONGTIUDE EACH YEAR FOR MONIHB JANUARY THROUGH DECEMBER

JANUARY
IOMG $\quad 1973197419751976197719781979198019811982$

\varnothing	67.2	65.7	69.8	6	69	6¢.7	68.8	68.9	69.3	
12	66	7 C	63.4	69.8		67	68.1	67	63.7	
28	65.	65.	68.6	68.0	67	68.3	69		69.2	
38	64.9	66.8	66.8	66.4	66.3	65.9	67.3	68.3	68.1	
48	65	67	66.8	65	67.3	66.4	67.1	68.	67.	
50	65	64.3	65.6	65.1	66.1	65.5	66.1	66.7	65.5	66.0
60	65	65	66.2	65.2	66.8	66.9	66.9	66.8	65.	
70	64	66	66.5	66.2	66.7	67.0	67.5	65.	67.	
80	64.2	64	64.9	65.8	65.8	65.8	65.6	65.5	65.4	
90	63.8	64	64.7	65.7	65	66	66.8	65.0		
100	64.4	62.8	63.9	63.3	64	64	64	64	64.7	
110	64.9	64.9	65.3	65.1	65	64.8	66	64	65	
120	65.1	65	65.2	65.2	65.4	64.8	65	65		
130	65.0	65.	64.8	65.0	65.5	64.8	65	65.6	65.8	65.6
140	66.8	66.9	64.7	66.9	66.2	66.8	66.8	66.1	66.9	67.2
150	64.9	68.8	65.1	65.1	66.0	65.0	64.9	65.3	65.1	3
160	67.2	65.8	65.0	65.7	63.9	64.1	67.3	69.0	64.5	65.8
170	68.4	66.	66.3	68.4	66.5	68.3	69.1	71.1	68.7	66
180	6	78.4	66.3	66.2	67.6	71.4	78.2	78.1	78.1	61
190	69.9	67.4	66.7	67.4	69.6	71.5	78.6	78.5	73.2	
200	68	65.8	65.c	69.6	69.8	78.6	69.9	76.7	70.0	67.9
10	67.2	65.8	64.9	68.6	69.4	78.3	67.7	72.5	68.3	
220	66.7	67.0	69.3	69.8	68.8	66.7	68.2	71.7	78.6	66.8
3	65.6	66.8	69.4	69.7	$69 . \varepsilon$	65.5	6¢.3	70.1	70.0	
248	66	69.	69.5	68.8	68.7	66.2	67.?	69.4	70.7	68
250		69	$69 . \varepsilon$	67.7	69.6	67.7	69.5	68.0	70.4	
268	68.9	76.	69	69.1	69.5	69.2	70.4	70.8	78.7	00
0	6E. 4	67.4	$69 . ?$	6 6. 2	69.1	67.5	69.9	68.3	69.7	
80	¢8. 5	69.0	78.3	67.9	66.8	68.3	69.	68.7	69.7	
0	67.6	68.0	6E.z	67.9	64.4	6E. 3	67.2	67.4	67.1	
-	63.4	63.5	63.9	63.7	64.8	E2. 4	64.1	64.0	63.5	
310	¢1.2	59.2	63.5	63.9	64.	62.1	63.8	63.4	1.6	
0	59.2	60.9	61.2	El. 2	71.0	67.0	61.5	60.3	59.8	
330	59.3	59.7	71.7	60.1	'72.7	70.1	63.	$5 \varepsilon .4$	68.4	69
40			73	72.8	72	f9. 4	7	1	¢	

FEBRUARY

LONG 1973197419751976197719781979198019811982

0	69.0	69.8	68.	69	69.	69	69.3	68.8	70	69
10	69.	70.2	69	69	69		69.6	69. $\quad 1$		69.2
20	68.9	70.1	68.3	68.	67.8	68.3	69.2	69.7	69.9	68.7
30	68.6	69.0	67.3	68.8	67.7	68.8	67.7	69.3	69	67.1
40	67.3	68.1	66.	67.	67.8	67.9	66.9	68.4	68.5	66.7
50	65.1	65.5	65.6	66.2	65.6	65.5	66.5	66.8	66.8	65.7
60	64.8	66.5	66.0	67.2	66.2	66.	67.3	67.5	68.2	67.1
70	65.7	66.4	66	68.6	66.8	67.6	68.2	67.0	69.1	67
80	64.7	65.6	65.8	65.3	66.2	67.0	67.1	66.4	66.8	68.2
90	64.9	66.8	65.0	65.6	65.7	66.8	65.9	66.3	65.7	66
100	62.7	64.1	64.2	64.1	64.6	65.8	65.2	65.2	64.9	65
110	64.4	65.4	63.9	65.3	65.1	65.8	64.1	65.6	65.9	66
120	63.4	65.6	65.4	65.4	65.5	65.2	65.4	66.1	66.7	66.5
130	62.9	64.9	65.1	65.2	65.7	65.4	65.5	65.8	66.1	65.7
140	64.7	66.7	64.5	66.9	66.8	6 6.?	65.6	6€. 3	67.0	67.8
150	64.8	65.0	64.0	65.3	66.4	65.1	64.9	66.4	65.9	65.9
160	66.8	65.9	64.6	66.7	67.6	65.1	68.7	69.0	66.4	67.5
178	71	71	87.2	68.5	71.2	71.5	71.7	71.4	71.6	78
180	69	78	77.6	70.8	69.7	78.0	78.2	78.1	78.0	77
190	69.7	69	71.8	70.1	70.4	72.1	78.5	78	73	71
200	69	73	72	70	71.2	74	78.0	77.7	72.8	70
210	69.7	73.6	74	73.2	71	70.1	72.9	74.7	72.	73
220	69.6	72.6	72	72	72.3	68.1	74.1	73.6	72	72
230	69.6	70.8	69.8	70.	71.0	68.4	71.8	71.4	71.5	71
240	71.0	71.3	70.	69	71.9	69.8	71.2	69.4	71	71
250	70.4	70.8	70.1	70.3	70.2	70.0	70.4	68.0	71.3	71
260	70.3	70.9	70.7	70.5	70.8	69.6	70.7	69.4	70.3	70
270	68.0	68.8	70.7	69	70.7	68.5	69.1	68.2	69.9	69
289	67.8	69.1	72.3	69.3	69.8	70.2	69.1	68.9	68.6	99
290	68.2	67.8	68.1	68.1	66.4	67.6	67.6	57.8	67.2	67.3
300	63.9	63.9	64.0	64.8	64.1	64.2	64.1	63.8	63.8	63
310	61.2	62.9	63.2	64.7	67.8	62.2	64.2	64.8	65.1	63.6
320	59.0	68.9	70.0	70.9	73.2	67.0	66.3	62.8	71.8	68.9
330	59.0	73.1	75.7	75.0	74.1	70.1	77.0	59.8	72.7	70.3
340	71.8	73.8	72.5	73.1	72.6	69.3	72.1	72.8	73.0	70
350	69.2	70	70.1	69	70	69.6	69.6	71.1	71.1	

MARCH

LONG
θ
10
$\begin{array}{lllllllllll}1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982\end{array}$ 69.269 .869 .869 .168 .868 .969 .569 .469 .468 .9 $69.6 \quad 69.969 .468 .569 .1 \quad 68.569 .469 .569 .268 .1$ $68.670 .36 \varepsilon . \varnothing 68.668 .667 .869 .069 .269 .067 .9$ 67.969 .467 .768 .868 .967 .668 .668 .667 .967 .0 66.967 .767 .068 .267 .766 .866 .767 .866 .767 .0 $65.566 .065 .466 .065 .065 .865 .967 .165 .1 \quad 65.5$ $65.166 . \varnothing 66.565 .566 .366 .667 .366 .965 .666 .6$ $65.166 .266 .466 .8 \quad 65.9 \quad 67.4 \quad 67.6 \quad 66.4 \quad 66.265 .9$ 64.5 $65.065 .365 .166: 567.867 .866 .465 .267 .2$ 64.564 .365 .264 .964 .766 .564 .665 .864 .465 .9 $64.563 .763 .963 .963 .5 \quad 65.265 .264 .8 \quad 63.664 .6$ 64.464 .565 .065 .265 .465 .564 .266 .1650 .466 .0 63.765 .265 .065 .165 .464 .465 .865 .965 .866 .7 $64.064 .964 .6 \quad 65.065 .6 \quad 65.1 \quad 64.765 .365 .966 .9$ 64.766 .965 .866 .065 .066 .164 .865 .865 .767 .4 64.365 .664 .763 .865 .065 .164 .365 .064 .965 .7 $62.766 .266 . \varepsilon 64.568 .368 .464 .267 .765 .567 .2$ $71.671 .372 .267 .671 .071 .371 .671 .1 \quad 71.068 .2$ $69.272 .075 .5 \quad 67.3 \quad 69.975 .977 .276 .7 \quad 73.675 .1$ 70.169 .168 .568 .069 .973 .077 .277 .671 .070 .8 $70.2 \quad 72.270 .3 \quad 69.9 \quad 70.673 .8 \quad 76.175 .2 \quad 69.870 .8$ 69.472 .771 .070 .870 .972 .172 .474 .472 .270 .7 $71.272 .572 .871 .471 .870 .472 .1 \quad 73.572 .7 \quad 72.0$ $69.270 .6 \quad 70.170 .4 \quad 69.8 \quad 68.971 .571 .271 .770 .0$ $70.370 .470 .369 .6 \quad 65.7 \quad 69.171 .6 \quad 69.871 .870 .1$ $68.8 \quad 69.7 \quad 70.469 .769 .6 \quad 68.0 \quad 79.7 \quad 69.8 \quad 71.369 .7$ $6 \mathbb{C l} 570.278 .470 .268 .569 .770 .870 .171 .169 .3$ $68.779 .479 .369 .768 .0 \quad 69.368 .868 .469 .4169 .2$ $68.670 .6 \quad 72.770 .368 .569 .169 .569 .369 .270 .4$ 68.2 68.4 68.5 68.7 66.9 67.2 68.368 .168 .068 .3 63.763 .764 .563 .864 .063 .664 .163 .664 .063 .5
 $5 ¢ .566 .878 .472 .271 .966 .067 .162 .671 .369 .5$ $58.772 .275 .073 .374 .3 \quad 68.070 .075 .873 .871 .3$ 71.572 .772 .872 .873 .265 .570 .673 .672 .969 .7 69.270 .570 .270 .570 .469 .968 .371 .070 .168 .8

APRIL

LCNG
69.068 .169 .668 .768 .568 .769 .068 .568 .268 .3
67.6 69.4 $66.967 .667 . \varepsilon 66.368 .16 \varepsilon .467 .866 .9$
68.8 69.5 69.2 67.7 67.9 65.7 67.669 .667 .567 .4
67.968 .4 67. 567.368 .767 .466 .268 .768 .667 .1
$6 \epsilon .7$ 67.5 66.4 67.2 68.0 67.5 66.768 .367 .267 .5
66.364 .965 .264 .165 .365 .765 .465 .465 .665 .7
65.065 .364 .965 .365 .066 .064 .666 .665 .765 .4
62.764 .965 .165 .864 .865 .764 .966 .165 .163 .8
63.065 .1 65.2 64.665 .266 .263 .966 .165 .064 .6
61.963 .763 .863 .965 .165 .964 .565 .963 .963 .8
63.662 .964 .063 .364 .264 .664 .664 .163 .962 .5
64.564 .265 .264 .165 .264 .465 .065 .264 .163 .0
65.264 .864 .863 .964 .964 .964 .966 .165 .064 .6
65.364 .764 .864 .464 .765 .365 .065 .865 .765 .4
65.064 .664 .964 .3 6E.1 6E. 165.765 .965 .065 .0
65.264 .765 .264 .164 .664 .763 .765 .164 .964 .8
64.863 .864 .063 .565 .965 .063 .165 .165 .865 .0
67.3 67.3"67.3 66.9 67.9 70.0 66.8 69.6 69.2 67.8
$68.167 .567 .466 .867 .469 .769 .873 .269 .567 . \varepsilon$
67.567 .265 .965 .567 .169 .568 .770 .569 .367 .9
$67.368 .166 .666 .468 .069 .969 .0 \quad 71 . \varepsilon 69.3$ 68. 6
$68.768 .366 .767 . \ell 67.170 .669 .171 .769 .967 .5$

68.068 .567 .769 .069 .168 .269 .471 .570 .469 .1
$66.568 .568 .369 .469 .06 \varepsilon .6$ 6E. $170.070 .26 \varepsilon .4$

67.370 .769 .379 .670 .265 .070 .458 .170 .067 .9
67. 169.868 .478 .769 .267 .768 .167 .867 .867 .6
67.870 .170 .769 .768 .968 .268 .268 .168 .968 .3
67.669 .067 .768 .968 .467 .367 .766 .567 .468 .1
$62.8 \quad 63.963 .8 \quad 63.963 .6 \quad 62.8 \quad 63.763 .6 \quad 63.5 \quad 63.7$
60.761 .861 .561 .763 .561 .861 .764 .262 .562 .6
69.565 .163 .367 .665 .064 .961 .462 .169 .267 .2
$70.066 .469 .869 .572 .968 .761 .9 \quad 71.369 .268 .5$
71.365 .872 .170 .872 .171 .467 .170 .570 .169 .4

MAY
LONG $\begin{array}{llllllllllll}1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982\end{array}$

JUNE

0	60.9	62.6	67.6	64	64	63.8	61	60.0	60.2	62
10	66.4	67.1	66.1	63.5	62.6	61.7	62.	66.2	62.	64.0
20	64.3	64.6	63.9	61.7	61.7	61.8	61.9	67	61.7	63.3
30	64.9	64.3	63.5	59.7	61.0	63.0	63.4	66.8	61.9	63.2
40	65.6	64.3	64.4	60.0	60.9	65.8	65.2	65.4	63.0	64.7
50	64.4	62.9	62.8	58.9	62.6	65.2	64.3	64.0	62.0	63.9
60	62.1	62.1	61.4	61.4	61.4	63.3	62.8	63.2	61.3	61.9
70	60.7	60.8	60.9	60.9	62.8	64.9	60.7	61.1	60.9	60.9
80	60.4	60.3	60.7	61.8	61.5	63.8	60.8	60.8	60.5	59.1
90	60.7	60.8	61.6	60.0	61.2	64.6	61.2	62.3	61.7	59.7
100	62.1	61.8	61.8	62.5	62.7	63.0	61.6	62.8	61.6	60.1
110	62.	61	62	62.5	62.8	63.6	64.2	62.5	63.8	61.8
120	62.6	63.2	62.2	62.4	62.7	64.4	63.2	63.7	65.2	64.3
130	63.8	63.2	62.8	63.9	63.6	65.4	64.4	64.7	63.7	65.2
140	62.7	63.2	62.9	63.7	63.9	64.6	63.6	64.7	65.8	65.2
150	61.8	62.5	61.6	63.9	63.2	63.7	62.7	64.1	65.7	65.3
160	61.0	61	61.1	61.9	61.1	62.9	60.4	63.2	62.4	64.8
170	63.9	60.7	61.1	63.8	63.4	65.6	62.6	68.7	62.8	64.2
180	65.1	61.8	61.6	65.4	64.4	66.8	64.7	68.1	65.2	60
190	64.8	62.	62.6	64.8	64.1	65.6	63.9	69.1	64.5	65.2
208	66.3	60.	62.2	62.8	63.8	66.3	62.7	68.5	62.4	64.7
210	65.6	58.5	60.6	65.8	64.1	65.6	64.2	78.1	61.7	65.7
220	66.1	63.	63.8	65.9	65.4	66.9	64.8	71.4	66.3	66.3
230	65.9	65.6	65.5	65.9	64.9	65.3	65.1	69.1	67.1	68.1
240	66.8	65.0	65.8	65.8	64.2	66.5	64.9	68.9	67.7	67.4
250	65.1	65.2	66.3	66.4	64.6	67.1	66.4	68.1	69.1	67.8
260	65.3	6 6. 1	66.3	67.5	64.6	66.9	65.1	68.8	69.9	67.2
270	64.6	66.4	65.3	67.3	64.7	65.7	66.8	67.6	69.6	66.6
280	63.7	66.4	66.7	65.4	64.3	64.5	67.6	64.5	68.4	64
290	62.5	65.3	66.3	64.1	62.3	65.9	65.2	63.2	62.9	63
300	62.8	62.4	62.1	63.6	61.6	63.4	61.1	62.4	63.3	63
310	59.5	58.2	59.6	59.4	59.9	60.7	59.9	58.6	59.4	60
320	58.7	59.1	59.5	59.6	61.7	60.4	57.2	$5 \varepsilon .5$	59.2	59.7
330	58.2	57.9	59.5	58.2	63.4	61.3	57.8	57.6	58.1	60.3
340	59.4	57.6	61.0	62.8	70.8	61.7	60.6	59.4	59.8	61
350	60.		60	97				59.6	57.5	60.2

JULY

LONG 197319741975197619771978 1979 198019811982

0	57.1	57.5	62.8	59.9	64.3	59.8	56.8	57.6	57.2	58.
10	59.0	59.7	60.9	61.3	63					
20	59.0	60.8	61.6	61	61.3	60.				
30	61.2	60.6	62.9		61.8					
40	61.1	60.9	62	58.8	60.5	60.	61		63	62
50	61.4	60.4	60.3	59.8	59.9	61.7	62.0		63	62
60	61.2	59.8	59.	59.2	59.9	62.1	61.	62	60.	
70	59.7	59.	60.5	60		61.	60		59	
80	58.7	59.	60.1	59	57.	60.8		51	56	
90	60.0	60.	59.8		61.2		62	62	60.	
100		60			2:8	62.9	62	63.	60.1	
110	61.2	60	60.8	61.	63.	62.	62.0	64.	61.	
120	,		62.2	62	64		63	65		
136	62.4	62.8	62.1	62.5		.	63.	62.	64	
148	62.6	62.9	62.4	62.1	63.8	E2	6			
150		62.	62.1	61.7	63.				63	
160			60.1	61.8					62	
170	62.9	60.	60.6	62.8	62.8	62.7	61	63	63	
180		61.	60.8				62.8	65	64.8	
96	63.8	62		65.4	65.2	62.8		5		62.
0	62.5	61.				62			62.8	
0	62.1	59.3					61	67.	60.8	
0	64.4	59.7	1.8	66.0	,	66.4	64.	69.	63	
30	65.8	63.3	65.2	65.9	66.	67.1	64.9	69.	65.	
-	65.5	64.2	65.3	66.3	66.	65.1	66.1	68.6	6,	
250	65.0	64.6	65.7	66.	65.	66.4	67.6	6.	67	
260	64.4	66.2	66.0	$66 . \epsilon$	65.7	65.9	67.8	66.	67	
270	64.5	66.6	66.3	65.9	63.6	64.9	66.5	5.8	67.6	66
288	63.3	65.6	66.5	64.0	61.7	63.8	64.5	63.5	66.5	63
290	60.7	64.1	66.8	61.9	60.8	60.3	64.2	61.1	64.8	62
300	60.5	61.8	62.3	€1. 4	60.2	59.8	61.9	59.5	63.0	
310	57.6	58.0	58.3	58.8	60.4	59.2	61.8	58.5	68	
320	57.4	57. ε	58.3	58.3	60.6	59.6	58.4	57.9	59.3	
330	56.7	57.4	57.7	56.2	61.4	59.3	58.0	57.0	58.3	59.
340	57.3	57.9	58.2	$5 \varepsilon .4$	62.0	58.9	57.7	5 E. 1	58.5	
350	57.9	57.6	60.5	63.2	67.0	60.2	57.1	57.5	56.8	

AUGUST

LONG 19731974197519761977197819791980.19811982
54.655 .5
53.658 .7
57.259 .9
59.759 .3
60.459 .7
60.159 .2
59.958 .9
59.559 .8
57.259 .7
57.460 .3
58.160 .3
59.560 .8
61.460 .8
63.062 .0
62.862 .4
63.058 .4
61.360 .9
62.260 .7
63.862 .8
63.763 .3
61.561 .8
59.057 .9
63.860 .7
65.662 .6
64.662 .6
66.364 .3
66.865 .5
65.566 .0
66.064 .6
63.963 .5
59.760 .5
57.957 .1
55.957 .3
56.555 .1
54.656 .5
54.756 .3
$59.756 .761 .0 \quad 54.2 \quad 54.8 \quad 55.0 \quad 50.9$
$58.8 \quad 56.061 .4 \quad 54.8 \quad 55.3 \quad 55.1 \quad 57.4$
$57.358 .160 .5 \quad 56.6 \quad 56.7 \quad 57.3 \quad 56.7$
59.060 .959 .559 .560 .862 .058 .0
57.560 .960 .760 .561 .761 .160 .2
57.060 .759 .961 .361 .661 .860 .6
$57.260 .560 .262 .161 .460 .5 \quad 59.7$
$58.359 .359 .961 .959 .65 \varepsilon .95 \varepsilon .8$
$58.059 .5 \quad 57.660 .8 \quad 58.155 .458 .0$
58.660 .360 .261 .359 .457 .659 .8
59.260 .460 .160 .260 .558 .658 .7
60.760 .762 .860 .161 .864 .460 .5
$62.161 .263 .161 .8 \quad 63.265 .161 .8$
63.662 .864 .163 .863 .364 .762 .8
64.462 .663 .565 .064 .065 .562 .4
63.962 .763 .365 .761 .263 .662 .0
62.864 .162 .763 .360 .762 .160 .9
63.364 .362 .962 .662 .463 .061 .6
64.864 .763 .763 .064 .964 .363 .2
62.563 .562 .665 .664 .263 .863 .4
$61.963 .162 .965 .563 .6 \quad 62.662 .5$
$60.161 .1 \quad 60.1 \quad 63.8 \quad 66.7 \quad 59.6 \quad 61.3$
$64.163 .6 \quad 64.763 .1 \quad 70.761 .263 .5$
65.264 .865 .364 .869 .564 .465 .7
66.264 .266 .665 .869 .864 .965 .8
67.064 .767 .366 .068 .565 .966 .3
66.866 .066 .766 .466 .766 .960 .4
64.963 .366 .365 .966 .967 .265 .3
$63.763 .165 .464 .463 .6 \quad 67.764 .2$
61.469 .160 .964 .660 .764 .063 .7
$58.257 .8 \quad 59.2 \quad 62.0 \quad 58.368 .8 \quad 61.2$
57.357 .259 .261 .157 .759 .959 .7

58.257 .256 .857 .354 .855 .758 .1
$57.057 .5 \quad 57.6 \quad 57.8 \quad 55.455 .758 .3$
$58 . \varepsilon$ 57. \& 5ع. 3 56.7 55.6 55.6 57.2

SEPTEMBER

0	54.2	55	55.5	.0	56.7	56.8	,	54.1	56.1	
10	54.5	54.0	55	57.5	57.8	55.8	E7.0	54.3	54.8	
20	54.6	56.6	55.2	57.8	60.1	56.6	56.9	56.8	55.4	56
30	55.8	59.8	5¢.7	55.7	61.1	60.	57.5	55.4	58.0	58.0
40	58.4	58.6	59.9	57.0	68.1	61.5		60.6	60.7	58.2
50	5¢.0	57.5	63.9	57.1	55.1	61.1	ES. 8	60.0	59.9	55.6
60	58.6	57.3	50.9	57.4	59.5	60.5	62.	60.0	5E.0	$\varepsilon .7$
70	59.0	58.1	68.2	57.2	$5 ¢ .1$	E¢. 1	61.5	$5 ¢$	57.1	58.6
80	57.9	55.5	5E.7	57.E	$5 \varepsilon .4$	$5 \varepsilon .4$	59.9	E¢. 1	52.8	56.4
90	59.8	59.8	59.4	58.3	59.4	58.8	60.0	60.4	50.8	8
100	57.4	59.7	58.4	59.4	$59 . \overline{1}$	58.8	60.2	62.1	56.9	57
110	58.6	61.3	62.2	61.1	60.2	60.1	60.2	62.7	60.5	$5 ¢ .3$
128	59.8	60.2	60.4	63.3	62.4	61.9	61.5	63.7	63.6	60.6
130	62.0	61.1	68.9	64.6	62.6	62.9	63.4	64.1	63.8	60
140	63.7	61.9	60.2	64.5	64.3	63.6	64.7	63.2	64.4	61
150	63.7	60.	61.0	64.6	64.4	53.2	64.9	61.9	63.8	63.3
160	63.3	61.3	60.6	62́. 9	65.3	64.3	64.2	61.7	62.5	63
170	62.5	62.4	61	63.2	65.1	65.8	63.	62.5	62.E	64
-	63.2	64.2	62.6	63.9	66.9	64.8	62	63.7	64.2	
190	64	63	62.8	63.7	06.	63.9	63.7	63.8	62.6	65
-	62.9	61.9	62.5	63.8	64	64.	63.9	62.3	63.7	
210	68.1	55.6	62	61.8	62.8	2.3	63.2	63.2	60.1	
0	59.4			63	61.	2.	61.5	66.3	62.5	63
230						2,	62			65
,									66.2	
					66.3	.	4	\%	60.8	6
260	66.6	64.9	64.7	65.7	66.0	65.	65.0	66.3	$66 . E$	66.8
270	67.8	64.8	64.6	64.6	64.7	64.7	03.7	88.1	67.0	64.9
280	64.9	63.7	63.4	63.0	64.7	64.7	64.9	64.7	66.7	65.0
290	63.8	62.5	62.4	62.5	61.9	61.3	64.3	62.9	65.6	63.8
300	62.8	60.7	60.1	59.E	61.7	59.7	59.9	58.8	61.7	$68 . \varepsilon$
310	55.8	57.3	55.9	58.5	60.7	57.4	58.4	57.8	58.3	59.6
320	57.1	56.9	55.8	$5 E .0$	60.6	E¢. \varnothing	57.9	53.3	EE. 1	58.3
336	56.7	55.2	55.3	58.2	59.8	57.9	58.1	51.7	56.2	57.8
340	56.0	57.1	56.2	$5 \varepsilon .0$	5 E. ε	57.2	57.8	54.4	56.4	
350	55	析	56.8		58.8	55.9				

OCTOBER

ICNG	3	1974	1975	1976	1977	1978	1979	1980	1981	1982
\emptyset		E5	57.9	57.3	57.3	56.1	57.2	. 2	. 7	
10	52.9	56.3	56.4	55.6	54.0	56.0	55.7	54.9	55.8	55.7
20	53.6	58.0	56.9	54.9	57.4	55.1	54.0	56.6		55.0
30	57.7	58.0	59.8	58.3	59.4	58.9	57.3	61.1	58.4	57.5
40	57.9	57.9	60.6	58.2	60.1	60.2	57.9	61.2	60.1	57.3
50	57.2	57.7	59.3	57.5	58.9	60.5	58.2	60.1	60.8	57.7
60	56.7	57.0	58.6	56.9	59.0	60.6	58.9	60.9	58.8	58.7
70	57.4	58.2	59.6	57.9	59.9	59.2	58.5	59.9	58.3	59.2
80	57.3	57.6	58.9	58.2	59.1	57.9	61.3	56,4	53.4	58.5
90	59.3	60.8	60.9	60.2	59.1	58.6	60.8	60.3	55.6	60.5
100	58.2	57.7	60.5	59.5	58.6	57.1	61.8	62.1	$55 . c$	58.4
110	59.3	60.1	60.5	61.7	59.3	59.0	69.2	63.1	60.7	59
120	59.4	62.8	61.8	62.3	59.4	59.9	62.2	63.7	63.9	61.1
130	62.6	62.5	62.9	63.5	62.8	59.9	61.2	64.6	63.4	. 8
140	62.1	61.8	62.7	64.5	63.	60.7	61.8	64.0	62.9	60.8
150	61.8	61.7	62.4	64.0	64.3	61.5	64	63.8	62.4	62.4
160	62.3	61.7	62.3	63.5	63.4	62.9	64.0	64.1	61.8	62.8
170	62.3	63.4	62.9	63.0	63.8	63.2	66.3	63.6	63.7	64.3
180	63.3	64.5	65.2	63.3	63.8	64.4	65.4	65.5	64.7	65.1
190	63.0	63.2	63.2	63.7	64.8	64.9	64.2	63.7	64.6	64.7
200	63.2	63.2	63.6	64.4	65.5	64.2	65.0	63.5	64.0	65.4
210	62.0	61.1	63.3	64.4	65.6	64.8	64.3	63.2	62.8	
220	61.4	60.1	61.3	62.9	65.1	63.8	64.4	66.4	63.8	2
230	62.4	60.2	64.9	63.9	64.5	65.8	63.0	68.3	64.9	66.4
240	64.8	61.4	65.1	65.3	64.9	66.2	64.0	67.5	65.8	66.9
250	65.4	65.2	65.5	65.3	66.2	65.6	64.9	67.7	66.2	$6 \varepsilon .6$
260	65.9	65.4	65.4	66.5	66.2	65.5	65.8	68.5	66.0	69.3
270	67.7	66.4	65.8	66.1	64.4	65.0	66.0	67.9	65.4	67.3
280	69.4	65.5	66.0	64.2	64.5	65.1	65.8	66.0	65.3	64.9
290	67.3	64.4	64.0	61.8	63.1	64.9	65.2	63.7	63.E	63.6
30.0	63.9	62.0	61.1	58.3	61.8	¢2.6	62.2	61.2	62.4	61.8
310	61.6	60.1	57.8	57.8	60.4	62.5	61.7	58.2	52.4	60.9
320	57.6	58.7	57.0	57.8	58.6	60.1	59.4	56.3	58.	57.5
330	55.1	57.0	55.2	56.6	59.4	59.0	57.0	53.9	8.5	56.3
340	55.2	57.5	57.4	56.9	58.9	59.5	57.8	54.6	58.6	56.4
350	54.9	57	57		57	57.5	57	54	57.1	56.7

NOUEMBER

I.ONG

55.3	57	58	65	56	57	5	-	5	58.3
3.	56	57	57.			56			
5.	60.	59.8	59	59	58.1	56	57		
5 E .1	60.	60	58	60.1	68	60.0	59		
57	59.	62	57.5	60	59		60.0		
57	58.0	61	58	61	61		68		
58	57.	60	59	60.2	60.	61			
58.9	59.	68	59	61				59	4
60.6	61.1	¢2	59					59	62
60.	61.6	62.	60.7	59.5	59.	60.5	61.2	59.	68
59.9	62.	61	61.6	60.2	60	59.2	62.	61.8	60
60	63	63	62	60	62.	60	62	63	61.6
61	64.	64	64	61	E2	62	62.8	63	62.7
61.4	64.1	63	64.3	62.8	62	62	62.3	62.7	61
60.8	62. 6	63.3	64.3	63.5	E3	63	62	63.1	61.0
61.3	62.5	62.7	62.7	63.8	65	63.8	63.0	63.1	
61.8	63.1	63.8	62.5	64.5	65.3	67.	64.5	63.	63
62.6	64.2	64.0	63.5	66.0	66.3	67.6	56.8	65.0	65
62.0	$62 . \varepsilon$	65.3	64.7	66.6	66.4	68.0	64.0	65.2	65.0
61.0	63.0	63.8	64.4	66.3	66.1	66.1	62.9	64.2	64
61.9	62.8	63.3	65.1	66.2	65.1	65.8	62.6	64.9	63
61.5	60.9	63.6	64.3	65.8	64.8	65.8	64.	62.7	63
62.1	61.3	62.1	63.5	64.0	65.0	64.9	65.9	64.	65
65.6	64.5	66.1	63.6	63.8	66.3	64.9	57.8	65	
66.1	65.0	67.0	64.2	63.7	67.2	65.7	$6 E$	65.7	67
65.8	66.3	65.8	$66 . ¢$	65.8	65.7	64.7	70	66.7	
66.8	65.	66.7	65. 5	6 6.0	66.3			60.6	
69.6	65.9	66.2	65.0	65.8	¢8	65.		66.9	
67.2	66.5	66.3	64.8	64.6	66.1	65.7	64.4	64.9	
	63.5	63.5		62.1	63.5	62.6	62.		3.2
	62.4	62.8	63	63.2	62.5	61.9		60.9	60.2
	59.9	59.2	58	59.9	60.7	59.7	58.	59.8	
57.8	56.7	57.6		59		58			
59.8	58.5	57.3	58.5	61.5	59.	58.	55.	59.2	5
6	58	57	58	59	58	5	55	5	8

我

 Nas＠N以

 ©

 नNM サに

Ackley, S.F. (1981). A review of sea ice weather relationships in the Southern Hemisphere. In: Allison, I. (ed). Sea Level, Ice and Climatic Change, pp. 127-159. IAHS Publication Number 131.

Allison, I. (1982). The role of sea ice in climatic variations. In: Report of the WMO/CAS - JSC - CCCO meeting of experts on the role of sea ice in Climatic Variations. WCP - 26; pp. 27-50. WMD, Geneva.

Booth, A.L. and Taylor, V.R. (1969). Meso-scale archive and computer products of digitized video data from ESSA satellites. Bulletin of the American Meteorological Society 50:431-438.

British Admiralty. (1943). Ice Chart of the Southern Hemisphere Number 5032. Naval Meteorology Branch, Hydrographic Department, London.

Budd, W.F. (1980). The importance of the Antarctic region for studies of the atmospheric carbon dioxide concentration. In: Carbon Dioxide and Climate: Australian Research. The Australian Academy of Science, Canberra, pp. 115-128.

Gloersen, P., Zwally, H.J., Chang, A.T.C., Hall, D.K., Campbell, W.J. and Ramseier, R.O. (1978). Time - dependence of sea ice concentration and multi-year ice fraction in the Arctic Basin, Boundary-layer Meteorology 13:339-359.

Godin, R.H. (1979). Data sources and sea ice products of Fleet Weather Facility/Joint Ice Center, Suitland. Glaciological Data Report GD-5. Workshop on snow cover and sea ice data. pp. 29-35.

Hansen, H.E. (1934). Limits of the pack-ice in the Antarctic in the area between $40^{\circ} \mathrm{W}$ and $110^{\circ} \mathrm{E}$. Hvalradets Skrifter Number 9. (Scientific Results of Marine Biological Research) pp. 39-41 (+4 plates).

Hansen, H.E. (ed). (1936). Atlas over Antarktis og Sydishavet. Utgitt av Hvalfangernes Assurance torening i Anledning av Foreningens 25 - Ars Jubileum.

Herdman, H.F.P. (1959). Early Discoverers, XII - Same notes on sea ice observed by Captain James Cook, R.N., during his circumnavigation of Antarctica, 1772-75. Journal of Glaciology $3(26): 534-541$.

Jacka, T.H. (1981). Antarctic temperature and sea ice extent studies. In: Antarctica: Weather and Climate; Preprint volume of meeting at the University of Melbourne, May 11-13, 1981. R.M.S.A.B. pp. 89-98.

Kukla, G.J. and Gavin, J. (1981). Recent secular variations of snow and ice cover. In: World Glacier Inventory; Proceedings of the Riederalp Workshop, September 1978. IAHS - AISH Publication Number 126, pp. 249-258.

Kukla, G.J., Angell, J.K., Koroshover, J., Dronia, H., Hoshiai, M., Namias, J., Rodewald, M., Yamamoto, R. and Iwashima, T. (1977). New data on climate trends. Nature 270:573-580.

Lemke, P., Trinke, E.W., and Hasselmann, K. (1980). Stochastic dynamic analysis of polar sea ice variability. Journal of Physical Oceanography 10(12):2100-2120.

Mackintosh, N.A. and Herdman, H.F.P. (1940). Distribution of pack-ice in the Southern Ocean. Discovery Reports 19:285-296.

Rubin, M.J. (1982a). James Cook's scientific progranme in the Southern Ocean, 1772-5. Polar Record 21(130):33-49.

Rubin, M.J. (1982b). Thaddeus Bellingshausen's scientific programme in the Southern Ocean, 1818-21. Polar Record 21(132):215-229.

Streten, N.A. and Pike, D.J. (1980). Characteristics of the broadscale Antarctic sea ice extent and the associated atmospheric circulation 1972-1977. Archiv fur Meteorologie, Geophysik und Bioklimatologie, Series A 29:279-299.

Tolstikov, Ye, I. et al. (ed). (1966). Atlas Antarktiki I. Glannoye Upravleniye Geodezii i Kartografii. MG, Moscow, S.S.S.R. Plate 126.
U.S. Naval Hydrographic Office. (1957). Oceanographic Atlas of the Polar Seas, Part I, Antarctic Publication 705, Washington, D.C.

Yeskin, L.I. (1969). In: Tolstikov, Ye I. et al. (ed). Atlas Antarktiki II. Leningrad, Gidrometerologicheskoye Izdatel' stvo, pp. 449-454.

Zwally, H.J. and Gloersen, P. (1977). Passive microwave images of the polar regions and research applications. Polar Record 18:431-459.

Zwally, H.J., Parkinson, C.L., Carsey, F., Gloersen, P., Campbell, W.J. and Ramseier, R.O. (1979). Antarctic sea ice variations 1973-75. NASA Weather and Climate Review, NASA/Goddard Space Flight Center, Greenbelt, Maryland. pp. 335-340.

Zwally, H.J., Comiso, J.C., Parkinson, C.L., Campbell, W.J., Carsey, F.D. and Gloersen, P. (1982). Antarctic sea ice cover, 1973-1976, fram satellite passive microwave imagery. NASA Greenbelt, MD.

ACKNOWLEDGEMENT

I thank Ian Allison, Antarctic Division, for his critical comments and suggestions which have led to a number of improvements to this paper.

1. John M. Kirkwood (1982). A guide to the Euphausiacea of the Southern Ocean.
2. David O'Sullivan (1982). A guide to the Chaetognaths of the Southern Ocean and adjacent waters.
3. David O'Sullivan (1982). A guide to the Pelagic Polychaetes of the Southern Ocean and adjacent waters.
4. David O'Sullivan (1982). A guide to the Scyphomedusae of the Southern Ocean and adjacent waters.
5. David O'Sullivan (1982). A guide to the Hydromedusae of the Southern Ocean and adjacent waters.
6. Paul J. McDonald (1983). Steam aided curing of concrete in Antarctica.
7. Richard Williams, John M. Kirkwood, David O'Sullivan (1983). FIBEX cruise zooplankton data.
8. David O'Sullivan (1982). A guide to the Pelagic Tunicates of the Southern Ocean and adjacent waters.
9. Rosemary Horne (1983). The distribution of Penguin breeding colonies on the Australian Antarctic Territory, Heard Island, the McDonald Islands, and Macquarie Island.
10. David O'Sullivan (1983). A guide to the Pelagic Nemerteans of the Southern Ocean and adjacent waters.
11. John M. Kirkwood (1983). A guide to the Decapoda of the Southern Ocean.
12. John M. Kirkwood (1983). A guide to the Mysidacea of the Southern Ocean.
13. T.H. Jacka (1983). A computer data base for Antarctic sea ice extent.

[^0]: Figure 4 (on following pages). Mean ice distribution for each month, plotted at 10° longitudinal intervals with range bars indicating, independently at each longitude, the greatest and least ice extent over the 10 year period.

