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FOREWORD

The study of the dynamics of the large ice caps, Greenland and Antarctica, is
still in its infancy. The inland regions are so far from fixed measuring points, and
the movement rates are so small, that it is very difficult to determine their motion.
Yet, the quantities of ice are so large, and the history held in the annual layers
within the ice go back so many thousands of years, that the study of the dynamics
of the larpe ice masses is of great interest to many research workers in fields
such as glaciology, hydrology, climatology, geography and geophysics. The present
report develops the theory of ice masses in general, largely from the investigation
of two major ice masses in the Antarctic.

As a glaciologist with the Australian National Antarctic Research Expeditions
the author spent one year at Wilkes, on the edge of the East Antarctic ice cap,
and one year at Mawson, working mainly on the Amery Ice Shelf. Since then
the author has collaborated with Dr. U. Radok of the Meteorology Department,
Melbourne University, in supervising the glaciological research programme of the
Antarctic Division of the Commonwealth Departinent of Supply.*

The major project in the Wilkes region has been the detailed study of the
Wilkes local ice cap—a medm-scale ice cap, some 200 km in diameter, which
serves as a convenient model of ice caps generally.

The Amery Ice Shelf, some 400 km from Mawson, is 300 km long and 200
km wide and serves as a model to study the dynamics of a typical ice shelf.

In conducting the investigations into the dynamics and change of these two ice
masses it has been possible to examine the existing theories of ice motion, and
to re-assess and extend them to enable general laws to be derived which can be
used to calculate the dypamics of other ice masses.

This work, some of which already has been published in part, brings together
the theory of the dynamics of ice masses generally and tests this briefly by applica-
tion primarily to the results of the measurements made on the Wilkes ice cap and
the Amery Tce Shelf, although other ice masses, including temperate glaciers, are
referred to for completeness.

One of the chief difficulties encountered in this project has been the high
dependence of the flow law on ice type and temperature. The temperature has
proved such an important parameter that the largest chapter of the present work
has been devoted to the study of temperature profiles in ice masses.

The major results of the theory are confirmed by the present measurements
so far. Further predictions are made about the velocity and strain rates in ice
masses but these predictions are highly dependent on the temperature distribution

* Responsibility for the Antarctic Division was transferred to the Department of Supply from
the Depariment of External Affairs in May 1968.



in the ice, and hence complete confirmation will not be achieved until the tem-
perature distributions are also known.

Measurements are continuing on the Wilkes ice cap and the Amery Ice Shelf
with the aim of determining both the velocity distribution and the temperature in
sufficient detail to establish the flow law of ice in natural ice masses and allow
the theory to be developed to sufficient precision to calculate the temperature and
velocities in other ice masses.

Finally, the study of the dynamics makes it possible to analyse the state of
balance, rate of change, and recent history of ice masses. The measurements on the
Wilkes ice cap and the Amery Ice Shelf already indicate what is now happening
to the ice in these regions of Antarctica.



THE DYNAMICS OF ICE MASSES
By
W. F. Bupp

Antarctic Division, Depariment of Supply, Melbourne
(Manuscript received January 1969}

ABSTRACT

The study of the dynamics of ice masses involves establishing the equations of
motion in terms of stresses, introducing the stress strain rate relation, or flow law,
for ice and solving the equations of motion to obtain velocity distributions for the
particular ice masses: glaciers, ice shelves, and ice caps.

The flow law of ice is complex. For lower stresses the stress strain rate relation
is approximately linear but for high stresses it approaches a high power law. The
strain rate increases rapidly with temperature and for polycrystalline ice also de-
pends on the crystal sizes and orientation fabrics, the ice density and impurity
content. To supplement laboratory measurements it is necessary to determine large
scale flow law parameters from existing ice masses.

For the special symmetry of typical ice masses the longitudinal strain rates
only slightly affect the cross-section profiles of velocity and hence these and the
longitudinal profite can be treated somewhat independently.

In cold ice masses the most important parameter governing the stress-strain
rate relation is the temperature. In regions of high ice-movement rates the heat
produced by internal deformation of the ice becomes more important than the
geothermal flux in determining the temperature profile. High accumulation rates
at the surface of the ice cap tend to make the temperature depth profile more
isothermal. Negative temperature—depth gradients at the surface are caused by
surface warming due to either climatic change or the normal outward downward
movement of the ice. Even long-term climatic changes fail to penetrate the thick
ice caps with the present low accumulation rates.

Along the line of flow of an ice mass on the large scale the longitudinal velocity
depends on the ice thickness, the mean surface slope and the flow parameters of
the ice, which incorporates the temperature profile but with greatest weight on
the conditions at the base. On the smaller scale the average longitudinal strain
rate gradient is proportional to local deviations in surface slope from the mean
slope. By incorporating the divergence or convergence of the flow lines these results
may be extended to three dimensions.

For steady state flow of ice over undulating bedrock similar undulations occur
on the jce mass surface, but with a reduced amplitude and a phase shift. The
damping of the waves depends on the ice thickness, its velocity, the ice flow

3



parameters and the wavelength of the undulations. Since the minimum damping
occurs for wavelengths of about three times the ice thickness, waves of this length
tend to predominate on ice mass surfaces.

Actual measurements of longitudinal strain rates and velocities on ice shelves,
ice caps and glaciers, together with the ice mass dimensions, allow the flow para-
meters of the ice to be calculated. Independent calculations can be made from the
amplitudes of the surface and bedrock undulations.

Finally, from the profiles of the bedrock elevation, accumulation rate and the
flow parameters of the ice, steady-state shapes of the ice masses may be calculated.
From the existing shapes and the measured velocity and accumulation rates it is
possible to calculate the state of balance, present rate of change, the particle paths
and the recent past history of the ice mass. These calculations are carried out for
the Wilkes ice cap and the Amery Ice Shelf from measurements made by the
Australian National Antarctic Research Expeditions.
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OUTLINE OF PROBLEM 1.1

1. INTRODUCTION
1.1. OUTLINE OF PROBLEM

The major problem in the study of the dynamics of large natural ice masses is
to find the laws governing their motion and to show how these laws may be used
to calculate the present movement and the past and future histories of an ice mass
with the minimom of measurements. The three major ¢classes of naturally occurring
ice masses are discussed below in Section 1.2.

The basic problem may be subdivided into three sections.

1.1.1. The equations of motion

Denote the position vector of a point in the ice medium, of density p, by
x; (i = 1...3) with respect to orthogonal axes, generally taken with

x, horizontal in the direction of motion

x, upwards vertically

X, across the hne of motion.

Let the stress at x, be denoted by o;.

The external force on unit volume of the medium may generally be taken simply as
the gravitational force pg;.

Now, for naturally occurring ice masses deforming slowly under their own
weight, accelerations are much smaller than the other forces, and hence may be

neglected.
We have then the equations of motion (summing on dummy suffixes)

d7ij (1)
= PG;
dx;

Now, generally, because the ice medium is deforming we do not know all the
boundary conditions for the stress. However, the boundary velocities can usually
be measured. Thus we require the relation between stress and strain rate in order
to obtain the equations of motion in terms of velocities and velocity gradients

{strain rates).

1.1.2. The relation between siress and strain rate

For most practical purposes the ice may be considered as incompressible. Therefore,
the only deformation we are concerned with is pure shear with no change in volume,

i.e., if &; is the strain rate tensor at X

£ = ! (% + gﬁ)where u; is the velocity at x; |,
2 ax_., axi



1.1 INTRODUCTION
then

i = €y + By + £33 =0 (2)

The details of the flow law relation between stress and strain rate for ice will be

discussed in Section 2. For the moment it will suffice to say that we can express o;;
as a function of the &; by means of the stress deviator tensor o;’; defined by

Gy = 0 — %fffzarj 3
= 1, i = J
=0,is j
and the flow law o{;=nei; 4

where # is a scalar function of the stress invariants and the properties of the ice
such as the temperature.

To solve the equations (1) and (4} for the strain rates we require the strain
rates at the boundary. Then to solve for velocities we require the velocity at the
boundary.

These two points indicate that, given an ice mass ol a particular shape and size
(i.e., a full specification of elevation profile, bedrock profile and plan) then the
velocity solution is not unique but depends on the boundary velocity and strain
rate which may be expected in general to vary with time. The very special case
of steady state, where the boundary dimensions and velocities are kept constant
by a particular pattern of accumulation, ablation, calving, etc., will be treated
separately.

1.1.3. Solution of the equations of motion in practice Jor different boundary
conditions

In studying the dynamics of natural jce masses it is generally required to know
the shape and size of the ice mass. This requires

(i) mapping the boundaries (horizontal) (e.g., by aerial photography and
land trignometric surveying);
(il) determining the elevation contours (by barometric or optical levelling or
photogrammetry by aircraft flights or ground traverses});
(iii) determining the bedrock contours (by seismic surveys supplemented by
gravity measurements or by use of radio echo sounders).

This would be sufficient to determine the stress in the ice if it were motionless,
but as it is deforming we require the velocity and the strain rates at the boundary.
These are generally determined at several points by land or aerial survey techniques.

Then, starting from these boundary conditions it should be possible from the
equations of motion and the flow law to determine by numerical integration the
strain rates and velocities throughout the ice mass. The numerical approach, how-
ever, is only appropriate to specific examples. To obtain insight into the general
principles of ice mass dynamics an attempt will be made in this work to examine
analytical solutions for the velocity for certain general types of ice masses to be
considered below.

The necessity for the velocity and strain rate boundary conditions to be
known, and its consequences, deserves special emphasis. Several studies have been

6



TYPES OF ICE MASSES 1.2

made of the variation in the velocity, shape and size of ice masses, in time, for a
varying accumulation rate. But even if the accumulation rate remains constant we
cau in general expect the shape, size and velocity distribution to vary with time,
perhaps oscillating about an “equilibrium™ or “steady-state™ profile, which may be
occupied only momentarily.

1.2 MAJOR TYPES OF ICE MASSES

For studies of dynamics the major types of natural ice masses have been divided
into three main groups primarily because of their basically different boundary
conditions. The three groups are glaciers, ice shelves, and ice caps, and are generally
quite distinct with their own salient features. The map of Antarctica (Fig. 1.1)
shows the three forms of ice mass. The boundaries where one form of ice mass
merges into another are usually sharp, hence each of the three basic types will be
considered separately.

1.2.1. Glaciers

Typically, for many purposes, glaciers may be considered as one-dimensional
and we are here primarily concerned with the variation of velocity along the length
in the line of motion.

A typical glacier plan, profile and cross-section are shown in Fig. 1.2. The
shape and size of the cross-section are important but vary mainly due to the change
in vertical thickness along the glacier. The transversc extension and compression
are generally not as important as the other strain rates.

For temperate glaciers the temperature through the ice mass is normally close
to freezing and so the temperature distribution doss not produce a wide range of
ice flow law parameters. Near the bedrock boundary, however, where the shear is
highest, the frictional energy released may cause higher temperatures or even melt-
ing, giving a positive feedback to cause even higher flow rates.

The velocity of the glacier is generally highest at the surface at the position
furthest from the rock. The velocity at the sides is often zero but some sliding may
occur as in the case of the base, especially if the temperature is close to pressure
melting.

The problem of sliding is difficult, particularly if the ice rock interface is not
sharp but, instead, associated with a gradual transition from ice, ice rock mixture,
moraine, to solid rock. In this case it may be impossible to distinguish between
“sliding” and high differential shear in the most basal layers. To clarify this point
it would be necessary to obtain drill cores across the ice rock boundary, together
with the How rates at different depths through these layers.

Generally then, the boundary conditions required for glaciers are: longitudinal
elevation profile, bedrock profile, surface plan map, typical cross-section profiles,
and sufficient boundary values of velocity -and strain rate, e.g., at the terminus.

1.2.2. Ice shelves

In the map of Fig. 1.1 the major Antarctic ice shelves can he seen. A typical
longitudinal profile i1s shown in Fig. [.3 for the Amery Ice Shelf. Generally, ice

7
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shelves are characterized by being free-floating with no shear at their base but
held at their sides, and projecting into the sea at their front. They are comparatively
Hat with a slight slope downwards towards the front. The velocity and strain rate
can be expected to be comparatively constant from the upper surface to the lower
surface. But high velocity gradients exjst across the ice shelf and also longitudinaily
inwards near the front.
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The temperature at the base of the ice shelf will be close to sea water freezing
temperature. The temperature at the surface typically decreases going inland from
the front, but only slightly so, owing to the flat surface. The average temperature
through the ice shelf depends not only on the surface and base temperatures but
also on the accumulation, melt and flow rates. But in general the average tempera-
ture does not vary greatly along the ice shelf and consequently the variation in
temperature only has a small effect on the flow rate along a flow line.

The boundary conditions required for ice shelves are the plan map of the
boundary, the elevation and ice thickness profile and the velocity and strain rate
at one position such as the front.

1.2.3. Ice caps

Since the ice caps of Antarctica and Greenland contain most of the world’s ice
(and freshwater) the study of their dynamics is a major prerequisite for the under-
standing of the world hydrological balance. Other small ice caps, such as the Wilkes
dome, Anverse Island, Penny I[ce Cap, Baffin Island, Roosevelt Island and Drygaiski
Island are much easier to study, and by obtaining a complete knowledge of such
small ice caps it may be much easier to deduce the laws valid for the great ice caps.

The ice caps are generally three-dimensional domes of ice spreading outwards
to their boundaries with appreciable Jateral strain rates. Because of the irregularities
of the bedrock the outward flowlines may be quite curved, and then the transverse
velocities and strain rates also have to be considered.

The prime factor of interest is the velocity profile along a flow line from the
summit to the edge, and how this profile depends on the surafce slope and ice
thickness. The plan and profile of a typical small ice cap is shown in Fig. 1.4, The
Iemperature of the ice at the surface decreases with elevalion. The temperature at
the base of the major ice caps is still largely unknown but in some cases it may
approach the pressure melting point. The temperature has two important con-
sequences for the ice motion.

(i) The average temperature in a vertical section through the ice cap de-
creases going inland from the coast—hence causing lower strain rates for
a given stress;

(ii) the temperature normally increases as the base of the ice is approached,
giving rise to even greater shear rates in the basal layers, and higher
temperature gradients, due to the positive feedback of the frictional heat-
ing, than would be present with no motion.

The boundary conditions required for ice caps are the elevation and bedrock
contours over the ice cap (in broad detail) and the velocity and strain rates at
the boundary. For a fully adequate treatment the temperature profiles through
the ice cap at several positions along a flow line are also necessary.

1.3. HORIZONTAL VELOCITY

From the equations of motion it is desired to obtain the complete velocity
distribution throughout the ice mnass. Taking account of the symmetry of the natural
ice masses it is appropriate to consider three different velocity profiles:

16



HORIZONTAL VELOCITY

1.3
(i) the “vertical” velocity profile from surface to base;

(ii) the “transverse” velocity profile across the lines of flow;
(iii) the “longitudinal” velocity profile along the lines of flow.
1.3.1. The vertical profile of velocity

The calculation of the vertical velocity profile has been carried out by Nye

(1957, 1959, 1965), with modifications due to varying temperatures by Lliboutry
(1963), and Shoumskiy (1963}. '
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1.4 INTRODUCTION

These results have already been successfully used to determine the ice flow
law parameters from measurements of the vertical velocity profile in glaciers using
boreholes and inclinometers. The results so far (Mathews 1959, Gerrard, Perutz
and Roch 1952, Meier 1960, Paterson 1963) are very encouraging for the appli-
cation of the theory.

1.3.2. The transverse velocity profile

The transverse velocity profile has also been calculated for special cases of
cross-section shape by Nye (analytically 1952, numerically 1965). Many cross-
sectional shapes of glaciers and their associated horizontal velocity profiles have
been measured and then have been used to determine the natural ice flow para-
meters with reasonable success.

1.3.3. The longitudinal profites of velocity and strain rate are still comparatively
little known and their theory has not yet advanced to the stage of verifiable predic-
tions in terms of the boundary conditions. Much of the present work will be
concerned with this problem and the theoretical interpretation of some of the few
longitudinal profiles of velocity elevation and ice thickness at present available for
glaciers, ice shelves and ice caps,

1.4. VERTICAL VELOCITY

Once the longitudinal profile of the average horizontal velocity has been ob-
tained the vertical motion of the surface can be calculated from the ice thickness,
velocity, strain rate, and slopes of the surface and bedrock.

It is necessary here to distinguish between the vertical velocity of the jce at
the surface and the vertical velocity of the surface itself. The former gives the
flow paths within the ice mass while the latter gives the rate of change of the ice
mass thickness and elevation. Both these velocities are important for understand-
ing the state of balance of the ice mass and its history of change.

1.5. MASS BALANCE, STATIONARY STATE AND BALANCED STATE

Once the vertical velocities have been calculated, the question arises whether
the surface is rising, falling with time, or is remaining stationary. To answer this,
the vertical velocities must be compared with the accumulation (or ablation)
pattern. Only in regions where the accumulation rate matches the vertical velocity
of the sorface will the surface profile be stationary at that moment. But since
the velocity profile may be changing with time, so may the state of balance.

For a given size and shape of an ice mass, and a given accumulation pattern,
there exists an ideal velocity distribution which maintains this shape, and size,
with the net loss from flow equalling the total accumulation gain everywhere. By
comparing the actual measured velocity distribution with that calculated for
balance a further check can be made on how the shape and size of the ice mass
is changing with time.

1.6. CHANGE OF FORM AND HISTORY OF AN ICE MASS

The rate of change of the ice mass shape with time may be obtained for a
given moment from the velocity distribution and the accumulation pattem. This

12



SYNOQPSIS 1.7

rate of change may then be extrapolated forward or backwards in time to obtain
the future or past historics of the ice cap. But as the form changes, so will the
velocity distribution and therefore also the rate of change. Hence, in calculating
the history of change, in the ice cap, size and velocity changes must be considered
together.

This applies even with the climate (and accumulation pattern) constant. Further
variation in the history may be studied by considering patterns of accumulation
which change with time.

These are the main topics of discussion in this work. A short synopsis of their
treatment in the remaining sections is now presented.

1.7. SYNOPSIS

In the introduction it is shown that the basic problem of ice dynamics may be
divided into three sections: (i) estabhshing the equations of motion; (ii) intro-
ducing the stress—strain rate relation for ice; and (iii) solving the equations of
motion for the three special types of ice masses: glaciers, ice shelves, ice caps.

In Section 2 the flow law of ice is examined. The dependence is considered
of the stress—strain rate relation on various parameters such as the stress magni-
tude and configuration, the ice temperature, the density or porosity, the crystal
size, and the crystal orientation. Variations in the ice type cause varjations in
the stress—strain relation of such a magnitude that the resultant range of velocities
calculated in ice masses from various experimental flow laws is too large to be
used for balance calculations. This suggests that, at this stage, it is more profitable
to determine the flow parameters from measured velocity distributions in ice masses.
In cold ice masses the most important parameter governing the stress—strain rate
relation is the ice temperature.

Section 3 sets out the basic equations of motion generally, incorporating the
flow law, and shows how symmetry considerations and the boundary conditions of
the three special types of ice mass allow certain simplifications to be made. The
profile of velocity in the plane perpendicular to the direction of flow is then
examined (vertical and transverse profiles) for the case of zero longitudinal strain
rate and constant temperature,

Section 4 deals with the temperature distribution in ice masses and its influence
on the velocity profile. Because the motion generates heat from internal viscous
friction the velocity distribution also effects the temperature, so that this positive
feedback is taken inlto consideration. Steady-state temperature distributions are
calculated incorporating accumulation at the surface, vertical motion, horizontal
motion, temperature change at the surface, and the growing or subsiding of ice
caps. Finally, special cases of non-steady-state temperatures are considered to
assess the approach to steady state in existing ice masses.

In Section 5 the results of the earlier sections on cross-section profiles and
temperature distributions are used in developing equations for the longitudinal
velocity and strain rates along a flow line in terms of the boundary dimensions of
the ice mass and the ice flow law parameters. Two-dimensional flow is first con-
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1.7 THE FLOW LAW OF ICE

sidered, next this is generalized to parallel three-dimensional flow, and then a
method to account for diverging flow and transverse strain is developed. Finally,
an analysis of stcady-state flow over undulations is carried out.

Section 6 applies the theoretical considerations developed in Section 5 to the
three major type of ice masses—ice shelves, glaciers and ice caps. Equations for
longitudinal velocity and strain rates are obtained and used to determine empirical
estimates of the ice flow law parameters from measurements made on typical
examples of these ice masses.

Once the velocity distributions and the ice mass boundary dimensions are
known, the state of balunce and rate of change of the ice mass can be calculated,
given the pattern of supply, i.e., accumulation rate. Steady-state profiles are
examined and their dependence on the flow parameters, accumulation pattern, and
bedrock shape are analysed. Equations for particle paths are discussed and trajec-
tories calculated for typical examples of ice masses. Finally, non-steady-state changes
in ice cap shape are considered and short term calculations illustrated.

The final section presents a summary and conclusions, setting out the major
results of the report and indicating their use, limitaiions and possible lines of
extension.

14



STRESS AND STRAIN RATE TENSORS 2.1

2. THE FLOW LAW OF ICE

Many measurements of the deformation rates of ice have been made by various
workers under different conditions and using a large variety of types of ice. In
this section an attempt is made to review these results in order to establish a
general empirical flow law and to determine how it depends on such parameters
as stress, temperature, and the properties of the ice sample. For ice masses which
are naturally deforming we are not concerned with rapid changes of loading, and
hence we here deal only with steady-state creep.

For stress ranges occurring in natural ice masses (less than 400 bars), the ice
may be regarded as incompressible. Dorsey (1940) quotes values of compressibility
less than 40 x 107%bar™* between 0 and 300 bars. The most important effect of
the hydrostatic pressure on the ice is the lowering of the melting point which falls
approximately linearly with hydrostatic pressure to —5°C at 590 bars (Dorsey
1940}). Rigsby (1958) showed that the effect of the hydrostatic pressare up to
350 bars had negligible effect on the shear strain rate of the ice, provided the tem-
perature difference from the melting point was kept constant. Hence, we need only
consider deformations of the “pure shear” type (no change in volume) and neglect
the effect of hydrostatic pressure, Keeping in mind that the temperature must be
referred to the melting point.

2.1. STRESS AND STRAIN RATE TENSORS
We denote the stress and strain rate tensors oy, ¢,; by

Ty Txy Taz Ex Yay  Vaz
0y = Txy Oy Tyz Eij = ‘).}xy '?y ?"yz
Tar Ty 02 Vxz Yy E:

The principal stress and strain rates will be taken as
d;j = (0, 02, 04) £ = (&), &2, £3).

The condition of incompressibility may then be written

Gi=b tEy b by =6+ 6+ 6 =0 )
The hydrostatic pressure p is given by
_ G top oy L )
3 3 n

For deformations of the pure shear type (é,-,- = () we are interested in the stress
deviator tensor o};, which is independent of the hydrostatic pressure and defined by

Oi; = 0y — 304, 85
d;=1i=j
=0,i#] (3
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2.1 THE FLOW LAW OF ICE

Glen (1958) discusses generalized forms of the flow law involving both the
second and third invariants of the stress deviator and strain rate tensors. At this
stage, however, it appears that the experimental evidence can be explained satis-

factorily by a simpler flow law involving only the second invariants, which we
denote by:

I, =o0i0; and E, = &%
= &t 4
Nye (1953) postulated a flow law of the type
B = Aoy (s)

where A is a function of the invariants [, and E..
Nye defined “effective shear stress” z,, and “effective shear strains™ ¢, in terms of
the second invariants as (cf., e.g., Jaeger 1964),

1. = 1oj; = Mol 4 0F + 0F) = H(o2 — 03) + (05 — 0, + (0, — 0;)"] (6)
and
éez = %éué.'j-

The second invariants may also be interpreted in terms of the shear
stress across the octahedral shear plane, whose normal has direction cosines

1 . . :
l=m=n= L with respect to the principal axes. The normal stress on this

plane js equal to the hydrostatic pressure. The octahedral shear stress and strain
rates have the values

1 NP N 4
Ty = —g(aija,-j)“ oy — o) + (03 — a)? + (o, — 0,)*]?

N (7

T
Y

& = = Eet = M — 67 + (63 — &) + (&) — £2)°]F

We note that
1, =321, and & = /32,
The maximuin shear stress and strain rates are given by
ay, — T3 é[ -— é3

=-1—2  and g,="1—2 8
T 2 2 (8)

where 04, 03, £, £y are the maximum and minimum principal stresses and strain rates.
We now determine these generalized shear stresses in several common stress
situations.
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STRESS AND STRAIN RATE TENSORS 2.1
o lel - (i} Extension in one
} dimension with,
P contraction in the
g other two.
7 {ii) Pure shear (two
’ dimensions).
> (iii) Pure shear pins
I hydrostatic pres-
sure (two dimen-
0'_ 0__ - sions).
(1) (ii) (1it) (iv) (iv) Simple shear.
(i) In simple extension we have principal stresses (¢, 0, 0), the hydrostatic pressure is
p = ¢/3,and ¢';; = (2/30, —0/3, —o/3), hence

B

&,

1 1
’IO:rg’ Te=‘——a’ Tlll=70-
3 /3
~
~ 471g ~ 578¢ = .5¢.
The principal strain rates are (g —&/2, —&/2), hence
/3 .
é0=i,é, g, = Y § €, = 3¢
V2 2
~ 707 ~ B65¢ = .75

We note here that the “cffective shear siress’” is larger than the maximum shear
stress and hence cannot correspond to an actual shear stress in the body.

(il) For pure shear in two dimensions with zero hydrostatic pressure, the principal
stresses are (o, 0, —a), also p = O and ¢f; = (g, 0, —a).

Ty = \/2,13 a, T, = 0, T = 0.
The prineipal strain rates are (3, 0, —g).

£ =/2/3¢ £, = & g, = &
(iii) The deformation consisting of a simple compression with movement confined

to two dimensions is equivalent to a pure shear (o/2, 0, —o/2), of the type (i1)
plus a hydrostatic pressure —s/2.

The principal stresses are (¢, 6/2, 0), p = 0/2, 6; = (a/2, 0, —a/2).
Hence

10 = /23 /2, 1, = a/2, 1, = a/2.
The principal strain rates are (g, 0, —&).
Hence

& =./2/3¢, g, = £, = C.

(iv) The “simple shear” type deformation corresponds to the typical gradient of
horizontal velocity ¥ with depth z in an ice mass fixed at the base.
1.€.,

M dav
V=0

The principal stresses are the same as for pure shear, viz., (1, 0, —1), p=0.
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2.2 THE FLOW LAW OF ICE

Hence
Tp = \/ﬁ‘rs Te = T, Ty = T.
The principal strain rates are (@/2, 0, —@/2).

Hence,

TN FE | A 112
2z

2dz €

Since the “effective shear stress” equals the shear stress in simple shear and is
a constant factor times the octahedral shear stress in a more complex stress situa-
tion, the term “shear stress”, T, unspecified, will be taken generally in what follows
to imply the effective shear stress. We adopt a similar convention for the shear
strain rate g.

From equations (5) and (6) Nye (1953) obtained the relation between
shear stress and strain rate as

m

£ = At €)]
For a given ice type [ and temperature T it may be expected that X is a function
only of the shear stress .

i.e.,
A = Ay{7) (10)

To determine the flow law of ice, then, it is necessary to establish the function
A, i.e., the ratio of the shear strain rate to the shear stress, and show how this
function depends on stress, temperature and the type of ice, defined by certain
properties such as crystal sizes, and orientations, density and type of porosity.

Since we are concerned here with the application of the knowledge of the flow
law to the study of the dynamics of large ice masses, we concentrate mainly on the
stress, temperatures and types of ice found in large ice masses.

2.2, SHEAR STRESSES IN NATURAL ICE MASSES

As a first approximation, we eonsider the expression of Nye (1952) for the shear

stress 1, at the base of an ice mass of surface slope =, ice thickness A, and density p.
T, = pgho (1L

Since the surface slope a is zero for positions on dome summits or ice divides
there is essentially no lower limit for 7.

However, it is found that for the various ice masses 7, has a fairly narrow
range. Fig. 2.1 shows a profile through the Antarctic ice cap from Wilkes to Vostok
from Walker (1966). Here T, generally increases from 0-3 to 1-5 bars as the coast
is approached.

For a cross-section of Greenland, Haefeli (1961) shows 7, to increase from
0 at the summit to 0-98 bars at 150 km from the coast.

Other examples include:

Wilkes local ice cap 0-2 bars near the summit to 1-2 bars near the
(McLaren 1968) coast,
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2.3 THE FLOW LAW OF ICE

Roosevelt Island 0-2 bars near the summit to 1-0 bars near the
(Clapp 1965) edge.

Athabasca Glacier Calculated shear stresses at the base vary between
(Paterson unpublished) 0-5 and 1-1 bars.

Satskatchewan Glacier Basal stresses along the tongue vary between 0-6
(Meier 1960) and 12 bars.

Barnes ice cap, Baffin Island The basal stress varies largely between 0-1 and 1-0
(Orvig 1953) bars with an average about 0-5 bars.

Since in jce caps or glaciers the shear stress may be expected to have its
greatest values at the base, the shear stresses encountered elsewhere in the ice will
normally be less than the values listed above.

Other shear stresses in ice masses may be estimated from measurements of
strain rates at the surface. Some typical values are listed in Table 2.1 below.

TABLE 2.1
MEASURED LONGITUDINAL STRAIN RATES
Ice Mass Longitudinat Temperalure Estimated Reference
slrain rate —C shear stress
107+ yrol bars
Wilkes ice cap 1-30 24-12 0 01-0-40 McLaren 1968
Amery Ice Shelf 5-60 23-20 0-02-0-70 Budd 1966
Roosevelt Island 2-8 24 0-02-0-30 Clapp 1965
Saskatchewan Glacier 300 0 040 Meier 1960
Athabasca Glacier 200 0 0-20 Paterson (un-
published )

Although higher strain rates and stresses may exist in glaciers, especially near
crevassed zones and ice falls, the shear stress seldom reaches 2 bars. Hence, the
stresses we are chiefly concerned with in natural ice masses range from 0-1 to 1-5
bars, with strain rates from 107" to 107® sec™ . Laboratory and field measurements
of stress and strain rates of ice in this region and beyond it, from 0-01 to 10 bars,
will now be reviewed.

2.3. LABORATORY MEASUREMENTS OF THE FLOW LAW OF ICE

The results of various laboratory measurements of the deformation of ice
by Glen (1954, 1955), Steinemann (1958), Butkovitch and Landaver (1960),
Mellor and Smith (1966), Voitkovski (1963), are illustrated in Figs. 2.2 and 2.3.
Some results of field measurements on natural ice masses by Butkovitch and
Landauver (1958), Gow (1963), Gerrard et al. (1953) are included. All values
have been converted to the same units, viz., octahedral shear stress, and strain, rates
in bars and sec™ respectively.

Table 2.2 lists the types of ice used in the flow measurements. We will examine
the dependence of the stress—strain rate relation separately on the parameters
stress, temperature, and the ice type which includes density, crystal size, and crystal
orientation.
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Fic. 2.2. Ice strain rates versus stress from laboratory and field measurements. The values of
Mellor and Smith have been extrapolated to density 0.917 g cm™3. The temperatures are
indicated in degrees centigrade.
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2.3
2.3.1. STRESS DEPENDENCE OF FLOW LAW

The results of Glen (1955), Steinemann (1958) and also Mellor (1959) are
largely in the high stress range 1 to 10 bars shear stress and these conform closely
to a power law of the form

THE FLOW LAW OF ICE

(12)
where n = 3 to 4,

LEven in these stress ranges a slight upward curvature in the graphs suggests
that n may increase with stress. Voitkovski (1960) considered that Glen’s
measurements, however, were not appropriate to the study of steady-state creep

Tapre 2.2
TYPES OF ICE USED IN DEFORMATION EXPERIMENTS
Author Density  Crystal size Orientation Comments
g em™ Approx.
diameter
Glen (1954) (>=0.917) (0-2 em) ~random Artificial ice made in
mould. slightly cloudy
but  density  indistin-
guishable from purc ice.
Steinemann (1958) {(=0-917) =0-85 mm ~random Small-grained  polycrys-
talline artificial ice.
Voitkovski {1960) =0-917 Much smaller ~random) Artificial ice beams and

than sampie size

cylinders.

Butkovitch and 0-917 3com Elongated axes C2 ice: Commercial arti-
Landauer (1560) parallel to ficial ice [-2cm X 4-5
load direction cm, bubble-free and with

one axis elongatcd,
0-905 03 cm ~random MP1 jce: Small-grained
glacier ramp ice (Green-
land) with small irregu-

lar air bubbles.

Mellor & Smith (1966)  (-83 -8 mm random Artificial ice made from

water-soaked snow cylin-
ders. Air bubbles (05
mm diameter) uniformly
distributed.

because they were for stresses largely above the limit of the range required for
prolonged steady-state creep. As a consequence, the secondary creep stage in most
of Glen's measurements was simply a stage between the primary and tertiary creep
stages. Voitkovski (1960) found that the magnitude of the stress which exceeded
the limit for prolonged steady-state creep varied with temperature. It ranged from
1-6 to 3 bars between —1-2 and —4°C. Below this limit-stress the steady-state
creep continued at a constant rate for long periods, e.g., at 1 bar, at —1°C, a
constant creep rate was measured for over 5,000 hours (i.e., = 7 months). It is this
long-term type of steady-state deformation which is relevant to the movement of
ice masses (except perhaps in the case of “glacier surges”}).
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Fic. 2.3. Idealised curves for the flow law of ice are shown compiled and interpolated

from Fig. 2.2. The resultant accuracy is aboul 50% for strain rates.
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2.3 THE FLOW LAW OT ICE

The measurements below 1 bar by Butkovitch and Landauer (1960), Mellol
and Smith (1966) and the more difficult to interpret field data of Meier (1960)
suggest that the decrease of n, the power law index, as the stress decreases, coli-
tinues so that for low stress (up to O 5 bars) the stress-strain rate is essentially
linear.

This means that the simple power form of the flow law is only appropriate for
a small range of stress over which » can be considered constant. 1n order to cover
the range of stresses from 0-1 to 2 bars it is necessary to use a flow law which
allows for the varying slope of the curves in Fig. 2.2. Meier (1958, 1960) suggested
a flow law of the type

y = at + bt" (13)

where a and b are constant for a given temperature and ice type and » is constant
about 4-5. He found this satisfactory for interpreting the ice flow data of the
Saskatchewan Glacier.

This form of flow law was also examined by Butkovitch and Landauer (1960)
together with a flow law of the type

3 = a sinh (5—) (14)
Tao

It was found that the form (13) was most snitable in covering both their low and

high stress tests with the constants given by

9 = 4L % 101 4+ 90 x 107 28¢°,

where y is in see”! and 7 is in dynes cm™ %, at —5°C.

Mellor and Smith (1966) confirmed the flow law of the type (13) and ob-
tained values of the constants as follows:

g, =18 ®x 107 %, + 15 x 1071%> % at —4°C
and

g, = 1'5 % 107 %, 4+ -8 x 10719%2 % at —10°C,
where ¢, and o, are the strain rate and stress of uniaxjal longitudinal compression, in
units of sec™"' and bars respectively.

It should be noted that the density of their samples was 0-83 g cm™ and the
effect of this will be discussed in 2.3.1. However, they supply data which allow
their measurements to be extrapolated to pure ice density. This then brings their
results to closer agreement with the others of Fig. 2.2 made on high density ice.

Thus we conclude that in the range 0.01 to 2 bars the stress dependence
indicated by equation (13) for the ice flow law is satisfactory.

For still higher shear stresses the results of Gow (1963) suggest that the value
of z tends to increase even further, to values of 5 and 6 as the stress increases from
10 bars to 30 bars. However, it is important here to note the difference between
measurements made on naturally deforming ice and measurements made on dis-
turbed ice, such as in bores holes or tunnels. In the latter cases the crystal orienta-
tion (cf. Section 2.5.3. below) are not initially appropriate for the new deformation
of closure. As deformation proceeds it may be expected that the crystal fabrics
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EFFECT OF TEMPERATURE ON FLOW LAW 2.4

change to become compatible with and enhance the deformation. This may account
for the accelerating closure rates observed by Gow. On the other hand, the high
shear stresses occurring in the borehole may simply be beyond the limit for pro-
longed steady-state creep.

A close look at the available measurements of stress and strain rates In ice,
as illustrated in Fig. 2.2, reveals that the range in which we are most interested
for the dynamics of large ice masses (0-1 to 1 bar) is also the one in which there
is the largest gap in the laboratory measurements. This suggests that an extensive
laboratory study is warranted to fill this gap. In this regard it is also important
that the stress-strain rate tests be carried on over a long period to ensure that the
prolonged steady-state creep as observed in natural ice masses occurs in the
laboratory samples. To obtain results applicable to the major ice caps the tem-
perature range of the measurements will have to be extended to —60°C.

2.4. THE EFFECT OF TEMPERATURE ON THE FLOW LAW OF ICE

Fig. 2.4 shows the results of strain rate versus temperature for different stresses
compiled from the laboratory measurements of Mellor and Smith (1966), Butko-
vitch and Landayer (1960), Steinemann (1958) and Voitkovski (1960).

To represent the dependence of strain rate on temperature, some previous
workers have used a relation of the form

3 = A(r)e” YRT (15)
where A4 () is the stress dependent function for constant temperature;
© is the “activation energy” (cal/mole);
R is the gas constant (~1-90 cal/mole/°K};
T is the absolute temperature.

Tor the low stresses (05 to 1 bar) Mellor and Smith found @~ 10 — 12 k cal/
mole, Butkovitch and Landauer (1960) O~ 14 k cal/mole.

The results of Steinemann (1958) and Glen (1955) suggest that, for higher
stresses and strain rates, ¢} may be higher. Mellor and Smith (1966) pointed out
that the Arrhenius function exp(—Q/RT) is not relevant for the range of tempera-
tures encountered in natural ice masses. The observations can be more simply
renresented by an empirical law of the form

v = A(r)e"®’ (18)
where K is constant
and ¢ is the temperature in °C.

From Mellor and Smith’s (1966) data (t =~ 0-5 to 1 bar) we find K ~1/11.
From Butkovitch and Landauer’'s (1960) data K ~1/9. From Steinemann’s (1958)
data at high stresses~ 2 bars, we find K~1/6. Voitkovski (1960) states that equa-
tion (15) was not suitable for representing the dependence of the flow law on
temperature because it did not match his experimental data’s high increase in strain
rate as freezing point is approached. He found the following relation more appro-
priate,

o (17)

25



2.4 THE FLOW LAW OF ICE

where v, T are the shear-strain rate, and stress, ¢ is the temperature in °C and n
is a constant ~ 1:6 to 2-2 in the stress range 0-1 to 3 bars, and K = (16 to 4)
x 107 °C/Kg/hr. Voitkovsky’s results to —40°C also may be approximated by
the expression (16)

7 = A(1)e*®,

In this case K =~ 1/10. This relation fits well at low temperatures but, as zero is
approached, the nmeasured deformation rate becomes greater.

ICE FLOW LAW STRAIN RATE VERSUS TEMPERATURE (106 SCAIE) |

o

1l
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Jce flow law strain rate versus siress (linear)
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shows the rapid increase of strain rate at high stresses. Compiled from Fig. 2.2.

Pending more precise data, then, we may adopt any of the temperature
functions {15), (16) or (17) to represent the temperature dependence of the
flow law and, with appropriately chosen values of the constants in a given tem-
petature range, we may expect reasonable agreement provided extrapolation is
not taken too far out of the range.
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THE FLOW LAW OF ICE
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OTHER PARAMETERS IN FLOW LAW 2.5

To illustrate the rapid change of the strain rate of ice with temperature and
stress we refer to the plots in linear co-ordinates of strain rate versus stress
(Fig. 2.5) and strain rate versus temperature (Fig. 2.6).

Figures 2.5 and 2.6 show that the strain rate becomes very large as the shear
stress increases over 0-5 bars and as the temperature approaches zero. From
this it is hardly surprising to find that in naturally deforming ice the shear stress
is generally not much greater than 1 bar, unless the temperature is very low.

2.5. OTHER PARAMETERS INVOLVED IN THE FLOW LAW OF ICE

2.5.1. Ice density

The results of Mellor and Smith (1966) show (Fig. 2.7) that the strain
rate tends to decrease with increasing density. This is further confirmed by
comparison of Mellor’s results for ice of density 0-83 (1966} and 0-87 (1959)
with those of workers using ice of higher density [Steinemann (1958) and Glen
(1955)].

Extrapolation of Mellor and Smith’s (1966) density—strain rates dependence
(Fig. 2.7) to the density of pure iee allows his curves of strain rates vs. stress
to be converted to curves for ice of density 0-917. The agreement with other
workers then becomes very good, as shown in Fig. 2.2.

The range of change of about an order of magnitude decrease in strain rate
with a 0-15g em—? increase in density is about double the rate found by Nakaya
(1958) from the viscous damping of 200-400 cycle frequency vibrations in the
ice. However, the relation between viscosity values determined by these different
methods is still not well known.

Now, since we find that in naturally deforming ice (glaciers and ice caps
below the surface firn) the density is generally high and relatively constant, we
need expect variations in the density to have only a slight effect on the ice strain
rate. In most ice caps and glaciers the low-density surface firn layer is usually
only a small fraction of the total thickness, and hence may be neglected.

Bender and Gow (1961) show the increase in density with depth for the
Antarctic ice cap at Byrd to the depth of 250 m. The 0 90 g cm™ density is
reached by 120 m. depth. Langway (1962} shows the density—depth rate profile
from the 411 m hole at site 2 Greenland. The 0.90 density is reached by the
depth of 110 m. The thickness at Byrd is ~2, 300 m. and site 2 is ~1,800 m.

Gow (1963) shows how the density increases with depth for several Antarctic
ice shelves. For ice shelves the average density from surface to base is often
well below that of ice; e.g., for the Ross Ice Shelf, Gow (1963) found the average
density through the ice shelf at Little America to be 0 853 g cm™. Hence, in
these cases, the density of the jce must be considered in relation to the flow
parameters.

2.5.2. [Ice crystal size effect on the flow law

Butkovitch and Landauer (1958, 1960) found that, in general for randomly
orientated polycrystalline samples of ice, the large crystal samples tended to
deform more rapidly than the small crystal samples. The study at low stresses
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OTHER PARAMETERS IN FLOW LAW 2.5

(1960) showed that the deformation rate of the “C1” and “C2” ice with large
crystals, ~ 1 to 2 cm diameter and 4 to 5 cm long, was about 4 to 5 times as great as
that for “MP1” ice with small grains,~ 3 mm in diameter. A detailed geperal study
of the variation of creep rate with crystal size has not yet been carried out. This
will not be a great problem in the study of the dynamics of ice masses if the
crystal sizes in the deforming ice tend to have similar sizes. An indication that
this may be the case for the polar ice masses is provided by Langway (1962)
and Gow [1963(a) and (b)]. These authors show the increase in average crystal
size with depth to 300 m in Greenland and 150 m in the Ross Ice Shelf, and
300 m in the Antarctic ice cap at Byrd. For the Ross Ice Shelf the crystal area
reached ~ 40 mm by 150 m and increased even more below this. Some crystals
~ 10 cm were observed at about 240 m depth. For the Greenland and Antarctic
ice caps the size reached ~ 20 mm by 300 m depth.

In temperate glaciers the variation in crystal size is very great but the develop-
ment of strong foliations of crystals of different sizes and bubble concentrations
in zones of high shear appears to be universal.

Rigsby (1958, 1960) shows that high shear on samples of randomly orientated
large crystals can produce zones of small crystals in deformation planes. Shoumsky
{1958) showed that the change in crystal size with deformation was closely linked
with the orientation of the crystals. Those crystals not orientated appropriately
for the deformation (cf. 2.5.3 below) tended to break into small crystals, Over
a prolonged period ~ 20 days crystals with a new orientation, favourable for the
deformation, grew. Rigsby (1960) also showed how crystals could be broken
into small crystals and new crystals grow with a favourable orientation.

Voitkovski (1960) states that for low stresses (i.e., below the limit for pro-
longed steady-state creep) the favourably orientated crystals tend to grow at the
expense of the others, so that after a long period the sample consists of larger
crystals, rather than the smaller crystals produced by the high shear rates mentioned
by Rigsby.

Kizaki (1969) found a high correlation between crystal growth and the de-
velopment of a strong fabric in moving ice on the surface of the ice cap near
Mawson, Antarctica. The typical size of the crystals observed by Kizaki were
~10cmlong =~ 1 to 2 cm across.

So far, data are still not available on the crystal structure deep into the shear
zone at the base of large ice masses (although this may be soon forthcoming [Ueda
and Hansen (1967)]. Pending more data, then, the effect of crystal size on the
flow of ice in large ice masses remains unknown. However, since we find that the
crystals tend to adopt specific structures under certain conditions, and that these
conditions change only slowly with time and space in the ice masses, then we
need not regard the variation in crystal size as a serious obstacle to the study
of the dynamics of the ice masses, but it must be considered when comparing flow
pararueters from laboratory and field measurements.

2.5.3. lIce crystal orientation and flow rate

We first consider laboratory measurements of creep rates for different orienta-
tions. Shoumsky (1958), Rigsby (1958, 1960), Butkovitch and Landauer (1958)
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2.5 THE FLOW LAW OF ICE

and Vialov (1958) have all shown that the rate of deformation of ice crystals
with their basal planes parallel to the shear planes (easy glide} is several hundred
times higher than for crystals with basal planes perpendicular to the shear plane
(hard glide). Rigsby (1960) showed that single crystals tended to bend rather
than deform, other than by shear on the basal plane. Vialov (1958) showed that
randomly oriented polycrystalline ice deformed at a rate between the two extremes
for single crystals, but closer to the lower rate. Butkovich and Landauer (1938)
found that various samples of polycrystalline ice tended to deform on the average
slightly more rapidly than single crystals in hard glide—but about 2 orders of
magnitude lower than single crystals in easy glide.

Secondly, we consider crystal orientation fabrics observed in naturally deform-
Ing ice masses. Although many detaijled studies of ice crystal orientation fabrics
have been made in natural ice masses, e.g., Rigsby (1955, 1960), Kamb [1959(b)],
Allen et al. (1960), Reid {1964), Kizaki (1962), very few studies have included
sufficient information on the deformation pattern of the ice to associate the fabric
pattern with the deformation. Mejer’s (1960) study of the Saskatchewan Glacier
showed cases in which distinct 2-pole fabrics appear to vary with the form of the
deformation in different parts of the glacier. Kizaki (1969) showed that the fabric
on the surface of the ice cap near Mawson varied gradually from place to place
in a similar way to the deformation pattern as determined by measurements of
the strain rate tensor on the ice surface. The fabrics of samples taken from the
surface, however, may not be true guides to the patterns within the ice, because
of other factors which may influence the orientation, such as the penetration of
radiation and temperature gradients in the surface layers. To avoid these dis-
turbances, samples need to be taken from a depth of 10 m below the surface,

Several theories have been put forward to explain the fabric patterns of ice
mn terms of the stress situation: MacDonald (1959), Brace (1959), Kamb [1959(a),
1959(b)]. Brace considers the thermodynamic equilibrium state for ice under
certain stress and elastic strain situations. His predictions form a good basis for
experimental field-testing to associate the stress and fabric patterns. However, we
are concerned with deforming ice masses with steady-state creep, not elastic
strain, and this condition of continuous deformation and rotation must be also
considered in the development of a stable fabric. Kamb offers an alternative
theory including consideration of recrystallization and reorientation, with a conse-
guent different prediction for the resulting ice fabric.

Gow (1963) showed strong fabrics to exist in the denser ice of large crystal
sizes below the firn of the Ross Ice Shelf. A similar increase in fabric strength
and crystal size was observed in the ice cap at Byrd. The measurements, then,
suggest that in prolonged steady deformation the ice crystals tend to adopt a pattern
appropriate to the deformation. Although the relation between the deformation
pattern and the fabric pattern is still not well understood, we may suppose that,
provided the stress siteation changes sufficiently slowly in an ice mass, then so does
the crystal fabric. In this case the lack of knowledge of the details of the fabric
patterns throughout the ice mass will not be a serious obstacle to determining the
ice mass dynamics. However, the flow rate as determined in the laboratory cannot
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DEFORMATION RATES OF NATURAL ICE MASSES 2.6

be expected to correspond exactly with that operating in the ice mass, unless
the crystal sizes and orientations are matched as well as the state of stress. To
do this, samples of ice could be taken from an ice mass where strain rate measure-
ments have been carried out and the same state of stress placed on the sample
in the laboratory.

Also, the flow law as determined from measurements of disturbances in natural
ice masses, such as closure rates of borecholes and tunnels, may not be typical of
the natural deformations that occur in the ice mass, because the crystal orientations
are not appropriate.

The accelerating deformation rate observed by Gow in the Byrd borehole may
be an example of this, with the defermation rate increasing as the crystals tend
to adopt a preferred orientation appropriate to the deformation.

2.6. ICE DEFORMATION RATES FROM MEASUREMENTS ON NATURALLY
DEFORMING ICE

The relation between the stress and the strain rates in naturally deforming ice
have been studied by many observers from vertical and horizontal velocity gradients
and closure rates of boreholes and tunnels in various ice masses. Since 1948,
vertical boreholes have been drilled through several temperate glaciers and the
vertical gradient of the horizontal velocity determined from the surface to near
the bedrock: Gerard et al. (1953), Meier (1960), Mathews (1959), Paterson
and Savage (1963), Sharp (1960). Some of these profiles are shown in Fig. 2.8.

The stress or pressure gradients acting on the cross-sections of the glaciers,
causing the velocity gradient with depth, have been inferred from the shape and
size of the ice mass. The details of these studies are discussed in more detail in
Section 3. They lead to an estimate for the octahedral shear stress and shear strain
rates and permit the relation between them to be compared with those of the
laboratory ineasurements, as is shown in Fig. 2.2. So far, most values are for
temperate glaciers only, except for that of Wilson (1959) for the Tuto ice ramp
in Greenland. Paterson (1963) points out the difficulty in interpreting these results
by a simple laminar flow theory, due to the presence of longitudinal strains,
However, since the longitudinal stresses and the variation in longitudinal strain
rate with depth are still not well known, we consider the lammar flow analysis
as a first approximation. We may expect closest agreement with laboratory results
where the longitudinal strain rates are small. In Fig. 2.2 the various field measure-
ments show quite good agreement with the various laboratory measurements,
especially when the large variability among the laboratory measurements is
considered.

Similar results obtained by measurements of velocity gradient across a glacier
by Meier (1960) and Paterson and Savage (1963) show further confirmation
of the general trend, but in this context low stresses were involved and the crrors
are proportionately large and produce a lot of scatter.

As was noted earlier, the results from the disturbed ice around tunnels and
boreholes may not be directly comparable with the natural deformations because
of the different crystal orientations and the high shears encountered. However,
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2.6 THE FLOW LAW OF ICE
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Fic. 2.8. The velocity—depth profile relative to the surface velocily plotted on the same
seale for various glaciers.

Fig. 2.2 shows that the results of borehole closure rates measured at Byrd [Gow
(1963)] and Camp Century [Hansen and Landauer (1958)] agree essentially
with the results of the laboratory measurements and provide a valuable guide to
the deformation rates at the lower temperatures found in the cold ice caps. It
should be noted here that the closure rate relationship of Nye (1953),
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DEFORMATION RATES OF NATURAL ICE MASSES 2.6
(P )“
/ (HB ’

v — p/n is the stress for an overburden pressure p,
and B and n arc the flow law parameters,
requires a constant value of n to determine the shear stress, and so is only appro-
priate over the range for which » is constant.

More significant data on the flow law of ice in natural ice masses are obtained
from the complete measurement of the dynamics of small ice caps. In particular,
besides using the vertical and transverse velocity gradients for determining the
flow parameters of the ice, we can also use the longitudinal velocity gradients.
This work is more complicated and is developed in detail in Sections 5 and 6.

where y is the shear strain rate,

35



31 EQUATIONS OF MOTION AND CROSS-SECTION PROFILES

3. BASIC EQUATIONS OF MOTION AND CROSS-SECTION
VELOCITY PROFILES

3.1. GENERAL EQUATIONS OF MOTION IN THREE DIMENSIONS

To establish the equations of motion of an ice mass we take orthogonal axes
as follows: x parallel to the bedrock (which has slope @, say) and in the plane
of motion, z upwards, perpendicular to the bedrock and y across the line of motion.

Let o;; (7,7 = x, y, z) be the stress tensor at point (x, y, z),

Gy O-xy Gyr Ty1 0-12 T13 Ty T_ry Taz
O’l‘j = O-xy (Ty G'yz or 0'21 Ga2 Tan or Tyx O'y Ty._,_
a.rz G-yz 0'5 0-3 1 0-32 0-33 “sz sz O-z

the ice density p, and the gravitational acceleration g. Then we have for equilibrium
or “quasi-static creep” (acceleration forces neglected)

x4 9% 4 Vs _ psin g,
ox éy az
A
“y 4 @&Y + @_O'y_z =0 {0
dy dx dz
é‘!G-z aazx 56’}
= = = —pgcos f.
oz | ax | ay ?

In general, the average bedrock slope (3) over the intervals concerned is
sufficiently small for the following approximations to hold:

sinff ~tan B >~ B cosff~1,

For the particular case in which the base is flat and horizontal, 2 = O and the
equations reduce to the form discussed by Weertman (1957a}. This form may be
suitable for studying the dynamics of free-floating tabular ice bergs, but for ice
shelves and other bounded ice masses both the basal slope and the thickness
gradient towards the free boundary are very important in regard to the longitudinal
velocity and strain profiles.

Two special cases of the general three-dimensional equations are of particular
importance.

{i) Two-dimensional longitudinal profile equations.

Consider the casc in which the strain rates &, &,,, &,, are all zero. This is
found along the centre line at the surface of a glacier of constant width where the
longitudinal velocity gradient is negligible. For the central Alow plane
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bedrock
Fig. 3.1
%’1 =0, =0,=0,
¥
due to symmetry, and we are left with the two-dimensional equations
da do
—= 4 ¥ =
0x oz pop
da.  do,, —pg (2)
¢z cx '

We will find (Section 3.3) that, due to the symmetry of the flow of natural
ice masses, a medified form of these equations allows the longitudinal and vertical
velocity profiles to be calculated. Consideration of the shape of the cross-section
makes it possible to extend this treatment to three dimensions (cf. Section 5.2).

(ii) Cross-sectional profiles.

If the lomgitudinal velocity gradient is small (the usual case for smoothly
flowing ice masses away from disturbed regions such as ice falls) and if there
is po lateral expansion {as for flow in a channel of constant ¢ross-section) then
the general equations (1) reduce to

ooy | 00y | 00x

x oy T ogh (1)
(3
O:y e pg G
oz dx

OVET a Cross-section.
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3.2 EQUATIONS OF MOTION AND CROSS-SECTION PROFILES

These two-dimensional cross-section equations are generally sufficient for the
calculation of the cross-sectional velocity and stress distributions.
Now, since there is no longitudinal or transverse extension,

T, = O,
and hence from 3 (ii) integrating from bed to surface, z = Z,

A
8('[ % dz)
%= 0 0z

o

oX ax
0z J z Our dZ
T T
Since the surface and base slopes are constant, the second term on the right, which
pguZ .
may be taken as Taxd v Is zeTo. Hence
do aZ
E = —pg = (4
ax . P )

Hence from (3) and (4) the equations of motion relevant to cross-section profiles
reduce to
dg 0., oz
A2 JEA

4+ — +
ay 0z g ox p

= pga (3)

where o is the surface slope, assumed constant across the section. The solution of
this equation has been examined for various cross-section shapes by Nye (1965)
and will be discussed in Section 3.4.

In general, the equations of motion have to be integrated to their boundaries.
Typical ice mass boundaries are shown in Fig. 3.2, for the three major types of
ice masses discussed here.

Since the ice mass is deforming, the boundary stresses may not be well known,
but boundary velocities are generally obtainable. Hence, we convert the equations
of motion in terms of stresses to equations in terms of velocities and strain rates,
by means of the flow law relation.

3.2, FLOW LAWS

~ The results of the studies of the ice flow law in Section 2 show that the strain rate
£;; may be related to the stress deviator o'y = 0,; — $d;;6;; by the relation

&; = doj; {6)
where A is not a constant, but rather a function of the shear stress, the temperature,

crystal type, etc. In some contexts, over limited ranges of the variables on which A
depends, we may adopt simple forms for the flow law, such as:

A = A7er! )
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(n dependent on stress, 4 dependent on temperature)

dp= ket kTt (8)
(k;, k, dependent on temperature)
Ay = lA2 sinh -~ %)
T Tg
where 1 = }0j;0}; {10)

is the “effective shear stress” (cf. Section 2.1).

The special case of perfect plasticity can be deduced from the general powe
law relation, by noting the result of letting the index »# approach infinity. For the
case of constant Newtonian viscosity, the index n is equal to one.

. . . . ou;
Since the g;; are related to the velocity gradients a—”' by
*j

by =t (Q‘L + ai) (n
208x;  éx

we see that the general equations of motion in terms of stress may be transformed

by means of the flow law into equations in terms of velocities. This procedure

would also require the stress boundary conditions to be also transformed to velocity

or strain rate boundary conditions,

The general problem of solving the equations of motion for the velocities in
terms of the boundary values (velocity and velocity gradient) is very complex.
However, to solve the system for the three major types of ice mass, several simpli-
fications may be made, due to the special properties of the boundary conditions
of the ice masses, such as symmetry, zero velecity regions, free surfaces, etc.

3.3, SYMMETRY CONSIDERATIONS AND SEPARATION OF LONGITUDINAL FROM
TRANSVERSE MOTION

One of the main outstanding problems in the dynamics of ice masses is to de-
termine the longitudinal variation (along a flow line) of the average velocity. As
was pointed out in Section 1, this may be used to determine the change in the
velocity distribution with time, the history of the glacier, the mass flux variation,
ctc. The forms of the other velocity profiles (transverse, vertical) do not vary so
greatly and hence, for many purposes, may be regarded as constant or treated
simply as slowly varying purameters along the line of flow. The cross-section
averaged longitudinal velocity is not as easy to measure directly as the surface
velocity. But since the shapes of the profiles of the transverse velocities only vary
slowly along the flow line, it is often possible to relate the average velocity & to
the maximum veloeity at the surface w, by writing

u = si, (12)
where s is dependent on the shape of the transverse velocity profiles and determined
largely by the boundary eonditions.

We now examine the boundary conditions of the three major types of ice
masses.
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TRANSVERSE VELOCITY PROFILES 3.4

3.3.1. Glaciers

Glaciers generally have small horizontal divergence and small or zero velocity
at the side boundaries. At the “centre” of a symmetric cross-sectional glacier we
observe that the transverse shear is zero. This shear increases away from the centre
to reach a maximum near the boundary, where the longitudinal velocity and
velocity gradients are both zero if there is no direct sliding. When sliding occurs
at the base or edges then this becomes an extra boundary value that is required.

3.3.2. Ice shelves

For ice shelves we may assume zero velocity at the edges and constant velocity
from top to bottom. Again the greatest velocity of a cross-section is at the centre.
The magnitude of the transverse velocity u, depends largely on the angle of diver-
gence of the boundaries. Again, along the centre line the transverse shear strain
rates (and hence stress deviator gradients) are zero because of the synunetry.

3.33. [Ice caps

For an ideal circular ice cap cn a flat base, the flow lines are straight lines
radiating from the centre, The horizontal divergence is small and depends only
on the forward velocity and the distance from the centre. In practice, bedrock
irregularities cause divergence and convergence of the flow lines (cf. Fig. 3.2);
but provided these convergence or divergence rates are known it will be shown
that the effect of transverse strains can be taken into consideration by incorporating
them as slowly changing parameters along the flow line (cf. Section 5.5). Again,
the vertical longitudinal shear strain rates ¢.. and the transverse longitudinal shear
strain rates g, can generally be considered zero at the surface, and ideally the
shape of the profile does not change greatly laterally, i.e., at right angles to the
flow direction.

3.3.4. General results from symmetry

In general at the boundaries of ice masses where there is no sliding, since the
velocity is zero, the longitudinal velocity gradient is also zero. Similarly, at the
position of maximum velocity (i.e. the centre at the surface) we may also expect
the longitudinal velocity gradient to be greatest.

On the other hand, the transverse gradients are greatest at the boundary where
the longitudinal gradient is smallest. This suggests that we may well study separately
the transverse stresses and the resulting velocity gradients on the one hand, and
the longitudinal stresses, and the velocity gradients caused by them, on the other.

Hence the next Section considers the trangverse velocity gradients of a cross-
section, first for laminar flow and zero longitudinal strain, and then for a constant
longitudinal strain rate. Having done this, we are then in a position to study the
variation in longitudinal velocity due to longitudinal stress changes, with the trans-
verse parameters remaining constant or at least only varying slowly along the
flow line.

3.4, TRANSVERSE VELOCITY FOR LAMINAR FLOW

The transverse velocity profile for glaciers has been considered in detail by
Nye (two-dimensional plastic flow 1952; two-dimensional power law flow 1957;
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3.4 EQUATIONS OF MOTION AND CROSS-SECTION PROFILES

three-dimensionat rectangular, elliptical, parabolic cross-sections 1965). Thus, only
an outtine of his basic results will be given here. Consider axes at the centre of
the surface of a glacier: x in the line of motion, z downwards, and y across the
glacier.

o . . Ou .
For zero longitudinal velocity gradient —= = 0. For constant cross section shape

ox
. . Ou,  Ou,
u, = u, = 0. Hence the only non-zero velocity gradients are 3 78 From
symmetry, g,, = 0 and, as we have seen in Section 3.1, the general equations (1)
reduce to (5)

xr 4 Oz _ gy (13)
Cy iz
Adopting a flow law of the form
g = %At”—lafj,
where T = ('Eﬁy + 12t (14)
the transverse and vertical velocity gradients may be written as
ou = Ar" " l1,,; w_ At g (L5)
ay 0z

3.4.1. Special cross-sections

(i) Firstly, for laminar flow between two parallel vertical plates (infinitely
deep) we have no vertical velocity gradient, i.e.,

du

=0, and therefore T, = 0.
dz

Hence

oy = pyo du = A",

dy dy
from which we obtain

u, —u, = A gpg—i)— Iy‘”“ (16)
n+1

where u, is the velocity at the centre, and u, is the velocity at distance y from the
centre.

(i1) Similarly, for laminar flow (infinitely wide) over a flat base

= 4 (Pg) e,

U, — U,
n+1

(17
(iii) For flow in a semi-circular channel we may adopt cylindrical polar co-
ordinates from the origin at the centre of the surface as follows:
rt = y? -L z? z=rcosf Yy =rsinéd
and obtain for the basic equations:
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Cylindrical  Glatier
| R -

Fic. 3.3

fu - -
= A" — = A7t

ar v a0

1é(rr) 187,
i T A L o 18
r Or r a6 P9 (18)

With the flow independent of ¢ we obtain
o=,

2
and hence

A pgcx)” it
U, — u, = =] 19
¢ n+l(2 (19)

Nye (1965) also gives the following solution {due to Chester, unpublished),
ohtained by perturbation methods for a cross-section shape slightly different from
a semi-circle.

"= n"fl (’2‘)[1 - (g)m + e(n + 1){1 - (;E)ccos on (20)

where kK = pg sin « and ¢ is the increase in horizontal radius greater than circular
and

c=34n-— 1+ Hn*+ 14n — ¥ (2D
3.4.2. Numerical solutions for cross-section profiles

By solving equations (13), (14), {15) above (with n = 3) numerically,
velocity and stress solutions were obtained by Nye (1965) for different cross-
sections, such as parabola, ellipses and rectangles. These are shown in Fig. 3.4a.
From the resultant solutions for shear stress and velocity, the values of the shape
factor f in the approximate formula

T, = —fpgzsina (22)

are listed in Table I. Nye found, however, that T, deviated from the linear relation
with v, as the boundary was approached, the degree of deviation depending on
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TRANSVERSE VELOCITY PROFILES 3.4

the shape. Approximate shape factors for the central vertical velocity profile have
been estimated in the past: cf. Nye (1952), Meier (1960}, Paterson (1963c¢),
Budd (1966), by the relationship
fa2,

Pz
where § is the glacier cross-section area,

p is the glacier cross-section parameter,
and Zis the depth in the centre.

In Table 1 are also listed the values of §/pZ for the rectangle, ellipse and the
parabola. We note that, for very wide channels, 8/pZ approaches 1 only for the
rectangle, whereas Nye’s calculated values of f tend quite rapidly to |. There
appears to be close agreement in the range W ~ | but, for high values of W, f >
8/pZ and, for low values of W, f << §/pZ.

It must be remembered, however, that Nye’s curves of Fig. 3.4a have been
calculaled, using a flow law of the form

gy = 347" 'o};  withn = 3.

If a flow law of the form

g = (A, + A7)0}
is used, the effect of the linear term (A;) will be quite important at low stresses
{less than 1 bar) which are found in glacier profiles.
As a consequence, it may be expected that in practice the shape factor will
depend on not only the cross-section shape but also the form of the flow law.

TaBLE 3.1
[VvALUES OF f FROM NYE (1965)]
Shape faetor f in 7., == — fpgze.
W — half-width/deplh.
W Reclangle Ellipse Parabola
7 S/pZ f §/pZ f S/pZ
¥ 03t 0-33 0-28 0-33 — 0-29
I 036 050 0-50 0-50 0-45 0-45
2 0-79 0-67 0-71 0-65 0-65 0-58
3 0-88 075 0-80 0-70 075 0-62
4 — 0-80 0-85 0:-73 0-81 0-64
%0 1-0 1-0 1-0 0-785 1-0 0-67

The value of f listed is chosen such that the true velocity at the surface is
obtained by integrating the approximate shear stress t,, — fegaz up the z axis.

Once the shape factors have been determined, it may be possible to determine
appropriate values of the flow parameters from the shape of the cross-section
velocity profiles. To do this it is valuable to have the profiles in relative co-
ordinates—as shown in Fig. 3.4b. Here it may be seen that the varying cross-section
shapes cause quite different shapes of the transverse profiles, but the shape of the
vertical profile is not greatly affected by increasing the width beyond W = 1. For
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Fic. 3.5. Measured cross-section profiles of ice thickness and velocity at various distances
along the Athabasca Glacier {cf. Fig. 6.1) after Paterson (unpublished).

different values of n in the power flow law different shapes would be obtained.
Hence, for wide glaciers of these types of shape, the shape of the vertical velocity
profile is not greatly affected by the shape of the cross-section and would therefore
provide a satisfactory means of determining the parameter n. For glaciers of the
rectangular cross-section shape, or with steep sides, the shape of the transverse
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3.5 EQUATIONS OF MOTION AND CROSS-SECTION PROFILES

velocity profile is not greatly affected by the shape and so the transverse profile
may also be profitably used to estimate the flow parameter n.

Palmer (1967) gives a numerical method for calculating upper and lower
bounds of the transverse velacity profile at the surface of a glacier, and also the
mean velocity of flow.

As mentioned earlier, many glacier cross-section shapes have been measured
and the transverse velocity profile determined. A very detailed set of results was
obtained for the Athabasca Glacier by Paterson (unpublished) whose series of
cross-sections and velocity profiles is partly reproduced in Fig. 3.5.

These results show that the glacier bedrock cross-section is comparatively smooth
and changes only slowly along the glacier. They confirm Nye’s (1965b, Table IV)
conclusion that the mean surface velocity and mean cross-section velocity are not
highly sensitive to small variations in the cross-section shape, or the value of the
flow law parameter, or the amount of bed slip.

For determining the velocity distribution across real glaciers, given the cross-
section, an interpolation or extrapolation of Nye’s numerical solutions may be
used.

3.5. EFFECT OF LONGITUDINAL STRAIN RATE ON CROSS-SECTION FLOW

3.5.1. Plastic flow

By considering the flow of ice down a slope as analogous to the plastic flow
of a medium between two parallel plates, moving apart or together at a constant
rate, Nye (1952) derived a velocity solution for two-dimensional ice flow when
a constant longitudinal velocity gradient from surface to base (strain rate) is
present.

The velocity solution for ice of thickness A is

u=C+ % + 2V /1 — (y/h)? (23)

v=$V(lgx) (24)
h
where u is the horizontal velocity at distance x along the surface and distance

> below the surface, © the corresponding vertical velocity, and C, V are the initial
horizontal and vertical velocities respectively.

In this case the vertical profile of the horizontal velocity is an ellipse which re-
mains constant along the flow line. The change in velocity along the glacier is ac-

rx at the base (cf. Fig. 3.8,

counted for by a change in the sliding velocity A

n = Dﬁ).

This solution was used by Nye to study the velocity profile along a glacier for
steady-state conditions, i.e., with constant thickness and with the change due to
flow being exactly balanced by the gain in accumulation or loss by ablation. In
this approach the flow is necessarily determined by the accumulation ablation
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Fi1G. 3.6. Effeclive shear stress T as a function of the

depth Y, both gquantities being expressed non-dimen-

sionally; for uniform density and a power law of flow,
¢ is iaken 1o equal 1.

(Figures 3.6, 3.7, 3.8 are from Nye (1957) to show the effect of a constant
longitudinal strain rate through the ice on the vertical profiles of velocity, horizontal
and vertical stress and the shear stress.)

pattern. A more general treatment is to consider the state of balance to be an
independent parameter and find the velocity solution which is determined by the
dimensions of the ice mass, together with the iceflow law and the boundary veloci-
ties. The velocity distributions thus found can be compared with the accumulation
pattern to determine the state of balance and the rate of change of the ice cap
dimenstons, This approach is followed in Sections 5, 6 and 7.

3.5.2. Power flow law

a . n
Adopting a more general flow law of the type ¢ = (g), Nye (1967) obtained

a stress and velocity distribution for the model (ii) of Section 3.5.1.

In this case the equations proved not so tractable and no simple analytical
velocity solution was obtained. However, it proved possible to express the stress
and velocity solutions in teoms of the parameter “effective shear stress” v given by

4t = (¢, — o‘),)2 + 41:fy (25)

The stress solutions, depicted in Fig. 3.6 from Nye {1957) are given by
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Fri. 3.7. Stress components as functions of depth Y, measured in dimensionless units, for

uniform density and a power law of flow. The distribution of ¢. 1s given by the double

family of full curves; each valuc of » gives one curve for extending flow and one for

compressive flow. The disiributions of ¢, and 7., are shown by the broken lines and are the

same for all n. All curves are drawn for a slope of @ = 14° 2’ {cot a =4) and the units
are such that ¢ = 1,

20

Gy = _pgyy i 2‘\/172 - (ng)’)_z

0y = —pygyy

Ty = — Py (26)
These profiles of Fig. 3.6 show the difference between the cases of no longi-
tudinal strain, and the compresive and tensile flow, for different values of n. Fig. 3.7

shows the variation of T with depth in non-dimensional units.
The velocity solutions are

s 1
u+rx — 2rng iztll_y% + 1y (27)
0 /7% = (pg.¥)
and
v=Frly —h) (28)
where r is the constant longitudinal strain rate.

Taking dimensionless units

=2 x=* yv-rY y=£ yp=2=r

To 0 ly Yo Lo
the expression for the horizontal velocity U is
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Fi1. 3.8a. Longitudinal velocity U as a function

of depth. Y, both quantities being expressed

non-dimensionally, for uniform density and a

power law of flow. The curves are drawn

for X = 0; (U). is the surface velocily at
X = 0. ¢ is taken equal to I,

— Uo i X _ - 2 ) (Tn+1 _ 1'2(11 J- I)Tlﬂl J- nr[+1/n) (29)
n+1
and this is illostrated in Fig. 3.8, which shows the velocity distribution for different
values of n.
From these results Nye deduced several important consequences:
(1) Longitadinal strain rate zero. From equations (27) and (28) above we
find, by putting r = 0, that the velocity U reduces to

U=nilyu+1 - UO (30)

and also
V=20

This result is the same as deduced previously [equation (17)] for laminar flow
(ie., with no longitudinal extension or compression, and consequently the flow
lines remain parallel).

Hence, we may expect that the laminar flow solutions will apply closely for
small or negligible longitudinal strain rates.

(2) Newtonian viscosity (n = 1).
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FiG, 3.8b. Glacier relative velocity—relative depth profiles (from Fig. 2.8a). .

In this case the velocity profiles are:

2
U=+rx—;%+U, V=Friy—h 3D

i.e., identical to the case for laminar flow. Hence, for values of n approaching
1, the longitudinal strain rate r does not affect the vertical profile of velocity.
(3) Perfect plasticity (n = =) (yield stress A =7). In this case

Us£X+2J1-Y - D+ Uy V=x(Y—Yw) . (32)
which is the elliptical velocity profile identical to equation (23) as was derived
previously for perfect plasticity.

Finally, consider a cross-secticn of a glacier and denote ¥, andés = d—V—"as the
ax

longitudinal velocity and strain rate at the centre of the surface. If we assume
that the longitudinal strain rate varies in a similar way to the velocity going away
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from the centre of the surface, then at distance r, where the velocity and strain
rate are V, and é,., we have

€

(=

g Vi @3)

Furthermore, if we have a flow law of the form¢ = o, T 4 a» ™ (cf. Section
2) the flow is approximately Newtonian at low stresses. If the longitudinal strain
rate is small compared with the transverse strain rate at the boundary, then from
(33) the longitudinal strain rate is greatest in the upper layers at the centre where
the transverse shear is lowest. Hence, these layers are closest to Newtonian flow
(low strain rates). In the basal layer, where the transverse shear is large, the longi-
tudinal strain rate is small. Hence, we may expect the presence of a fongitudinal
strain rate in these circumstances to have a very little overall effect on the transverse
velocity profiles, and equally little effect on the average velocity over a cross-section
perpendicular to the direction of flow. For large longitudinal strain rates, however,
the problem of its precise effect on the cross-section velocity profile is still unsolved
(cf. the Jungfrau borehole experiment, Nye 1953).

For cold ice masses the condition, that the fongitudinal strain rate is constant
throughout the thickness, in general, may not apply since the velocity at the bed-
rock may be zero everywhere. In this context it may be more realistic to take the
longitudinal strain rate as proportional to the longitudinal velocity, as in (33)
above., A velocity profile with this condition has not yet been calculated, but for
small longitudinal strain rates, as typically observed in cold ice caps, we may
expect that the effect on the wvertical profile of the longitudinal velocity is still
negligible.

Throughout this section the variation of the flow law with temperature has
been neglected. Although this may be appropriate for temperate glaciers, for cold
ice masses it will be shown that the variation in temperature is of major importance
to the velocity profiles. Hence, in Section 4 we next examine the variation of
temperature throughout cold ice masses and the effect of this on the velocity
profiles.
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4. TEMPERATURE PROFILES IN ICE MASSES

4.1. MEASURED TEMPERATURE PROFILES

TFor temperate ice the variation of temperature with depth is small. Thus, in
this section we shall be concerned mainly with cold ice masses. Firstly, the measured
temperatures in cold ice masses will be reviewed,

Temperature distrbutions with depth in cold ice masses have been measured
in detail in only a few places, largely due to a lack of efficient drilling techniques
for ice. This difficulty now seems to have been largely surmounted with the develop-
ment of the electromechanical drill by USA CRREL (Hansen 1966), and the
meltsonde probe (Philberth 1966), so that a great deal of temperature data may
be expected to become available in the near future.

The table below lists the main measured temperature distributions available
at the time of writing. Some of these profiles are illustrated in Fig. 4.1 (a) and (b).

These profiles, although very few in number, still show a great deal of variety in
shape. All the land-based profiles show a typical positive gradient at the base.
This 1s caused partly by the geothermal heat flux, corresponding to a temperature
gradient of about 2°C/100 m. Where the ice has a significant horizontal velocity,
this positive gradient near the base may be increased by friction due to movement.
The profile through the Ross Ice Shelf shows an even grater basal gradient, sug-
gesting high heat flux from the ocean. The temperature gradients at the surface
show much more variation from high negative to high positive values. High
accumulation rates tend to make the temperature profile near the surface more
isothermal.

TasLE 4.1

TEMPERATURE DISTRIBUTIONS MEASORED IN COLD ICE MASSES.

Place Ice thickness (m) Depth measured (m) Authority

Byrd 2164 305 Gow 1963
2164 Gow er al. 1968
Ross Ice Shelf 250 250 Crary 1961
Greenland Site IT } 2000 411 Hansen & Landauer
1958
Camp Century 1387 1387 Hansen 1967
Maudheim 200 100 Schytt 1954
Filchner 230 57 Wexler 1960
Mimy-Vostok 540 350 Bogoslovski 1958
2-3,000 40-70

Wilkes-Vostok 2-4,500 60 Batitye {unpubl.)
Mawson 1-3,000 30 Mellor 1960
Amery 350 310 Nickols (pers. eomm. )

In many profiles {Filchner Ice Shelf, Byrd, Camp Century, 5 km inland Mirny)
a most interesting feature is the negative temperature gradient at the surface.
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TF1G. 4.1a, Measured temperature profiles in ice caps and ice shelves showing the temperature

gradients v in the upper layers (Ref. Table 4.1) in °C/100 m.

Robm (1955) showed that such a gradient could be caused by the warming of

the surface of the ice as the ice flowed outwards and downwards.

We now review the theoretical studies which have been made to calculate tem-
perature profiles through ice masses and then consider further modifications which
can give more accurate predictions of temperature profiles in moving ice masses.
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4.2, CALCULATED TEMPERATURE PROFILES

1f the ice mass were completely stationary with no accumulation and no move-
ment, the temperature profile would simply be a straight line determined by the
mean air tempearture at the surface and the gradient corresponding to the geo-
thermal heat flux at the base; or by the basal temperature, in the case of the basal
temperature reaching the pressure melting point. Processes such as the accumula-
tion at the surface, basal melting, vertical movement and strain, horizontal motion,

and also long-term climatic change, all affect the temperature profile, and are re-
flected in the typical convex down curvature of the measured profiles, and in some
cases in negative temperature gradients at the surface.

Calculations will be given in this section incorporating as many of the above
parameters which are known, or could be estimated, into the governing equations to
account for the temperature profiles observed in the ice.

In what follows, reference is made to the results of the following previous
workers: Robin (1955), Bogoslovski (1958}, Wexler (1959, 1960, 1961), Radok
(1959}, Jenssen and Radok (1961}, Chi Tien (1960), Crary (1961), Shoumsky
and Zotikov (1963}, Zotikov (1963) and Budd (1966).

Robin’s (1955) steady-state temperature results for the temperature ¢ at height
z above the ice base,

dz dz/,

=6, - () JZ_H_ (en \/ig_erf JA :) @
dz/ N A 2H¥x 2Hk

where H is the ice thickness,

dtl — @) e-—(A/EHx)zl (1)

and

A is the surface accumulation rate,
(df/dz), is the basal temperature gradient,
x is the ice thermal diffusivity,

are relatively simple to apply. They incorporate the accumulation rate at the surface
and a balancing vertical sinking, but do not allow for horizontal motion and
warming or non-steady-state change in thickness. Robin also found a very simple
and useful result for the negative surface temperature—depth gradient, due to hori-
zontal movement downhill to warmer temperatures in absence of conduction, viz.,

dé Vad
g2 I 3
dz A 3
where V is the downslope velocity,
o is the surface slope,
A is the rate of change of air temperature in the vertical.

The numerical results of Jenssen and Radok (1961) (1963) incorporate both
the effects of conduction and downslope movement. To apply their results to a
real situation, the values of accumulation, velocity, and ice thickness can be extra-
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polated from their graphs. The horizontal velocities which they used were calculated
trom an equation of continuity which implied a steady-state ice cap. It will be
shown here that a simple extension allows this approach to be applicable to rising
or sinking ice caps as well,

The effect of climatic change has been examined by Wexler (1959) and
Jenssen and Radok (1961), but it will be shown that the available temperature
profiles may to a large degree be accounted for by the effects of movement and
accumulation. Hence, these effects must first be studied in detail, then leaving only
the remaining discrepancies to be examined in reference to climatic change.

Since the flow law of ice is highly temperature-dependent, we require these
temperature distributions throughout an ice mass in otder to calculate the velocity
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F16. 4.2. Calculated depth profiles of temperature ¢, longitudinal, vertical, shear and “effec-

tive” shear stresses (o 0, T..7), relative velocity, shear strain rate v, and longitudinal

strain rate r for a position on the Greenland ice cap, by Nye (1959), It is concluded that
T ~ (0,—6,)/2 throughout the thickness.
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EFFECT OF TEMPERATURE ON VELOCITY 4.3

distribution. We shall now examine the effect of the temperature profile from the
surface to base on the corresponding velocity profile. Following that, it will be
shown that the velocity of the ice also affects the temperature profile through
internal viscous friction, so this is also considered for various flow laws. Next, the
effect of accumulation at the surface, horizontal velocity and surface warming,
rising and sinking of the ice mass, the approach of the temperature profiles to
steady-state, and the effect of climatic temperature variations at the surface are
all examined in order to be able to calculate the temperature profiles along a flow
line of an ice mass. In the later sections these temperature distributions will be
used in the study of the variation of velocity and strain rate along a flow line.

4,3, EFFECT OF TEMPERATURE PROFILE ON VELOCITY PROFILE

Nye (1959) showed how a typical temperature distribution estimated for
Greenland affected the vertical profiles of strain rate and velocity calculated from
Glen’s (1955) flow law, cf. Fig. 4.2. The results of Section 2 suggest that Glen’s
simple power law extrapolated to low stress gives strain rates much too low, but
nevertheless the high concentration of shear in the basal layers is immediately
apparent, due to both the high shear stress and higher temperatures near the base.

To illustrate the direct effect of the shape of the temperature distnibution on
the velocity profile, Fig. 4.3 shows relative velocity distributions calculated for
three different temperature profiles from a flow law of the form (cf. Section 4)

- T e
-l
and with equal velocities at the surface and zero velecity at the base.

These results illustrate clearly that, for temperature—depth profiles with the
warmest ice at the base (the usual case in cold ice caps), the velocity gradient
is largely concentrated in the lowest layers. It is then not of much importance
whether this movement is composed of rapid shear in basal pure ice or entirely
of slide between a pure ice surface and bedrock interface; or, as is more likely, a
rapid shear in a mixture of ice, sand and rock, in a basal layer {cf. Hansen 1966}.
Nye (1959) points out that the effect of an additional small longitudinal stress
throughout the ice thickness does not greatly aftect the vertical velocity profile.

Certain refinements need to be made to this simple treatment. Robin (1955)
showed how the frictional heating of movement can affect the temperature profile.
Jenssen and Radok (1963}, in their calculations of temperature distributions in
ice, adopted Robin’s result of simply adding the total frictional heating to the
geothermal heat flux at the base. The validity of this approach increases as the
thickness of the layer in which it is produced decreases. It will be shown in the
following section that this method is a good approximation for all but the basal
layer.

Lliboutry (1963) gave a more detailed treatment considering the heat pro-
duced over an extended section. This is taken up in the next section which treats
the effect of movement on the temperature and the consequent positive feedback
process.

59



TEMPERATURE PROFILES IN ICE MASSES

4.3

SA/ A ALIDON3A
0 Z-0 7.0

3AILVY 3

9.0

80

0

2.0

90

70

20

gaa (g /ey = A
wioy 2yy Jo me[ mop v Fwsn (9T S 1) ded 930 sajy{ip oY) JOF papenomed se (g) ‘Teour (7) ‘[Rurlaylost (1) sojyord srmeiadurd)
JEasaIp S2IY) 10J Jeq T SU SS3NS Ieays Jeseq agy aJaym ‘ded a3 NOIyl-W OOl © Ul pae[no[ed $auold Ajoo[ea aahw[al jealdAy gy torg

HLld30 3AlIlv13d

Hyz

ol

Jo f1-71

8

JOIN3Y3ILHI0

JANLIYE3dW3AL
k| 7 [4

=

aool

008

009

Hld30 —

00y

w

(

002

60



INTERNAL FRICTIONAL HEATING AND ICE MOTION 4.4
4.4, INTERNAL FRICTIONAL HEATING AND ICE MQTION

Already Lagally (1932-3) had considered the frictional heating produced in-
ternally in a glacier subject to viscous flow, and concluded that the most heat is
produced where the shear is greatest, l.e. near the glacier bed. It seems plausible
from the study of the ice flow law {Section 2) that frictional heating producing
higher temperatures in the ice will produce higher shear rates and hence more
internal heating, with the consequence of a strong positive feedback. This argument
is relevant to the contexts of glacier-sliding and catastrophic glacier-advances,
which are not treated here (cf. Weertman 1957, 1962, 1964 and Lliboutry 1959,
1965).

We shall now try to determine the heating produced by friction within an ice
mass and the consequent effect on the ice flow. We need only deal here with “cold”
ice masses with temperatures throughout below the pressure melting point. In
temperate glaciers, with temperatures everywhere near melting point, the friction
caused by motion produces only melting and no temperature changes.

Robin (1955) and Jenssen and Radok (1961, 1963) incorporated the friction
heating into the basal gradient by adding the heat produced by friction to the
geothermal heat flux. In view of the calculations of the velocity profiles of the
previous section (4.3) this procedure appears to be a reasonable approximation
and should apply more closely as the ice motion approaches block-sliding. Robin
(1955) pointed out that the average geothermal flux of 38 cal em™2yr is equivalent
to the energy released by friction below an ice mass, with basal shear stress (- 88
bars, and moving with a speed of about 18 m yr™. This result comes from the
general equation for frictional heat produced by sliding, viz.,

dE TV

a7 @

where d—dE? is the amount of heat energy (E) produced per unit area per unit time (¢) at

the base,

T is the basal shear stress,

V is the velocity of the ice above the thin basal layer in which the shear is
assurned to take place,

J is the mechanical equivalent of heat.

Lliboutry (1963) found for the total heat flux (¢) produced by the geothermal
heat flux (G) and frictional (T) the expression

S‘S = \/16'2 + T2
For the temperature @ at depth z, Lliboutry used the differential equation

K——¢epw—+"—=0 (53

where K is the ice conductivity,
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4.4 TEMPERATURE PROFILES IN ICE MASSES

ce is the heat capacity per unit volume,

wis the vertical velocity of the ice,

Jis the mechanical equivalent of heat,

v, T are the cffective shear strain rate and shear stress for laminar flow.
From this he deduced for the temperature profile in a cold ice mass corresponding
to Robin’s {1955) steady-state model

o
6=0,+ b6 + rz% (eff‘;i — erf i) (6)

where 8, is the surface temperature,
H 1is the ice thickness,
b= 2H«/A,
A is the accumulation rate at the surface,
« is the thermal diffusivity.

Lliboutry (1963) considers in detail two special cases of equation (5): (1)
firstly, for a basal layer (in which most of the internal friction is produced) where
w is small and hence the term with cew can be neglected: and (ii) for the upper
layers of the glacier where the heat from the internal friction may be considered
just as additional flux from below, so that the third term can be omitted, and its
effect incorporated into an increased basal gradient.

In casc (1) Lliboutry takes the shear stress constant (its value at the base)
throughout the deformation layer. In this case the strain rate and resultant heat
production decreases upwards simply due to the lower temperatures. It is shown
below, however, that the decrease in stress above the base must also be considered
in calculating the heat dissipation.

In the following we extend Lliboutry’s work to cover the heat produced by an
extended source of internal friction from the base well into the medium. This is the
case applicable to slowly moving ice caps without a high basal temperature gradient
(cf. Hansen 1966). The following procedure will be adopted.

We consider a cold ice mass, very wide, of constant thickness H, moving down
an inclined plane, @, in laminar flow such that the only velocity is longitudinal
and the only velocity gradient is in the direction perpendicular to the bed.

We take orthogonal axes, x in the line of motion and z downwards from the
glacier surface. We adopt the following symbols:

pice density,
g gravity acceleration,
6 ice temperature at depth z,

62



INTERNAL FRICTIONAL HEATING AND ICE MOTION 4.4
? time,
Q the quantity of heat per unit volume,
K ice conductivity (thermal),
F energy per unit volume of ice,
¢ thermal capacity for ice (per unit mass),
« thermal diffusivity of ice.

To obtain a clear insight into the various factors influencing the temperature
distribution we shall treat several simple cases separately first, before we study
the complex result for a more general ice cap in which the various factors act
together. For the moment, zero surface accumulation and a steady-state tempera-
ture distribution are assumed, and the effects of the surface warming as the ice
moves down the slope are neglected.

Temperatures and the velocities in an ice mass where heat is produced by
internal friction will be derived for the following three cases:

(1) dAssuming an ice flow law of Newtonian type (constant viscosity). This
case has been treated in detail by Lagally (1932) and for low stresses and strain
rates (less than 0-5 bar shear stress, cf. Section 2.3) represents a close approxi-
mation to reality. The flow law is assumed independent of temperature.

(1) Assuming a power law for ice flow. This will illustrate the effect of the
non-linearity of the flow, The variation of the flow law with temperature is agajn
neglected.

(iil) Assuming a temperature-dependent power law for ice flow. This produces
a more complex differential equation with the strong positive feedback, high shear
producing higher temperatures which then produce even higher shear rates.

4.4.1. Internal friction heating and ice wmotion—constant viscosity.

For ice of constant viscosity p (independent of stress and temperature) equa-
tion (17) of Section 3.4.1. shows that, for the simple model described above, the
velocity u at depth z is given by

w=u, — P92 (7
2u
where u, is the velocity of the surface and
du _ _ pg% (8)
dz 7

Since there are po other velocities, the rate of energy dissipated per unit volume
due to the viscous friction is given by
dE  OE oE eE du'?
— =4t u— and — =
dt ot ax at dz
But since there is to be no variation in the rate of energy, dissipation along the
direction of flow 9E/ox = 0. Hence,

©
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4.4 TEMPERATURE PROCFILES IN ICE MASSES

¢Q
dt

4Q d 40
PR () 2

Consider a small element of ice, thickness 8z, at depth z (cf. figure above).
The heat flux through the ice is given by

49 _ _x 48
dt dz
Hence, for steady-state we obtain
/ 4 2
gg:]i(@):-]f{@. (10)
ot dz \dz dz*

So if the temperature profile is to be such that the heat produced by friction
18 conducted away, leaving the temperature profile constant in time at a point
(x, z) fixed in space, we must have

.du)2 a6
did) IR § G 11
'u(dz, dz* an
ie.,
P_gﬁ)zqz B 12
#( P o (12)

Integrating with respect to z, this becomes

b _ ~(pg0)?* s

iz 3JKx C @ (13)
Now, if for z = H (at the glacier bed) we have
do
;f; =T
as determined by the geothermal flux ( ~ 38 cal em@yr™), then
%=%§%mtwﬂ+n (14)

and

2
9 = (hpg:x) Z(4H3 - 23) + by + Ca.
127K

At the surface (z = 0), # equals 6, the annual mean surface temperature; then

(;09"35)2 3 3
0 =2 zZ(4H> — 2°) + vz + 6, 15
127K ( )+ 7 (15)

So far it has been assumed that the temperature everywhere has remained well below
pressure melting,
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INTERNAL FRICTIONAL HEATING AND ICE MOTION 4.4
The basal temperature is the highest and is obtained by taking

z = H, 8=,
as
2
6, = P90 s L uH + 0, (16)
4JKp

The condition that the base of the ice remains below melting point is
f, < 0°C (or the pressure melting temperature)

i.e.

2 .
0, « — LIV s _ .,y (17)
4K
1f the base does reach melting (@), then part of the heat is used for melting,
viz. (Robin 1955),

0 — Bb,c

= Ky, = " 18
G = Kn = 4o )t (18)
where ¢ is the geothermal flux
8.0 is the calculated basal temperature (from equation (16)}.
The temperature gradient at the base then becomes:
g 8, — 0,
=2 5% 19
i) K0, 6, (19)

The results of this section may be summarised as follows:

(1) The tempeature is highest at the base.

{2) The positive temperature—depth gradient is highest at the surface.

(3) In absence of melting, the heat flux at the surface is equal to the geo-
thermal flux plus the total heat produced by motion. The latter equals the loss
of potential energy of the ice during motion.

(4) The rate of change of temperature gradient with depth is greatest at
the base.

{5) The most important result is that the internal friction produces an upward
convex curvature in the temperature—depth profile near the base. This has not
yet been observed in ineasured profiles (cf. Fig 4.1) which suggests that other
factors are more important in the profiles to bedrock measured so far, or that the
internal heat produced may be negligible for these cases.

Few profiles, however, go right to the bedrock and, for those that do, the
movement of the ice is not well known. Hence, it will be most valuable to obtain
temperature profiles right to the bedrock in regions where the velocity is measured
and also the velocity—depth profile there. In this way a check can be made on
both the mternal heating and the geothermal flux as well as the properties of the
ice—rock interface.

To illustrate the magnitude of the internal heat production in the ice we take
typical values of the parameters for an ice mass and evaluate the difference between
the basal and surface gradients from equation (14}, with z — 0.
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4.4 TEMPERATURE PROFILES IN ICE MASSES

H3
'J"s_}"b=}‘1_3"

where

_ (ogo)*
JKu
As typical values of the various parameters we take the following:
p=0:917 g cm’3,
£ =098  10% cm sec™?
a =107
J=4-2 x 107 erg/cal,
K =35 x 103cal cm™ sec™ °C,
n = 10 poise,
H=10%m.
Then v, — v = 116 °C/100 m, which is equivalent to about 0-53 x the basal
heat flux. Fig. 4.4 shows a typical temperature profile for a simple model of this
type.
The ratio g./Q %, of the heat flux g, produced below a certain level z to the
total heat flux at the surface @, is shown in the following table.

L

TABLE 4.2.2
PROPORTION ¢,/(? PRODUCED BELOW DEPTH z OF TOTAL HEAT.
Depth z m 0 500 800 900 1000
q,/Q % 100 87-5 49 27 0

4.4.2. Internal friction and power flow law

We next consider the case of a power flow law of the form

. T4
£ (B) 20
where ¢ is the shear strain rate,

T is the shear stress,

B and n are constants, as discussed in Section 2.

In this case, for the simple model described above (Section 4.4), we still have

Ty as the only shear stress and du/dz as the only shear strain rate. Thus the rate
of energy dissipation is given by

dF
7T Tazbxa
dt
n+ L
- (__Tr;)" (1)
and since
Txz = P2,
we obtain
n+ 1 2
dE _ (pgo)"! v Ly 80 @
di B dz
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INTERNAL FRICTIONAL HEATING AND ICE MOTION 4.4
and the differential equation becomes
2
9 =0 (23)
dz?
where
nt+1
PG Lo (24)
BJK
From this we obtain by integration
& 2 ,
O L@~y (25)
dz n+2
and
2 Zr:+3
B=0,+7yz+———— (H"“"z - f) (26)
e n+ 2 n+3
In particular, if n = 3, we obtain
a6 _ (pga)* 5 5
49 _ 9a)” s _ 25y 4 @7)
az " SBIK )
TEMPERATURE PROFILES FOR FRICTIONAL HEATING
Temperature {-'C )
35 30 25 20 15 10 55
1. No heating
i 2. Viscous flow heating L7200
3. Power law flow heating
] 4.Temperature dependent power L400 __E,
law flow .
5. Basal heating &
a
. -600
+ e00
— T — — - —r—H1000
1 234 5

F1G. 4.4. Steadv-state temperature profiles showing the effect of frictional beating for various

types of fiow laws, in absence of olher effects.
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4.4 TEMPERATURE PROFILES IN ICE MASSES
HEAT PRODUCTION FROM INTERNAL FRICTION

2004 1. Constant viscosity i

2. Power law constant temperature

4004 3 Power law temperature —dependent L
= 4. Basal sliding
~ 600
w o *
a
a
1 2 3 4
800~ -
1000 4
T T 1 T
20 40 60 80 100

Heat proportioh q,/Q produced below z (*/s)

Frc. 4.5. The proportion of the internal steady-state heat flux preduced
below various levels is shown for the types of flow laws of Fig. 4.4.

and

{pgo* ( s, _ 2%
=" |H’z2 — —| +yz+ 6, 28
SBTK 6) 9
Similar qualitative conclusions apply as in Section 4.4.1 above but, in this
case, since d24/dz* is proportional to the higher power of z, more of the heat
produced for the same potential energy loss is concentrated in the lower layers, i.e.,

a0 _ 1zt = {pga)* 24
dz? B*JK

Hence, the temperature gradient changes much less in the upper layers than in

the basal layers. The temperature at the base is now given by

(pga)* 16 ;
B, =8, +vH+-""——H 29
' T BIK (29)
The third term on the right-hand side gives the increase in temperature of the
base due to the movement,
We write
_ (pgn)*
Ay = 50
B JK
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TEMPERATURE AND VELOCITY FEEDBACK 4.5

Then, taking the same values of the parameters in A as Section 4.1, with the
exception that u = 10% poise now corresponds to B — 10 bars sec +# [cf. Budd
19664, equation (21)], we obtain for the temperature increase due to motion
(917 x 98 x 10° x 10~ %* (10%)° °c

42 x 107 (10°)* 5 x 107% 6

~ 52°C.

0, — 0, — y,H =

The increased flux at any level caused by the movement is given by

d0 ) (pga)4 5 5
K& —y,) =92 g5 _ o5,
(dz n) =gy =)

The total heat produced amounts to a flux corresponding to a gradient in ice of
0-63 °C/100 m, or 0-39 times the peothermal flux, Owing to the high power of z
present in equation (27), most of the increased flux is in the lower layers. Table
4.2b pives for a 1000m-thick ice cap the percentage of the total flux which is
produced below that level. Fig. 4.4 shows a typical temperature profile.

TaBLE 4.2b
z: depth below surface 1,000m-thick ice mass.
q./(}: fraction of total heat flux caused by internal friction produced below level z.
z (m) 0 500 800 900 950 990 1000
q:/ Q% 100 97 67 41 23 5 0

From this we see that the upper half of the ice mass contributes only 3% to
the frictional heating, the bottom 1/5 (200 m) contributes 67%, and the bottom
100 m still over 40% . Comparing this with Table 4.2a it becomes clear that the
prescnce of a high power flow law js very effective in concentrating the heat pro-
duction at the base.

4.5, POSITIVE FEEDBACK BETWEEN TEMPERATURE AND VELOCITY AT THE BASE
OF A MOVING ICE MASS,

We now consider the case of a flow law which is temperature-dependent. From
the results of the measurement of ice flow at stresses of the magnitude which we
are dealing with (Mellor and Smith 1966, and Butkovitch and Landauer (1960),
it was shown (cf, Section 2.4) that the flow law of ice can be represented by

i = (%)"eva (30)

where 9 is the temperature in °C
and » =01 to 03 °C.
The differential equation (23) now becomes:

2
= e 3D
Z
where
-
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4.5 TEMPERATURE PROFILES IN ICE MASSES
and
m=n+ 1
The presence of @ on the right-hand side now makes the equation much less
tractable than previously.

A solution in series for this equation has been found and has the following
form:

5.6 7.6 §.7.21 9.8.3!

n 22 23
40 _ 4 ogenps[LmE 02 ) (34)
dz 5 6 7.2! g.31

where 8,, y, are the temperature and the tempcrature gradient at the surface
(z=20).

\ 2 3
6 — 85 + ¥ + levﬂszﬁl:L + % + (U‘)JJZ) 4+ 7(‘]}'52) + .. :| (33)

&
}\:7
7 -
h=15 Az 6
A=20
o / jes
=1
- Azi0
5 e
s
S
S
= . =
|
3
& ¥
2 /
|
0 T T
1 2 3 i 5 6 7y, B 9
*C/100m *

Fi6. 4.6. Graphical solution for the increase in surface tempcerature gradient v. above the
basal gradient v, by internal friction from a temperature ¢ dependent power flow law of the

form é = (7/B)"e "8 for different ice thicknesses H, and velocities (implicit in A) . = ¥ +
AD (ry H).
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1. Zero accumuiation

TEMPERATURE 2. Rotbin siecady- state accumulation
PROFILES . B
3. Rebin surface -warming
&. Combined accumulation + surface-warming |
00
E
T
=
o
w
a
600
3 4 2 1
800
1000
- 40 - 30 ~X -0 0

TEMPERATURE {*C)

Fi1G. 4.7. Temperature—depth profiles for a 1,000 m ice cap delermined by (1) surface tem-
perature ., and basal gradient v.; (2) 8., 7ve and accumulation rate A, {3} 4., A, surface-
warming al* but no conduction; (4) &, v A and aFA\

To obtain the value of v, in terms of v;—the temperature gradient at the base—
which is generally the known boundary condition, & graphical solution can be
found as illustrated in Fig. 4,6. Hence, we obtain +, from

where ®(v,) is the increased flux due to internal friction and has been evaluated
for a range of surface gradients. Hence, by plotting

¥ + D(v,) versus y,,

the intersection of these curves with v, = v, gives the appropriate solution for .. It
is now discerned that, because of the rapidly increasing function ®, instability may
be reached such that the heat produced by an increase in vy, cannot be conducted
away by that increase in vy,. In this case there is no solution. For small values of A,
two solutions exist, in general the lower vy, value being stable, whereas the higher
is unstable. Where there is no solution it means that no steady-state temperature
profile exists for the prescribed boundary conditions.
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45 TEMPERATURE PROFILES IN ICE MASSES

Taking typical values as before we may find the critical values of heat from
internal friction, above which the solution becomes unstable. For a shear stress,
at the hase, of 1 bar this corresponds to a certain velocity as determined from
equation (36) below. The value of the critical velocity decreases as the ice thick-
ness increases.

The instability 35 not caused by the temperature of the ice reaching melting
but by the increase in internal heat production (proportional to d*¢/dz*) becoming
too large, by an increase in temperature gradient, to be conducted away by that
increase in temperature gradient.

The velocity gradient in the ice mass 15 given by

w _ 2(@) e (36)
dz B
_, K 0
pgaz dzt’
From equation (34) this may be written
vl - 2
@=Mz3]+vasz+M+... (37
dz P 21
since
2 2
0 _ ez 1 +v0z + (v0.2)° + ... (38)
dz* 2!
Hence, integrating, we find
vl 2
us_L,=ﬂz4l+wi+(ve-ﬁz)+___ (39)
pgn 4 5 6.2!

From this equation and the values of the parameters above we find the velocity
at the surface of the 1,000 m ice mass as approximately 8 m yr .

{t should be pointed cut here that the temperature curves (cf. Fig. 4.4) do
not agree at all with the only temperature profiles so far measured down to bedrock
in cold ice caps (Bogoslovski 1958, Hansen 1966). The measured profiles show
comparatively constant gradients in the lower layers. This suggests that internal
heat produced in these cases is negligible or counteracted by upward curvature
by other factors, such as accumulation. However, the movement rate at these
positions is also believed to be small. In order to evaluate fully the influence of
movement on the temperature of the ice mass, it will clearly be necessary to obtain
temperature profiles into the bedrock beneath moving ice masses. Fig. 4.4 shows
that there is only a slight difference between the temperature profiles for basal heat-
ing (all the heat produced at the base} and for internal heating from motion with a
tempearature-dependent power flow law. This difterence is only apparent very near
the base.

The preceding discussion is in agreement with the conclusiens of Lliboutry
(1963) that the problems of

(1) heat production by internal friction, and

{2) accumulation with vertical motion,
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EFFECT OF ACCUMULATION AND VERTICAL MOTION 4.6

can largely be treated separately. This is because the internal friction is produced
mainly in the basal layers where the vertical motion is negligible, whereas the
accumulation and vertical motion are mainly associated with the upper layers where
the frictional heating is negligible. In the next section we examine the effect of
surface accumulation and vertical movement on the temperature profile; ne-
glecting inlernal friction, or by considering it as incorporated in an increased basal
temperature gradient, (v;*), i.e.,

4

® + ,
b TG IK

where yi; 1s the geothermal gradient in ice,
7 1s the shear siress at the base,
and V is the average downslope velocity through the ice.

4.6 THE EFFECT OF ACCUMULATION AND VERTICAL MOVEMENT OF THE ICE ON
THE TEMPERATURE PROFILE

This problem has been discussed in detail, first by Robin (1955), and later
by Zotikov (1963), who have both given useful theoretical solutions for the profiles
of temperature and temperature gradient. Jenssen and Radek (1961, 1963)
obtained numerical selutions to fit particular cases, taking account of ice thickness,
surface slope, vertical movement, horizontal movement and accumulation rate.

Measured temperature gradients in the Antarctic [Bogoslovski 1958, Mellor
1960, Crary 1961, Gow 1963, Budd 1966, Battye (unpublished}] indicate that
the physical assumptions made in the theoretical calculations seem to be at least
partly valid. However, at this stage there exists no detailed set of surface tempera-
ture gradients going inland from the coast in regions where the associated move-
ment parameters are also known. The temperature gradient values obtained by
Budd (1966) at Wilkes are sufficiently close to the movement line of Mclaren
(1967) to allow a close estimate to be made of the velocities there. However,
these measured velocities are small and, though quite compatible with the velocities
considered in the analysis of the temperature gradients there, they do not provide
a full test of the theory.

In this and the following sections the temperature profiles in moving, accumu-
lating ice masses will be considered from cases representing the most simple
situations to those typical of regions m the Antarctic. The main advance over
previous work is believed to be the removal of the assumption of steady-state ice
cap profiles. The rise or fall of the surface in time may be more important than
other effects associated with steady-state conditions. For instance, it may explain
the positive temperature gradients measured in thick ice in inland Antarctic by
Battye (unpublished). Furthermore, the study of temperature profiles is found
to throw new light on the state of balance of the ice masses.

The high negative temperature gradients measured at different sites in the top
50 m (Robin 1955), have been ascribed partly to climatic change over recent times.
However, climatic changes would in general be expected to be of fairly wide geo-
graphical extent and so would not explain different warming rates in different
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4.6 TEMPERATURE PROFILES IN ICE MASSES

neigbouring locations over the same period. It will be shown here that short-
distance fluctuations in surface topography and slope (cf. Section 6) on an ice
mass sutface are also associated with fluctuations in strain rates and accumulation.
As a result, different warming rates can occur at the surface of an ice mass over
short distances ( ~ 5-10 km) which can persist for short pedods ( ~ 1,000 yrs)
and cause different temperature gradients in the upper surface layers, compared
with the deeper layers. These fluctuations would be quite independent of climatic
change and so, before the latter can be deduced, the effects of the ice motion must
first be fully investigated.

To begin with, consider a simple model not involving accumnulation or hori-
zontal movement.
1. For an ice mass with constant thickness H, constant surface temperature 4,
and a constant basal temperature gradient v,, (corresponding to the geothermal
heat flux) we have for the temperature gradient at depth z

df
— =, constant
dz
and hence
B: = 95 — PuZ.
The basal temperature js given by
8, =86, —y,H (40)

i.e., the temperature profile is simply determined by the surface temperature ¢, and
the basal geothermal gradient y», and is shown in Fig. 4.7. This situation should
be approached when the net accumulation rate is close to zero and the horizontal
velocity is small. Since the geothermal heat flux is so important in determining the
temperature profile, it is necessary to know how it varies from place to place. Lee
and Uyeda (1965) summarize all available data to 1964. The general smoothed
world varjation is shown in Fig. 4.8 from their report. It is notable that data are
virtually non-existent for Greenland and the Antarctic. However, Lee and Uyeda
found a high correlation between heat flux and major geological features which
may be summarized as

Geothermal heat flux
Major geological feature Mean and standard devialion
p-cal em=2gec™1

Over fand
Precambrian shields 0-92 +0-17
Palcozoic orogenic areas 1-23 -+ 0-4
Post-Precambrian non-orogenic arcas 1 54 +0-38
Mesozoic-Cainozoic orogenic areas 1-92 £ 0-49
Over sea
Ocean trenches 0-99 = Q-61
Ocean basing 1-28 =0-53
QOcean ridges 1-82 =1-56

This correlation of heat flux with major geological features suggests that the heat
Hux in Greenland and East Anarctica is close to 0-9 p-cal cm™sec™ typical of the

old Precambrian shields, whereas West Antarctica, of more recent origin, may have
higher geothermal heat flux.
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4.6 TEMPERATURE PROFILES IN ICE MASSES

(If 8, = 0 the amendment of Section 4.4.1. will apply.)
2. For the second case we still have no horizontal movement buf introduce an
accumulation rate A at the surface. We assume that the ice thickness is constant
with time and the longitudinal strain rate is constant with depth, so that the vertical
movement at height z above the base is given by
v=A L.

H
This is Robin’s (1955) steady-state model for which he found the following
solution:

dz*  dzdt
a0,z
dz H
o
az - e 2 (41)
and
8, =8, + 7y, /z—@crf\/iz (42}
VoA 2Hrx |m
where
erfx = J. e~ dy (43)
0
In particular, the temperature gradient at the surface is given by
;{8) — _ybe—AH,'Zx (44
Z &

This solution is expected to apply closely in regions of low horizontal movement
{such as on a dome summit or ice divide) and if steady-state is maintained and
no climatic temperature change is occurring.

We notice that, since-; erf y = 1 as y > 0, the solution equation (42) re-

duces to our previous results of model 1 as the accumulation rate becomes small.
To examine some typical values of surface gradient over the Antarctic, consider
Tables 4.3 and 4.4 below and Figs. 4.9 and 4.10.

TABLE 4.3

ROAIN STEADY-STATE GRADIENTS 7v.e — AH/Zk

AH /2% 01 05 1 2 3 4 5 3
exp AH/2x 1.1 1-65 272 7-4 20 54 150 400
fya=22| 20 13 081 030 011 004 0-015  0-005
Yo Yas=44| 40 26 16 060 022 0081 0.030 001
°C/100 m
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EFFECT OF DOWN-SLOPE MOTION 4.7

Over most of the Antarctic the surface temperature gradient corresponding to
Robin’s steady-stale model is less than 1°C/100 m. Over a large part of the inland
region we can expect the gradient to be less than 0-1°C/100 m.

TaBLE 4.4
AH/ 2«

Acecmyr 11 5 10 20 40 50 100

H.

500 0-07 0-34 0-69 1-38 2-8 3-4 69
1000 0-14 0-69 1-38 2-75 5-4 6-9 13-8
1500 0-21 0-95 1-64 4-13 8-1 10-4 20-7
2600 0-28 1-38 2-75 5-30 11-3 13-8 27-5
3000 0 41 2-08 4-13 7-90 17-0 20-6 4]1-3
5000 0-69 3-40 6-90 13-80 28-0 34-0 69-0

Values of temperature gradient calculated by means of equation (44) alopg
the Wilkes—Vostok line, from the data of Battye (unpublished) and Walker (1966)
are given in Table 4.5 below. It is clear that the temperature gradient calculated
from the Robin steady-state formula is negligible along most of the route in con-
trast to the measured gradients which are predominantly negative. Even inland,
where the measured gradients are positive, it appears that the calculated gradients
from the present model are still too smail to account for the measured results, We
now consider in the next section the effect of horizontal motion and surface
warming.

4.7). EFFECT OF HORIZONTAL AND VERTICAY. MOVEMENT ON THE TEMPERATURE
PROFILE

Robin (1955) was the first to consider the combined effects of horizontal move-
ment and accumulation on temperature profiles in ice caps. Firstly, if conduction is
neglected (i.e., for high rates of movement and accumulation), the negative tempera-

. ag . .
ture gradient at the surface 72 is given by

g _ aVa
dz A
where the velocity is ¥, down a slope o (small), with vertical air temperature

gradient of A { =~ 1°C/100 m in the coastal region of Antarctica) and accumula-
tion rate 4.

(45)

Radok (1959) pointed out that the temperature gradient at the surface also
al A
A4
medium accumulating at the surface at the rate 4, and constantly warming at
the rate aFA, irrespective of the conductivity.

Negative temperature gradients measured inland of Wilkes and inland of Mirny
(Bogoslovski 1958) are shown in Fig. 4.11. The magnitude of the gradient in
both cases decreases when going inland. For the Wilkes region further inland they
even become positive.

approaches asymptotically, as 7 ~> o, with conduction, in a semi-infinite
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EFFECT OF DOWN-SLOPE MOTION 4.7

Typical values of o and GZ)L are shown in Figs, 4,13 and 4.14, to show the

expected magnitudes of this effect over the Antarctic.

If we assume a velocity V for the Vostok—Wilkes line, such that the outward
mass fux just balances the accumulation, we can calculate the corresponding tem-
perature gradients due to this effect alone. The results are shown in Table 4.6.
Measured gradients inland of Wilkes, together with other relevant data, are shown
in Fig. 4.12.

TaBLE 4.6

WILKES—VOSTOK ROBIN SURFACE WARMING GRADIENT
x H A I’4 o oA a6 dé
A dz dz
calc. obs.

km m cmyrt m yr-1 X103 *C/100m
54 3015 61 21 105 —0-05 ig_g
148 3175 2-8 3-2 1-26 —0-06 +1-1
243 3420 79 4-0 1-25 —0-08 —0-2
341 3850 7-0 4-4 1-22 —0- 10 +0-3
441 4440 8-8 4-9 1-23 —0-09 —0-7
542 4580 9-7 6-0 1-27 —0-10 +0-4
667 4150 9-8 89 1-30 —0-15 —0-7
768 1195 10-6 11-8 1-57 —0-23 15
816 2790 §-6 14-7 2-61 —0-56 —11
895 2695 11-0 177 4-40 —{-88 —1-7
987 2277 26-0 29-4 5-89 —0-77 —1.9
1083 2627 35-0 36-8 6-32 —0-77 02

Here the agreement between the calculated gradients and the measured gradients
is quite close in the region of the coast where high negative gradients are encoun-
tered. The discrepancies here may be due to errors in the estimated velocities or
in the effect of conduction. This model does not account for the positive gradients
inland.

We next consider the effect of movement down the slope with conduction but
without accumulation. Here the movement will be assumed to be so slow that
steady state is maintained, i.e., the temperature profile in the ice is constant with
time over a given point on the bedrock. As the ice moves down the slope it warms
as a whole at the same rate as the surface.

In this case we have for the change in temperature with time of a column
moving with the ice

de
— =zzVi 46
il (46)
Hence,
d’0  aVi
2= 47
dz? K ¢ )
B2, (48)
dz K
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4.7 TEMPERATURE PROFILES IN ICE MASSES

oo
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Fi6. 4.12b. Elevation and mean surface temperature inland of Wilkes show that about 600 km
inland the temperature coniinues 1o decrease while Lhe elevation levels off, giving rise to very
high temperature elevation gradients ihere.

aVi

0, = ——2* +yz + 6, (49)
2k
The surface gradient may be expressed in terms of the basal gradient by
v
Be=p - o H (s0)
K
df Vi
LS =y = TAH - o) (51)
dz K
2
and 0 =0+ pz — VA (Hz - %) (52)
K

Typical values of the temperature gradient at the surface that would arise from
this effect in different ice masses may be judged from the tables below (4.7, 4.8).
Since A the vertical air temperature gradient is abeut 1°C/100 m, the table and

Fig. 4.14 for the dimensionless paramettar(iﬂ—{fﬂL give the surface temperature gra-
K

dient in °C/100 m.
The formula y, = aVA/A4 implies that the temperature gradient at the surface
becomes large as the accumulation rate becomes small. The formula v, = aVH/«
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Fig. 4.13. The rate of sleady-state surface lowering oV is shown for typical valucs of velocity
V and surface slope « for the large ice masses.

shows that, for a medium of finite thickness, the steady-state surface gradient has
a maximum limit even with zero accumulation. By comparing the tables for the
dimensionless parameters aV' /4 and aVH/« (Figs. 4.13 and 4.14), the magnitudes
of these two effects may be compared. It is clear that, for typical values over the
Antarctic, they are of comparable magnitudes. The next stage is to examine
the combined effects of surface warming with both conduction and accumulation
for a fnite slab.

Tanre 4.7

oV cm yr-t

| 4 1 5 10 50 100 myr-!
—

a

1/1000 01 05 1 5 10
1/5000 0-2 1 2 10 20
1/100 1 5 10 50 100
1/50 2 1O 20 100 200
1710 10 50 100 500 1000
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4.7 TEMPERATURE PROFILES IN ICE MASSES

TABLE 4.8
aVH/x (DIMENSIONLESS )
114
cmyr-t 010 0-50 1-00 500 10-00 50-0 100-0
——
Ha
500 0-01 0-07 0-14 0-68 1-36 6-8 13-6
1000 0:03 0-14 0-27 1-36 2-72 13-6
1500 0-04 0-21 0-41 2-00 4-08 20-0
2000 0-05 0-27 G- 54 2-70 5-40 270
3000 0-08 0-41 0-82 4-10 815 41-0
4000 0-10 0-54 1-08 5-40 10-80 54-0
TaBLE 4.9
aV/A4
aV 0-1 0-3 L0 50 10 50 100
‘—_-“_-\“—_
A
100 0-01 0017 0-01 0-05 0-1 0-5 1
50 0-017 0-02 0-10 0-2 [-0 2
2 0-025 0-05 0-25 G5 2-5 5
10 0-01 0-050 0-10 0-50 1-0 50 10
5 0-02 0100 0-20 1-00 2-0 10-0 20
1 010 0-500 1-00 5-00 16-0 500 100
"L:l *¢/100(m

20+
~ 103
§ o]
<
of i H -as g} -1 L3 o 20 ’“ 100
13 / él
oK ¥ temfyr)
01 T T 7T UrerT T T T [ 7TIT LI SRS S S A AR R R A
o1 a5 1 2 5 w0 50 100

Fic. 4.14. Negative surface temperature gradient due to surface
warming aV with accumulation A in ahsence of conduction.
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Fic. 4.15. Negalive surface temperature gradient for surface warming

and conduction in absence of accumulation for different ice thick-
nesscs M.

We now incorporate the effect of accumulation on this same model. It is
assumed that the ice thickness H remains constant with an accumulation rate A
at the surface and a longitudinal extension corresponding to a vertical velocity
of A(H — z)/H at depth z. This case was considered by Robin (1955). For ice
moving slowly down a slope a, such that the ice thickness remains constant and
a steady state temperature profile is maintained, we have the differential equation,
analogous to (47), as

ae A 40 avVi
4 2=
dz*  xH dz %

This model assumes that, as the ice flows outwards, the whole column from
surface to base is warming at a constant rate, viz., a¥x. In many cases this may be
a realistic assumption, in others it may be more appropriate to take the warming
rate as some other function of depth, e.g., varying linearly from surface to base.
For the ease in which the base has reached melting, the warming rate there would
be zero and the appropriate equation corresponding to (53) would be

(53)
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4.7 TEMPERATURE PROFILES IN ICE MASSES

d*@ A df  aViz

4 =

dz?  «xH dz x H

Since in general, however, we do not know how the lower layers are warming (or

cooling) we consider first equation(53). After several steady-state profiles have

been calculated along a flow line it may then be possible to replace the right-hand
side of (53) by a more realistic function of depth,

Robin (1955) fitted equation (53) numerically to observed temperature profiles
to determine appropriate values of the velocity V.

Here we solve the equation for the temperature gradient as follows. Writing

A aV A

a = > b
H K

(53a)

(54)

{53) takes the form

2
M+a3@——b=0.
dz? dz

This equation is linear in 32— with integrating factor e*{a/2)#

v (aj2)z
d_@ — e-(r:lj‘z,)z2 Yy + b e+(a,f2)22 dr ,
dz 0

where y; is the temperature gradient at the base (z = 0).

At the surface, (z = H) gﬁ = 7,
z

Hence,

Hence,

p—
g, = ype—amit 4 pp PO @DH)

J(a/H
where F(x) is the Dawson integral defined by

(55)

F(x) = e”‘ZJu et di (56)

0
This function is tabulated in Abramowitz and Stegun (1964).

Hence, the temperature gradient at depth z is given by

W _ et 4 pp F@22) (57)
dz J@DH
{Note that in the present context the direction of z is upwards from the base
and so in this notation ¥, is negative.)

In particular, the temperature gradient at the surface (z = H) becomes

(d_&) = ye HE 4 LW‘H 2 F( A_H) (58a)
dz K HA 2K

5
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EFFECT OF DOWN-SLOPE MOTION 4.7

which is the generalized form of equation (50) or, to correspond to Robin’s
formula, equation (45)

(é?) _ o mize g OVA [2HA F( ’L) (58b)
dz/ A K 2K
TaBLE 4.10
F(y)

- 1
TABLES FOR DAWSON’S INTEGRAL F(y), , ¥E(y), E(¥y), erf y,-—erf y.
¥ ¥y

0 00 0-1000 0-500 1-000 1-500 2-000 3-000 4-000

¥

Fy) 0-00 0-0993 0-424 (0-538 0 428 0-301 0-178 0-129
F(;:) 1-00 1 0080 0850 0-540 0-286 0-150 0-059 0-032
yF(y) 0-00 0-0100 0-212 0-538 0-642 0-602 0-534 0-517
E(y) 0-00 0-0100 0-140 (-390 0-640 0-830 1-040 1200
erf (¥) 0-00 0-0100 0461 0-748 0-856 (-883 0-886 0-886
1

;erf (y) 1.00 1 - 0000 0-922 0-748 0-578 0-441 0-295 0-222

The corresponding solution for (53a) im which the warming rate decreases
lincarly to zero at the base is

do Az alV A A 2
— = V€ 2y + — |l —e-3 57a
dz Vo€ 2kH 1 |: 2kH ] (57a)
We write equation (58) in the form
(92) = yyemamne 4 22y FO) (582"
dz/ K Y

where y = N/AH/ZZ-;c". Now ) Las y—0, and ) 0 as y becomes large.
¥ ¥

Hence, this solution approaches the previous one, equation (50), as 4 — 0, and the
effect of the accumulation is simply to reduce the magnitude of the surface gradient.

Typical values of \/AH/2x, F(), f;l) , for inland Antarctica are shown in Tables

4.10 and 4.12. Also shown are the net calcnlated temperature gradients along the
Wilkes—Vostok trail (Table 4,11). These gradients are remarkably close to the values
calculated (Table 4.5) for the case where conduction was neglected. This is essentially
a consequence of the non-dimensional parameter \/m being large.

We also note that equation (58) can be written in the form

dfl - «, Vi ,
(ﬁﬂ) = pe 0 L TP oy R(y) (58b")
dz/ A
Furthermore, yF(3) = L as y —» . Hence, as H - «, 4 # 0,
dﬂ) — AR aVa
— | - e w4y - 59
(ciz . Vo 4 (59
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4.7 TEMPERATURE PROFILES IN ICE MASSES

We thus conclude that for a thick ice mass (H large) where the accumulation
rate is not too small (4 not zero) the steady-state surface temperature gradient
approaches the simple sum of Robin's (1955) results for

(1) steady-state accumulation and subsidence with no downslope movement,
and (2) downslope movement and accumulation with no conduction.

TABLE 4.11

WILKES~—VOSTOK CALCULATED SURFACE TEMPERATURE GRADIENTS FROM COMBINED EFFECTS
OF ACCUMULATION AND SURFACE WARMING

do 1)
(*) =y M 4 ?? 2yF(y)

dz/
Distance Balance Dynamics Calculated Observed
towards coast velocity veloeity gradient gradient
x Ve Fa from Va fromV, ~0
km m/yr m/yr °C/100 m “C/100 m
101 2.7 1-6 —0-04 —0-02 J0-6
196 3-6 27 —0-07 —0-05 +0-6
292 4-2 3.7 —0-10 —-09 +1-1
391 4-6 56 —0-12 —0-14 —0-2
492 5-4 8-1 —0-13 —0-20 +0-3
605 7-4 7-8 —(-34 —0-35 —0-7
718 10-3 8-2 —0-71 —0-56 +0-4
792 13-2 10-1 —1-04 —0-79 —0-7
855 16-2 28-5 —1-15 —2-03 —1-2
941 23-5 51-6 —Q0-79 —1-74 —1-1
1035 33-1 87 -4 —0-73 —1-93 —1-9

From Table 4.10 we see that, for ¥y > 1, yF(¥) does not vary greatly (less
than 25% ) from 0-5, and for y > 3 the difference is less than 7%. The values of

VAH/2x ==y in Table 4.12 show that most of the Antarctic ice cap comes into
this category of large H, ie., VAH/2x > 0'8. Since the term v,e — 4772« is also
small in most of inland Antarctica, the close agreement between the Robin sur-
face warming gradients, and those obtained from equation (58) along the Wilkes
—Vostok line, is thus explained.

Equation (58) implies some general conclusions concerning the dependence
of the surface gradient on the accumulation rate and the ice thickness.

The negative gradient required to maintain the steady-state increases as the
vertical velocity («l’) of the thickness (H) becomes large. The gradieant also be-
comes more negative as the diffusivity becomes small (e.g., as the firn density
decreases in the upper layers). This corresponds to increasing accumulation (in
cm snow. The decrease in « has a similar result to the increase in AH. It can be
seen from equation (58b) that, in the upper firn Jayess, where the diffusivity s
small, the surface temperature gradient mose closely approaches the Robin non-

. V . , .
conduction formula y, = Q—Ai\ , provided that the A4’ value is taken as the accumu-

lation rate in cm of firm over the appropriate depth. These results support the
application of Robin’s formula (e.g., Mellor 1960, Budd 1966) in associating
surface temperature gradients and velocities. But it should be emphasized that,
except for steady-state ice cap, ol is not the true vertical velocity (cf. Section
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EFFECT OF DOWN-SLOPE MOTION 47

4-8) because, in general, this includes also terms involving basal slope and vertical
strain rate, which may result in the ice-cap surface rising or sinking with time.
We next obtain the temperature profile by integration of equation (57) as

follows:
- : —(a/2)z* 2 a
8, =0, +7y,| e dz + b~ F| [=z}dz
0 alo 2

=9b+yhgcrfgz+sz( Ez) (60)
a 2 2

[£]
where E(x) /s defined by E(x):‘[’éF(y)dy, and has been evaluated for

0 < x < 3 by Zotikov (1963}. It may also be obtained easily from the tables of
Dawson’s Integral of Abramowitz and Stegun {1964), and a plot of this function
(E(x)) is shown for values up to x = 4 in Fig. 10.

The temperature at the base is given by

i _
9b=9s—ybﬂ‘?iﬂﬂ—b25(\/fﬂ) (61)
(aji2)H a 2
ie., 0, = 0,y ST AHRR) _ aV2.2cH E( \/45) (61a)
V(AH[2K) oA 2K
or
0 = 6, - H[vb el 2E(y)} (62)
v

where y = /A4 H/2x is non-dimensional and is given in Table 4.12.

Hence, we find for the temperature profile

I’ erf \/(AH[2x) — erf (\/(AH[2x) z{H)
b

8, =08,—v —
J(AH[2K)
+ %—5 2AE/AH[2x — E\JAH[2x z{H] (60a)
or
=0, — H[:;b erty - et () - 22 2Ey - Eey)} (63)
y

where ¢ = z/H is the fractional ice thickness.

Typical temperature profiles are shown in Fig 4.16 for the Wilkes ice cap.
From these profiles we notice that the effect of increased velocity as the coast
is approached is to increase the negative gradient at the surface and the positive
gradient at the base. As a consequence of this, the average temperature through the
ice is lower than the surface temperature.

The depth of the temperature minimum is given by dé/dz = 0 which, from
(57), gives
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TEMPERATURE PROFILE FOR GROWING ICE CAP 4.8

PHEGaf2) _ , o-aioe (64)
\/a,f'Z H
2. e 2
DR E( fa]2z) = &Z_;ﬁ (65)
or, using {54),
z DT -1 aVl T
o= JAH[R G (2 o VAH,‘ZZ;C) (66)
b

¥
where G(y) = I/J ' dt, and is shown in Fig. 4.17.
0
Finally, it might be mentioned that the differential equation (53) can also
be solved in series for temperature and temperature gradient., These series can
also be obtained from the series for the analytical functions erf v, F(¥) etc.
(Abramowitz and Stegan 1964).

TaBLE 4.12
VAH/2x
A 1 5 10 20 40 50 100
H
300 0-26 0-59 0-83 1-13 1-66 1.84 2-62
1000 0-37 0-83 1-18 1-66 2-23 2-62 3-70
1500 0-41 0-98 1-28 2-04 2-86 3-24 4-54
3000 0-64 1-43 2.04 2-36 3-33 3-70 5 25
2000 0-52 1-18 L-67 2-86 4-10 454 6-42
4000 0-83 1-84 2-62 3-70 5-25 5-84 8-30

4.8 TEMPERATURE PROFILE FOR GROWING ICE CAP

Crary (1961) showed that, for a slowly increasing thickness H of an ice shelf,
with the remaining boundary conditions constant, the form of the steady-state
temperature profile # = f(Ff} remained the same with just the new H replacing
the old.

Crary used the differential equation for temperature € at depth gz,

d*o z do
K— — A+ (M —-—AD|—=0 67
dz’ [ 1Y )] dz @7
where x == thermal diffusivity, A = surface accumulation rate and M — basal

melt rate.
From this he established the solution

z
6: _ 80 _ fO e—(lfrc)[Az+(21/2H)(M -A]]dz

= 8
8, — f —(1/[Az + (@2 2H)(M — A (68)
s o e~ ULz + GH 2 N4

which he evaluated numerically.

Here we write
oo M =4 a=_4(M—A)—%
2Hx 2\ 2HKk
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48 TEMPERATURE PROFILES IN ICE MASSES
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Fris. 4.17. The relative depth z/H of the temperature minimum Ffor sfeady-state lemperature
distributions in ice is given by z/H = y G 3({2eV N}/ {Av.} ¥) where y = V AH/2x,
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TEMPERATURE PROFILE FOR GROWING ICE CAP 4.8

to obtain

' +a , s
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erf(H’ + o) — erfu
Reverting to our original parameters this becomes
M- A4 A 2Hik A 2Hk
erf( = z+ — ~—)—erf
0, — 8, _ N 2Hx 2k N M — A 2K _M__—_{l (69)
0. — b erf( M—A_ A | 2Hc ) 4 | 2Hx
+ = —erf— [ —
2Hk 2ZkKNM - A 2K -4
where 6, is the temperature at the surface,
and f, is the temperature at the base.

This result suggests that a steady-state solution for a slowly rising {or sub-
siding) ice cap may be found simply as a function of the surface warming or
cooling, with the vertical velocity and the existing physical parameters of the ice
mass at that point,

For an ice mass with thickness H, elevation E, accumulation rate A, surface
slope «, and basal slope 8, which is moving with horizontal velocity V' and has

8
?

)

o

a vertical strain rate ¢, the rate of change in thickness over a point of the bedrock
is given by

“j = V= B+ iH + A (70)
g
The vertical velocity at height z above bedrock is given by

Loz

foaH

Now, with the same model as in Section 4.7, we obtain for the differential equation,
for a column moving with the medium and co-ordinates z varying with H, such
that z/H remains constant,

— = 71
dz? x Hdz «x Dt (1)
or
dy
— — gzy =& 72
Iz ¥ (72)
where
de A / DE
= — aqa = —— b’ = - — 73
’ dz xH w Dt 73

The surface warming is given by the rising or lowering of the surface elevation, E,
of the ice cap following the motion,
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4.8 TEMPERATURE PROFILES IN ICE MASSES

i.e.,
D
DE DH _0H 6H - oH +
Dt Dt ot dx at
= —VB+ eH + A,
since
H_o_p and H v igioa
Ox ot ax

For a balanced ice cap 84 /9t = 0, and hence DE/Dt{ = V', as used by Robin. As
before (Section 4.7), the differential equation (72} has a solution

I
—(aj2)z F a 2
ye = poe” WP - (:’( 2) (74)
~a/2)H
and, in particular, the surface gradient is given by
: 2
e = e HIH IM) (75)
V(a/2)H
. . [CAH 260
— e atize _ Py 4o — gy FOALR0) 75
K wf(AH/ZK)

Heunce, we can see that, even for very thick ice and high accumulation rates, the sur-
face temperature gradient can be positive or negative depending on whether DE/Dt
is positive or negative; i.e., for a growing ice cap the surface gradient would be
positive if the accumulation rate is sufficiently large for (4 + ¢H — B8F) to be
poslitive.

Now, positive surface temperature gradients have been observed in inland
Antarctica by Battye in 1963 and, since the Robin steady-state term e —#H/2x
is small there, it appears that the cause of the positive gradient may be that the
ice cap surface is rising. We can calculate the required growth rate (9H/d¢) to
cause such a positive gradient -, from (75) in the form

o= pemimns A DE, JA g [aH) (15
A Dt 2k 2K

or, since
2\/AH F( /AH) ~1
2 N 2k
~ADE _ DE _ Ay,
‘T ADt D 2’
or oH _ Ay Ly (76)
ar A

Typical values of observed y, and A along the Wilkes—Vostok route of Fig. 4.12
suggest that the rise of the surface in the interior of Antarctica may be 20-50%
of the accumulation rate (i.e.,~ 2-5 em yr'), which is a general confirmation
of the net positive budget in nland Antarctica (cf. Loewe 1967, Bardin and
Suyetouo 1967, Giovinetto 1964, 1966, Budd 1967). This general result has
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TEMPERATURE PROFILE FOR GROWING ICE CAP 4.8

some very important consequences. If we know the climatic temperature change
over a period, equation (76) can tell us the rate of lowering of the surface. On
the other hand, if we know the rate of surface lowering, say from Aux divergence
measurements, then equation (76) will provide a guide for determining the recent
changes in surface temperature. This means that the surface temperature gradient
may well provide a useful means of gauging mass budgets of inland regions of
large jce masses. As another example, we consider the surface temperature gradient
to ~ 150 m at Station Centrale in Greenland (cf. Heuberger 1954, also Mellor
1964 ). Here the temperature gradient from 100 to 150 m is ~0-26 °C/100 m,
the accumulation rate > 40 cm yrt (ice equivalent) and the estimated velocity
and slope (Haefeli 1961) =~ 2 m yr™* and ~ -002 respectively.

Hence,

cz_l{z 01,
A

with the consequence that the expected temperature gradient is 0-1 °C/100 m.
This suggests that the surface lowering (or net negative budget) s about 150%
of the accumulation rate, assuming negligible effect of climatic change. On the
other hand, if the effect were due entirely to climatic change, a temperature warming
of about 0-06°C/100 years would be required. This figure is also compatible with
estimated recent climatic changes, cf. Fairbridge (1967).

In the calculations carried out so far, a constant diffusivity has been assumed.
Actually, ice conductivity, capacity, and diffusivity appear to be quite temperature-
dependent. This is shown in Table 4.13 and Fig. 4.18.

To introduce temperature dependence into the thermal diffusivity makes the
heat conduction equation much more non-linear. This complication is better treated
numerically and the results of such a treatment will be published elsewhere. Here
we simply adopt the mean value of diffusivity over the particular temperature
range we are concerned with in a given context, but note that such a value may
be in error up to about = 20%, depending on the temperature range.

The problem. so far dealt with has also assumed steady-state temperature con-
ditions, For very thick ice which is changing rapidly this steady state may not be
achieved. Such time dependence makes the problem much more complex and the
numerical approach of Jenssen and Radok (1963) appears to be the most useful

TABLE 4.13

THERMAL PARAMETERS FOR ICE [FROM DORSEY (1940); CF. aLSO POWELL (1964}]

Temperature Conductivity K Capacity ¢ Diftusivity « :E
°C cal cm~2sgc 1°CL cal g7? cm?sec™l a
0 5-35 (- 506 I-15
—10 5-54 0-486 1-24
—20 5-81 0-469 1-35
—30 6-10 0-450 1-47
—40 635 0-431 1-60
-—506 6-64
—&0 6-95 0-394 1-93
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4.8 TEMPERATURE PROFILES IN ICE MASSES

technique to solve this problem for any particular region. If the time dependence
is significant, however, it is not sufficient to determine the temperature distribution
Trom the values of the present parameters of the ice cap (velocity, accumulation,
strain, etc.) at a certain position, as has been done here. The motion and changes
of the ice cap must then be followed over a considerable time as the ice moves
outwards from the centre, accumulates, strains and either builds up or subsides.

THERMAL PROPERTY OF ICE
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Fic. 4.18. The lhermal properties of ice: conductivity K, diffusivity «, and capacilty €, are
shown for the range of lemperatures in ice, after Dorsey (1940), Powell (1958), Ratcliffe
(1962).
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TEMPERATURE PROFILE FOR GROWING ICE CAP 4.8

Since the velocities and strains in inland Antarctica are still largely unknown (let
alone the extrapolations back in time) a defailed calculation of this sort can only be
speculation at this stage.

On the other hand, once all the movement parameters of the ice are koown,
as well as its temperature distributions, much cane be learned about its past history,
and in particular about the possible change in the climate over recent times (last
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F16. 4.19. The range of magniludes of the amplitude and frequency of climatic variations in
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49 TEMPERATURE PROFILES IN ICE MASSES

100,000 years). The order of magnitude of such temperature variations may be
judged from the estimated temperature variations over the world illustrated in
Fig. 4.19.

4.9, THE VALIDITY OF THE ASSUMPTION OF STEADY-STATE TEMPERATURE
DISTRIBUTION

The essence of “steady-state” is that something is constant in time. In some
cases it may be temperature, in others temperature gradient, or ice thickness. Hence
we make the following definitions:

(i) We define a “steady-state temperature-profile” in an ice cap as one that remains
the same with time in space over a fixed point in the bedrock as the ice moves
past. In this case the ice cap itself must also be in steady-state there, ie., not
rising or sinking.

(ii) For a rising or sinking ice cap surface we may define a “thickness-relative
steady-state temperature-profile” where the temperature may be expressed as a
constant function (with time) of the ice thickness, H, even though H is changing
slowly with time. This definition may also be applied to a moving column, with
expanding co-ordinates.

(iti) If the whole column is warming at a constant rate (or, more generally, at
a rate which is a constant function of depth) then we may define a “steady-state
temperature-gradient-profile” as one in which the temperature gradient remains
constant in time.

(iv) Similarly, for a growing (or sinking) ice-cap column which is warming at
a constant function of its relative depth, we call a “relative steady-state temperature-
gradient-profile” one whose temperature gradient is a constant function of ice
thickness H, which may be changing with time. This is the more general case
required for the moving column.

In all cases, the final result is temperature or temperature-gradient as a function
of depth but not time. We now examine under what conditions the ice cap may
have profiles approaching the various types of steady-state.

To maintain a steady-state temperature gradient throughout the whole ice
thickness, the ice mass must be able to warm up at the rate at which the surface
is warming,

The question arises as to whether, as the columm of ice flows outwards in an
ice cap and warms at the surface, the rest of the ice column also warms up to
keep in steady state, or whether the basal temperature lags the surface temperature.
The rate of warming is not constant but increases rapidly as the velocity and slope
increase towards the coast. As a result of this, it may be expected that the tempera-
ture profile does not remain in the steady state defined for constant warming rate.
However, as the coast is approached, the decrease in ice thickness and the in-
creased heat due to increased friction at higher velocities tend to assist the ice mass
in maintaining steady state., In order to determine a criterion to judge whether
stcady-state temperature profiles are realistic, and can be maintained in a moving
ice cap, we now consider time-dependent solutions of the heat conduction equation
for a finite slab, and investigate the time required to reach stability.
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VALIDITY OF STEADY-STATE ASSUMPTION 4.9

4.9.1. An ice cap with a constant surface warming rate

Firstly, we consider the simple model of an ice-cap column warming, as it
moves downwards and outwards, as the case of the finite slab —H < z < H,
with zero accumulation and a constantly rising surface temperature. This problem
was considered by Carslaw and Jaeger (1959, p. 105 (i)). We take zero initial
temperature for the whole column for the time ¢ > O the surfaces are kept at tem-
perature #, —= kt, where & is a constant. The temperature ¢ at depth z and time ¢
is given by
Mz* ~ H?) | 16kH? 2 (=1) 0 | (n + Dz

=+ 4H2
2K knt S (2n + 1)? 2H

skt —

0=kt +

(76)

+Hl

2|

-H

This equation can be used to simulate the temperature distribution in the ice
column of constant thickness K, with the bedrock at z = 0. The temperature
gradient at the base in this case is zero; for the case of the ice cap with constant
basal flux v, we simply need to add the term v,z to the above solution.

The first and second terms in the above solution are the steady state solution
as obtained in Section 4.7. The series is the time-dependent part which tends to
zere as ¢ = = and converges quite rapidly with increasing », which implies that
high frequency variations are quickly damped out.

For # == 0 we have

’ 2 ,,(1-[2( -2 2

16kH” -5 cos *E 4+ ki + klz H7)
3 2H

o =
) KT 2K

We can see that the basal temperature (z = 0} takes longest to reach stablility.
For the temperature at the base we have

(77)

2 _xn? 2
Bu(1) = 1'6k{:;1"' et — e + ki (78)
TC K
2 'iz
0() = kt — ﬁ (1 — 3_33_41—1'1) (79)
2K T
2
( Note: 3{ =~ 1 )
T
We now consider the magnitude of the exponent
Kr? "
T t= l,[/, say, ( )

4H
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4.9 TEMPERATURE PROFILES IN ICE MASSES

In order to have the basal temperature within 909 of its final value we require
t = 2:2(4H?*jxn?).

43 = 10%)?
10 27*
4(105)2

107 *x

Hence, provided the warming rate for the ice cap is constant over this length
of time (for a given ice thickness), we could expect the temperature profile to
remain in steady state. If the velocities of the ice in inland Antarctica are of the
order of 1 m/yr, this may be possible. If they are closer to 10 m/yr, steady state
under these conditions would not be maintained.

Our problem is that, as an jce column moves outwards, the warming rate may
be expected to increase. Hence, we examine the variation of & with time:

ForH =300m, (= ~ 4 x 10" sec or 1-3 x 10° yrs.

H=100m, = ~4x10“sccor13x104yrs

taking
LEf2 _xm?
oy = lSkI;I ¢ 41 cos
KT
= ake™ ™,
15H? X K’
where a = cos — and = —,
xn’ 2H 4H?
W _ e ( bk+‘—"5) (81)
dt dt
For steady state, dk/d¢ must be small compared to bk, or kfik <b Ifk=aVl we
1 dk . Vdk _ 1d(ev) .
can estimate values Ofkd s assummg constant A, from A a de Typical
values of - I d—k and values of b = 4 Hz for different ice thickness are given below:
kn? 1dk
H b= "y ! S —yr !
" 4H? Y e dt s
3000 0-75 X 10° 0-3x10°
2000 1-7¢ X 107® 2:0x10+®
1000 7-00 X 107® 15-0 x 1067
1t is apparent that, far from being smaller, the values of—]—{j are comparable

to, or even greater than, values of b. This means that, in absence of accumulation,
the increase in warming rate of the ice as it moves outwards is too rapid for such
thick ice to remaijn in the steady state for constant warming rate.

If stability is not reached, in the inland region, there may be a lag of ~
30,000 years between the surface and basal layers reaching steady states. This
time lag may correspond to a distance travelled =100 km, ie., the basal tem-
peratures may reflect the steady-state conditions upstream of the point in question.
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VALIDITY OF STEADY-STATE ASSUMPTION 49

The temperature gradient is given approximately by

gnt
08 _ kz _ 8kH - . w2 (82)
0z Kk  km® 2H
At the surface (z = H) the temperature gradient is given by
(ai) . (1 -8 e'm‘) 83)
07/ -y K 7

and at the base, (z = 0),

(a_a) ~ 0.
éz/

Hence, it may be expected that the surface gradient would take the same time
to reach stability as the basal temperature, while the basal temperature gradient
remains constant. The magnitude of the temperature gradient at the surface is
always less than its final value, but gradually approaches it.

4.9.2. Ice mass with exponentially increasing warming rate

Since, for ice caps, the surface warming rate is not constant but increases
rapidly towards the coast, we now consider the case of the slab —H < z < H
whose surfaces are kept at temperature Fert, i.e., warming at the rate Vet = T,
say where 7" is the temperature at time t. This problem has also been considered
by Carslaw and Jaeger (1959, p. 105).

For small v, ext ~1 4 vt, and ver' =v. Hence we may expect for very small
warming rates that the solution of this problem approaches our previous result
for constant warming rate Vv — &, and as a consequence the steady-state tem-
perature profiles for constant warming rate are maintained. We wish to determine
the values of + that are sufficiently small. The solution to this problem, given by
Carslaw and Jaeger, is

L Coshx v 4V & (— Ly« Cn D2ty 2+ |

O Ve osh Hvie 7 e @+ DL+ (WHYC + ] % 2H

FiAY

(84)

The asymptotic solution, neglecting the the terms that die out with time, for the
temperature at thc base is given by

1
8, = Vet ———— 85
b “ cosh H\/v[x ®3)

In the previous case of constant warming k¢ we had

8, =k L}Iz 86
| {+ 2k ( )
For |H/v/k| < /2
, 7 S T Y SR
0, = Ve (]—*2?4-%?1{ —mFH +) (87)
TyH* 5T (v\*
6, — gb = 72.’6 + ﬂ‘ (—K—Z) H* ... (88)
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4.9 TEMPERATURE PROFILES IN ICE MASSES

The first term on the right corresponds to the previous result for constant warming
rate £ = 7. For the remaining terms to be negligible

5 (H*? HY
%) < (89)

H?y | 2-4x
24k € or  v<ge

To examine this condition in practice we consider the following values typical
for a thick ice and thin ice position:

ie. (90)

Iece thickness 2-4x Slope Velocity Temperature Warming
H? gradient rate
H o |4 A 114
m *C oyrl cm yrol *C cm™! *C oyrl
3000 [-10 X 1078 1078 102 0-7 X104 Q-7 X 1073
1000 0-99 X 1074 -5 X 1072 2 X 10°2 1 104 10X 1074
With these values of velocity and surface slope, the rates of surface warming «l’A

. 2-4 ] . .
are of comparable magnitude to TT'; , which means that the higher terms in
equation (88) cannot be neglected.

Hence, it appears that the warming rates of the present ice caps are too great
(relative to the thicknesses) for steady-state temperatures to bc maintained in the
absence of accumulation and vertical velocity,

The effect of the accumulation may be judged from equation (71), with
internal heating incorporated from equation (31) written as

2 2 2
L0 A0 0Dy ppegeee - TADE
dt K df K Dt

0 (s1)

where C=1—i
H

_ (pgay™*

B'Jk
For typical values we may take A~ 10 cm/yr, H ~ 10* m, K~ 10"2cm?sec™,
D

j)"?: 10 cm/yr, pH® =~ 50, 8, @ —30°C, A ~1°C/100 m. Using these values, we

find that at the surface the first and third terms are negligible, while the other two
arc each about 30°C in magnitude. Near the base the third term reaches = 50°C
and becomes dominant, but elsewhere may be neglected.

Hence, we see that the term in the accumulation at the surface is of similar
magnitude as the surface warming but of opposite sign for negative surface gra-
dients (typical of high warming rates) and hence diminishes the effect of the
warming. As the depth increases the vertical velocity decreases but so does the
effective remaining thickness. Hence, we may establish, as an approximate criterion
for steady-state, profiles with accumulation, analogous to inequality (89) for no
accumulation.

and

ADE _ Ad6 _ 24«
kDt wxdz H?

(92)
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EFFECT OF CLIMATIC TEMPERATURE CHANGES 410

For a balanced-state ice cap,DE ~ V.

Dt

From equation (58) we can expect that the temperature gradient at the surface
is given approximately by

49 _ Vi
dz A
Hernce, the above inequality becomes
Aoy AuVi 12 (93)
i xk A H?

This brings the left-hand side to zero.

Therefore we conclude that, for accumulation rates high enough for an ice mass
to be close to balance (within 10% ), we may expect that the effect of the warming
at the surface is sufficiently compensated by the accumulation rate so as to make
the net warming of the ice mass low enough to remain in stcady state as it flows
outwards towards the coast.

4.10. PENETRATION OF TEMPERATURE VARIATIONS AT THE SURFACE INTO AN
ACCUMULATING MEDIUM

For the long periods of time involved in setting up steady-state temperature
profiles in ice masses we wish to know how long-term changes in the temperature
at the surface affect the temperatures within the ice mass. The reaction of the
temperatures inside an accumulating snow-cover to temperature variations at the
surface has been treated by Benfleld (1949, 1951, 1953). A similar study for
pertedic annual sine-wave temperature variations was made by Budd {1966). This
latter can be extended in principle to much longer periods and by harmonic analysis
be extended to cover other forms of temperature variation at the surface.

For the case of zero accumulation rate, a temperature wave at the surface of
amplitude A, and frequency w, defined by

8, = Ay cos of,
generates a lemperature wave at depth z given by

0, = Age” " o5 (ot + Jooj2x 2) (94)
where x is the diffusivity of the ice.

It was shown (Budd 1966) that, for an accumulating medium, i.e., moving
downwards from the surface at a coanstant velocity u, the amplitude A4, of the
corresponding temperature wave at depth z was related to the amplitude at the
surface by

u 1 _:Z)T ot u? i
= ] e Bl bt 9
4: = Ao exp [215 NG I:\/(.-’-hcz; + K’ * 4x? ©9)

The phase lag at depth z is given by
ot
J (96)

]]b:ZL_I: (r£)2+g2_£
: V2LV \ax? .
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4.10 TEMPERATURE PROFILES IN ICE MASSES

The speed of downward travel of the temperature wave for zero accumulation is
given by

dz e
i \/ 2K
4

where p = 2n/w is the period of the wave.

From equation {95) we note that for high accumulation rates or low frequency
temperature changes, i.e., ¥ >\/2x®, the amplitude of the wave passes through
the medium undiminished, its speed of travel being equal to the vertical velocity
of the ice. For low accumulation rates or high frequency changes v <€+/2«w, the
wave is dissipated as usual for a medium with zero accumulation rate.

Table 4.14 shows the orders of magnitudes of accumulation rates and wave
periods for equivalent diffusion velocity.

Table 4.15 shows the effects of penetration of temperature waves with periods
from 1 to 10% years for zero accumulation (or accumulation rates significantly less
than the penetration velocity).

TABLE 4.14
ACCUMULATION RATES AND DIFFUSION VELOCITIES
Accumulation Ice thickness Period with Time for Distance
rate diffusion surface travelled
velocity A4 ice to in 4
reach 90% period
Hﬁ __ Lémx yrs of depth
A cm yrt Hm A P= 4z oo YIS zp
1 4,000 400,000 4,600,000 920,000 11,500
5 3,000 60,000 183,000 138,000 2,380
10 2,000 20,000 46,000 46,000 1,150
50 1,000 2,000 1,800 4,600 238
100 500 200 460 460 115
TABLE 4.15
PENETRATION OF TEMPERATURE WAVES TN ICE CAPS WITHOUT ACCUMULATION
Pentration Depth Depth for Depth for Time taken
Period velocity pentrated 1/10 ampli- % period to reach
per perioed tude of phase lag 1/10
surface amplitude
2 kp o {10
— = [ —drl0 . =
P—;’—- = V2wk Zp = up G '\/'rr’ e = Vumsp 27 P
yrs m yrl m m m yis
108 0-020 20,000 7,000 10,000 360,000
10% 3065 6,500 2,300 3,000 36,000
104 0-200 2,000 730 1,000 3,600
108 0-650 650 230 300 360
102 2-000 200 73 100 36
10 6-50¢ 65 23 30 360
1 20-000 20 7-3 10 0-36
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EFFECT OF CLIMATIC TEMPERATURE CHANGES 4.10

The parameters listed are the penetration velocity, the depth penetrated over a
time Iength of one period, the depth at which the amplitude is reduced to 10%
of its value at the surface, the depth corresponding to a phase lag of ¥ a period,
and the time taken to reach the depth at which the amplitude is reduced to 1/10.
For the waves of shorter period, i.e. p < 10% years, the accumulation rate is generally
negligible and so this table gives an accurate prediction of their depths of pene-
tration. These short period waves die out very quickly in the top few hundred
metres and so cannot affect the temperatures in the deep layers of the ice caps.
Only the very long waves penetrate into the deep layers. Table 4.16 shows times
taken to reach various depths from 100 to 4,000 m and the amplitude decrease
of the waves of various periods in absence of accumulation. Even the longest waves
{10% years) are substantially damped out by the 4,000 m depth and are cnly
slightly greater at 3,000 m. However, for these long waves, the effect of the
accumulation is the dominating feature.

The time taken for the ice deposited at the surface to reach the height z above
the surface for an ice mass in balance is given by

dz _ _ 4,2 (98)
dt H

where H is the ice thickness

and A is the accumulation rate at the surface.

The average velocity through the ice mass is 4/2.

Integrating equation (98) we obtain

z _ ,—AlH«
— =y 99
P (99)
or
g2 1 (100)
A z

In particular, the time taken to reach 90% of the depth below the surface is
H
fog =~ — 2-3.
990 A

The time taken to reach this depth for various ice thicknesses and accumulation
rates is shown in Table 4.17,

In effect, for accumulation rates of 10 g cm™yr™* or greater, temperature varia-
tions of periods of 50,000 years or more are carried to the base of ice by the
internal convection of the ice. Over this period, with a horizontal velocity of between
1 and 5 m yr?, the ice would have moved along between 50 and 250 km. For
lower accumulation rates we may conclude that ice masses 3,000-4,000 m thick are
virtually unaffected in their lower layers by temperature fluctuations of periods
less than 100,000 years.

The warming of the ice at its upper surface as it flows outwards to the coast
may be considered as a very long period variation and, hence, where the accumu-
lation rates are high emough, the increased warming passes relatively quickly
through the ice mass, and the temperature profile will tend to stay the “steady-
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EFFECT OF CLIMATIC TEMPERATURE CHANGES 4.10

TABLE 4.17

H, 7

A Z

Time ¢ years taken for surface snow to reach various depths z m, for various accumulation
rates A ¢cm/yr, and jce thickness Z m

f—

Z =4,000m
z 100 500 2,000 3,600 3,960
A
1 10,100 53,200 277,000 620,000 1,840,000
5 2.020 10,610 55,400 192,000 364,000
10 1,010 5,320 27,700 92,000 184,000
20 506 2,660 13,800 46,000 92,000
Z=2000m
z 100 500 1,000 1,800 1,980
A
5 2.060 11,500 27,700 92,000 184,000
10 1,030 5,760 13,800 46,000 92,000
20 514 2,880 6,920 23,000 46,000
50 206 1,150 2,770 9,201 18,400
Z = 1,000 m
z 100 500 900 990
A
10 1,040 6,920 23,000 46,000
20 520 3,460 11,500 23,000
50 208 1,380 4,600 9,200
100 104 692 2,300 4,600

state” asymptotic profile—with perhaps a slight phase lag at the base. This
phase lag at the base would imply that the basal temperature corresponded to
that for steady state of the ice several tens of km upstream—depending on the
horizontal velocity. It must be kept in mind, also, that over such long periods
the ice cap shape and size could change greatly due to only a stight imbalance in
the net budget. Over 50,000 years a net imbalance between 1 and 5 ecm yrt
would result in an ice thickness change of 500 to 2,500 m. This surface rising
or lowering may then be the controlling element for the temperature changes at
the surface.

Apgain, it 1s emphasized that the problem for non-steady state temperature
gradients is very complex because we have to incorporate the change in the
boundary conditions with time, as well as their present values. Hence, a general
solution cannot be given for the temperature profile in an ice mass for a specified
ice thickness, accumulation rate, velocity, surface and basal slopes, strain rates,
etc., 1.e., a solution of the form

92 =f(H3 A’ If’a’ IB’ é.\" v ') (10])
because the solution will also involve the rates of change of these variables with
time over the period of time taken for the ice to move to its present position. In

other words, the temperature profile is also a function of the terms %’ dez’ %};’
do. de, . . . . .. .
—cT(:, ;’r’ . . . which will generally vary with both time and position. This means
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4.11 TEMPERATURE PROFILES IN ICE MASSES

that. to interpret a measured temperature profile, at a certain position, firstly all
the relevant movement, accumulation, etc., data must be obtained up and down
stream along the flow line. Then, if the the flow rate is sufficiently low and the ice
thickness sufficiently small for steady state to be maintained, the profiles can be
interpreted by the theory outlined here. On the other hand, if the ice mass is not
in steady state the numerical method of Jenssen and Radok (1963) may be used
to follow a column along the flow line, integrating the heat conduction equation
and incorporating the actual boundary conditions, over a long enough time for
the ice cap to reach its temperature distribution from some assumed value, If the
time intervals are not too long, perturbation techniques applied to the steady-state
profile may be appropriate.

On the experimental side, the emphasis should be on obtaining temperature
profiles at a large number of key positions, especially along a flow line, where all
the other relevant data are available. Other key positions include the tops of domes
and ice divides, where the horizontal movement is negligible and climatic variations
can be most easily discerned. The importance of the basal flux, in expressions for
the temperature profile, makes it essential for the temperature gradient near the
base, and preferably right into the bedrock, to be known at a number of places,
to ascertain how the geothermat flux varies from place to place. In conjunction with
the deep drilling programmes, accurate inclinometer measurements may be made to
reveal the velocity distribution in the vertical. This is tmportant for the calculation
of the internal heat produced by viscous friction, and its effect on the temperature
profiles.

Since a large amount of data on temperature and velocity with depth in the
ice masses is required, new techniques such as the Philberth meltsonde probe
(Philberth 1967), may be very useful in supplementing the data provided by the
deep drill holes.

4.11. CONCLUSIONS

Having found in Section 2 that the flow law of ice is highly temperature-
dependent, it becomes necessary to know how the temperatures vary throughout
the body of an ice mass in order to calculate the velocity distribution. In this
section it was first shown how the vertical temperature profile affected the velocity—
depth profile, and it was found that the typical temperature profiles tended to
enhance the concentration of the shear in the basal layers.

Secondly, it was found that the high shear in the basal layer produces heat from
viscons [riction which substantially affects the temperature profile. This process
has high positive feedback which can cause a rapid rise in the basal temperatures
as the velocity is increased.

Two factors, sometimes an order of magnitude greater in their effect on the
temperature profile than the internal friction (except in the basal layer), are the
accumulation rate and the rate of surface warming as the ice flows out to the coast.
The temperature conduction equation has been solved, taking these effects into
account, and as a result steady-state temperature profiles have been calculated for
various ice masses.
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This study of “steady-state” temperature profiles has been extended to the case
of rising or sinking ice masses. As a result of this it is found that the temperature
gradient near the surface can throw light on the state of balance of an ice mass or
the recent climatic changes. In particular, the temperature gradients measured in
inland East Antarctica are consistent with a positive balance and a rising ice cap
surface in that region, provided that climatic change over the period is negligible.

We next found, by an examination of the conditions required for steady-state
temperatures, that we may expect the temperatures in the large ice masses to be
close to the calculated steady-state profiles—except for the case of a rapidly sinking
ice mass. A criterton has been established to determine whether the temperatures
may be expected to approach steady state.

Finally, an examination of the penetration of temperature variations at the
surface into ice masses has revealed that short-period fluctuations (less than 103
years die out within the top few hundred metres. Long-term variations travel through
the ice mass at the rate of the ice itself, but still do not reach the base except for
high accumulation rates (greater than 20 em/yr) and for periods comparable to
the turnover time of the ice mass. As a consequence, we may expect climatic
changes over recent times to aflect only the regions of thin ice of the Jarge ice
masses or those regions with high accumulation rates and high turnover rates.
Thus the steady-state temperature profiles may still be expected to be close approxi-
mations to the actual temperature profiles. Hence, for interpreting the measured
longitudinal velocities at the surface of ice masses in the following sections, we
shall incorporate the effects of the steady-state temperature profiles developed here,
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5.1 LONGITUDINAL VELOCITY PROFILES

5. LONGITUDINAL VELOCITY PROFILES IN ICE MASSES

So far, we have been concerned with how the velocity profile in a moving ice
mass varies transversely to the direction of motion (horizontally and vertically)
and how the flow varies with temperature and stress. We shall now study how the
velocity varies along the line of motion. In practice we find that the longitudinal
velocity depends on all these parameters (width, depth, transverse strain rate, cross-
section shape, temperature, etc.), but in general these only vary slowly along the
line of motion, and so their higher derivatives with respect to distance (x) along
the ice mass can, in many cases, be neglected.

We will hence proceed firstly with a simple two-dimensional model (zero trans-
verse strain), with slowly varying thickness, and then later study the effects of
varying transverse strain, temperature, shape factors and different forms of the
boundary conditions,

5.1. TWO-DIMENSIONAL FLOW

We consider a vertical section through an ice mass along a flow line where
there are no transverse strain rates—typical of, say, the central flow line of a very
wide glacier (compared to its thickness), with parallel sides, or of a flow line
in an ice cap where horizontal divergence is negligible. We wish to determine the
longitudinal profile of velocity and strain rate from the dimensions of the ice mass
and the flow law of ice. The following approach is similar to that of Shoumsky
(1961, 1963}, but with several major modifications and with particular emphasis
on the application to the study of measurements made on the ice masses.

An outline of this present work, showing the effect of longitudinal stresses on
the strain rates was presented at the ITUGG TASH Berne Symposium, September
1967 (Budd, 1968). Other writers, e.g., Lliboutry (1965), Shoumsky (1967),
Robin (1967) have also shown the importance of the longitudinal stresses in the
ice motion. Collins (1968) has derived a similar result to investigate the conditions
under which Robin’s approximate equation for longitudinal strain rate applies.
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TWO-DIMENSIONAL FLOW 5.1

Nye (to be published) shows that, by choosing the longitudinal axis parallet to
the surface, the exact equation for longitudinal stress gradient is simplified.

Here the original approximate presentation {Budd 1968} is followed. This is
accurate for ice masses with small slopes. A precise derivation of the basic equation,
with arbitrary axes orientation, which holds for slopes of any magnitude is pre-
sented in Appendix I. A major result of this generalized study is that, for small
surface and bed slopes, the basic equation for the longitudinal strain-rate gradient
is the same for the longitudinal axis taken horizontal, or parallel to the surface, or
parallel to the bed.

Here we take orthogonal axes, x parallel to the average bed and in the direction
of motion, and z downwards, from the surface.

The following symbols are introduced:

ao—surface slope, at position x,
fi—basal slope, at position x,
Z—ice thickness, at position x,
p—ice density (assumed constant),
g—egravitational acceleration,
Ty—the basal shear stress,
{oy, s o,)—the stress components, and
(£q, Egay €, )—1he strain rate components.
From the results of Section 2 we have the following empirical relation for the
flow law of randomly orientated polycrystalline ice:
4 n—1
by =+ 0 g (1)
. A 30
where g 4 is the strain rate tensor,

o’;; is the stress deviator tensor,
Ty is the octahedral shear stress defined by

1o = [Ho? + 63 + o)]* )
where o'y, o/», &’y are the principal stress deviators.
Ayg=4d, " 45,5 x 10" dynescm™? sec™? )
Ay =A% Ay =3 x 10° dynes em™? sec’/?-*

no~35,
where ¢ is the ice temperature in °C,
~ L1
and ko~ 2CT0
The flow law can be expressed in terms of the “effective shear stress”
Te — \/37/2 To
just by taking the appropriate value of A.. This being understood, we leave T unsub-
scripted. We note that over a limited range of stress we can represent the flow law by

é-=T o 4

i g i

where the n» and B values are chosen to match the curve of Fig. 2.2 over the ap-
propriate range. This is the form af the flow law which we shall generally adopt
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5.1 LONGITUDINAL VELOCITY PROFILES

in this section, although it may be convienient on occasions to refer to a generalized
flow law simply as

" _ ’
&y = ijs

¥ g

=

where » (r, 8) is a “generalized viscosity function” dependent on both stress and

temperature defined by = I where T, and ¢ are the octahedral shear stress and
£

strain rate, at a particular temperature, determined empirically from stress-strain
rate curves, e.g., Fig. 2.2

We assume that the bedrock and surface slopes are sufficiently small so that
we may take

sinff ~tan f§ ~ § and cos f~ 1

sin o == tano =~ o cos =~ 1.
The equations of motion can then be written as
do, o1,
Zx 4 2 4 pgh = 0 ©
dx 0z
a ot
_0'{+ .}.‘x+pg =0 ()
oz Ox
We integrate these equations with respect to z to obtain approximately
oF ,
—E = —pglf + 1, (N
dx
ol J‘ T, dz
— 0
g, = —pgz — — —— (8
dx

where F, is the total longitudinal force over the section, and -, is taken positive
in the negative x direction,

We require as the basic quantity governing the longitudinal strain rate, the mean
longitudinal stress deviator o', = ¥ (o, — oz) (9)
where the bar denotes the average over the vertical section.

Now,
- F 1
0, = * = — = Z(p — fHrdx 10
Z ZJPQ‘ B-n (10)
{(where we write f for the basal friction coefficient defined by
T
f=-" (11)
pg
and
— l z
o, == | o,dz (12)
Z )y
zZ =z
1 1 6 J‘O J‘O T dz dz
= —-pgZ — 200 %08 FF 13
S92~ 5 PN (13)
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TWO-DIMENSIONAL FLOW 5.1

We now obtain

oZa! 1 iz o], a dz:|
= == ZB~-f) — pgZ — — ——— = ——— (14}
= z[pg B~ —pg ™ P
We note that
_Z_ (15)
ox
and hence equation (14) becomes
— ~Z
) o) - Lu} ©
ox 2 Ox
If we consider a flow law of the type
. Tn—l
£, = T, 17
= (7
where
T = ‘%,’\'/(O-x - 02)2 + 41:?:2 (1 8)

we note that with a linear flow law (n = 1) the longitudinal strain rate is directly
related to the longitudinal stress deviator independent of the vertical shear stress
.- When a higher power operates, however, the vertical shear becoines important.

We write the flow [aw as

oy = Ball(1 + 53y (19)
where
27
= Xz 20
i ((J'x - (J':) ( )

and we see that the effect of vertical shear ., is negligible when it is significantly

sialler than E"ﬂ-;-i’f, or when n ~ 1. It will be found in Section 6.3 that indeed,

for the longitudinal strain rates measured in the Wilkes ice cap, n = 1 in this
context.
More recent work, however, by Carter (in preparation), involving higher

stresses, makes it necessary to consider the effect of the vertical shear stresses. The
procedure for doing this is outlined in Appendix IT. The net result of this procedure
simply indicates that a different interpretation is required for the flow parameter
B.. Here the following discussion is restricted to small stresses, and the generalization
to areas of appreciable vertical shear may be readily carricd out by a re-interpreta-
tion of B;.

Hence, we make the assumption that, vertically averaged, the flow law can be

written
6 = (2&) (21)
B,

where ¢, is the longitudinal strain rate at the surface and B, is the simple linear
average of B over the section, and the error given by the integral of equation (19).
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5.1 LONGITUDINAL VELOCITY PROFILES

Equation (16) now becomes

p LU 1 a? dzd

aZBlsx = — = [ng(a — f) — #]
dx 2 dx

The term on the right-hand side containing r., was considered by Shoumsky (1961)

to be negligible.

(22)

fesd

. OTze . R . Lo .
For laminar flow Gy 1 zero and, in general, it depends on the variations in

vertical velocity along the flow line. Hence, we estimate its importance with regard
to flow over undulations. If the surface traction is zero the shear stress t,, at the

surface, T, say, is related to the longitudinal stress deviator and surface slope «, by

T = Jf(gx - Jx)s fan 21.9 R~ (Gx - az)a.\:'
Now, if the longitudinal strain rate does not vary greatly with depth through the
ice mass, except in the basal layer, we may make the following assumption for
the variation of shear stress with depth

Tor = pglloy, — %) + pgz(2a — ) (23)
Here the shear stress r., has the value pg(a; — @)Z at the surface, where a,,
@ are the local and regional surface slopes, and varies linearly with depth to the
value m, = pgaZ at the base, which we assume constant with x.*
Using equation (23) we find

VAN
a* Jo J.o t,,dzdz _ pg &*aZ?
ox* T3 ax? 24)
We now examine how the this term affects the variation in strain, first in surface
undulations over comparatively short distances x where Z can be considered
constant, and secondly on the large scale when the general curvature of the ice cap
is taken into account.
{i) Local ice cap undulations
Consider a short section of the ice cap with small fluctuations of wave-length
A, In surface clevation, compared with the ice thickness Z. We can write for the
surface elevation H

_ 2n
H=H0+cxx+ACOSTx (wx, A < Z) (25)
The surface slope may then be written
_ 2n . 2
¢=a— —Asin—x (26)
A A
and
2 2 2
N Y @7)
X A
# Other assumptions besides ., = pg {0, — @© Z + pgz (2a — a,)
such as (i) 1,, = pg (0, — )z
or (il t,, = pg o, —w Z
211
lead to similar results, but with, instead of the factor p, = ﬁ in equation 29, the faclor is
_ 2m _In el
Py = v or pg = V3 respectively.
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Using (24) and assuming Z, B remain constant over the section, equation (22)
can then be written approximately

del/n pg Z* 8%a
Pl 22 (28)
x 2B =1 3 ax?
g 2 Z)?' -
= -= -+ 1= -
Y [(ﬂﬁ h ( 732 (o — a) 29
N
Since—zf;z 3.63 we find that for short surface wavelengths (1 ~3.6Z or less)

V3
the second term (d%a/dx%) becomes important. If f~ @ (as inferred from the

Wilkes data, cf. Section 6) we see that the effect of the second derivative of slope
for short undulations is to amplify the relative maximum extension on the crests
of the waves and the comparative compression in the troughs.

(2) Large scale ice cap curvature

In order to estimate the magnitude of the second term on the right of equation
(22), on the larger scale, if we put for an ideal case a =§ in equation (22),
integrate and divide by 2B to obtain from (24)
él,"n _ % ]; aazél

Y 6BZ dx
By considering ice cap shapes of the form Z =x" with m=1, %, 4 . . . it can
be shown that, although strain rates and velocities deduced from this relation
are compatible with the velocities calculated in Section 6, from the assumption
that the basal shear stress is proportional to the large scale surafce slope of the
ice cap, the magnitudes are quite small. We shall examine the terms of equation
(30) later in this section for various hypothetical ice caps, after finding a re-
lation for the large scale velocity. Here it suffices to state that, on the scale of
about 10 to 20 times the ice thickness this term may be neglected, but for short
undulations A ~ 3-62Z it becomes important and this is discussed with reference to
ice flow over undulations in Section 5.4,

Hence for the present, we write the basic equation for longitudinal strain rate as

“1/n
e AR (31)

dx 2

Equation (31) suggests that fluctuations in slope over short distances, where Z,
f and B can be considered constant, give rise to corresponding fluctuations in

longitudinal strain rate according to

desim 1
¥ = - = o — 31a
ax ng( D (31a)

This immediately suggests a maeans of determining f, i.e., by measuring the smail-
scale variations of surface strains and slope along the ice mass, If the net strain
rate over long distances is very small or relatively constant or, more precisely
from equation (31), if

(30)

B

dZB et
Ox

0
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5.1 LONGITUDINAL VELOCITY PROFILES

we find f = % This means that, over larger distances, with smoothed values, the
formula for basal stress, Nye (1952},

T, = pgla (32)
is a reasonable approximation. The actual distance over which the smoothing is
taken is discussed in Section 5.4.3,

From equation (31) we can determine the values of n and B by comparing
the stress variations resulting from the slope changes with the resultant strain rate
variations, i.e., from the equation

gy" = — %J(a — @) dx (33)

where the integral is taken over a half wave. The use of this equation is elaborated
in Section 6.

We next consider the longitudinal velocity profile which, on the larger scale,
is determined by the general ice cap curvature rather than the minor fluctuations
in slope. To do this we first see how the velocity at the surface is related to the
basal shear stress. Nye (1957, 1959) has shown that the presence of a small
longitudinal strain rate does not significantly affect the velocity—depth profile.

We can express f = —E'—’é in terms of the velocity at the surface. Taking 7,, = pg@z
rg
and a flow law

i, = 1dv, _ (’fﬁ) (34)
2 dz B
we deduce
z 'z pg&z n
V.| =2 (w— dz (35
0 A :
or
V.-V, = ApgD" ey (36)
(n + 1)B5

where V,, V, are the velocities at the surface and base respectively and B- is the
weighted integrated average dependent on the temperature distribution and defined

by
— n+1{z1 . -1/n
Bz = [ ZnJrT J\O B—" zZ dz} (37)

B, is, in effect, the average value of B in the basal layers. With isothermal
conditions, 94% of the value of the integral for B is determined by the lower
half of the ice mass. Moreover, the typical positive temperature gradient
( ~2-4°C/100 m) near the base gives smaller values of B which enhances this
so that B: is effectively determined by the temperature in the lowest 10-20%
of the ice. Hence, the subscript 2 will be adopted for these B and n values to
distinguish them from those of equation {31) which apply to an average through
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TWO-DIMENSIONAL FLOW 5.1

the column. From equations (36) and (23) we can write for the basal stress

o + 1 1/hy
7y = Bz[“zzz v, — V,,)] (38)

For a cold ice mass (basal temperature well below zero) we may expect

V', == 0. Hence, equation (22} can be written using (38) and (11) as
_ ZB.&" = lnga - {Bz (nz +1 V,.)lm _ pg oz’
&x 2 2 2Z 6 ax*

This is now a second-order differential equation in velocity and the flow law
parameters and the boundary dimensions of the ice mass (viz., ice thick-
ness and surface slope). If we knew the flow parameters precisely, we could
use this equation to calculate the velocity and strain rate along the ice mass,
provided boundary values of velocity and strain rate are known at an end-point.
On the other hand, if the strain rates and velocities can be measured, along with
the ice mass thickness and elevaticn profiles, then the effective flow parameters
can be calculated.

We note that, since the power flow Jaw only holds over a small range of stress,
the » and B values on the left-hand-side and right-hand-side may be quite difterent,
since they refer to quite different regions of the ice mass with different stresses and
temperatures. The values on the left are associated with the longitudinal sirain
right through the ice mass, while those on the right refer to the high shear in
the basal layers. In the particular cases, where either

(39)

~ An 2,3 “i/n 2,3
0ZBs," _ 0 and ol —0, or JZBe; _ _rg o“aZ
ox ox? dx 6 ox?
we have the result f — « which leads to the following relation for longitudinal
velocity

r__ 2 (’Lg Ez) : (40)
Z ny,+ 1B,

This relation is equivalent to the result deduced by Haefeli [1961 equation (12)]
for constant B and used by him to determine the velocity along a flow line in
Greenland.

We may expect this formula for velocity in terms of the ice thickness, surface
slope and the flow law parameters to hold for smoothed values on the large scale,
provided the mean longitudinal strain rate is small, as distinct from the small-scale
fluctuations in slope, and strain rates described by equation (33). Smce the para-
meter B is dependent on temperature it is necessary to know also the temperature
distribution through the ice mass.

We now examine the variation with the large scale ice-cap curvature of the
term

2 " 2,73
a—z.u"rﬂ dz dz = pg 9l .
dx 6
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5.1 LONGITUDINAL VELOCITY PROFILES

Consider an ice cap profile represented by Z o« x™ (41), where Z is the ice
thickness at distance x inland from the edge., Note that x here is taken in the
reverse direction to the previous.

If we assume the bedrock is horizontal we have

dz
[r —

- x xm—l.
dx
Then equation (30) gives us for the strain rate
4m—1
i X7 (42)
dx

provided B is constant.
On the other hand, if equation (40) holds, we have

Voo gmzmt!
o xn;(m—1)+m(ng+1)

g éx o errzm-n1+m—1 (43)

Equating these expressions for strain rate, we must have the same exponents,

1e.,

nmGBm—-2)=m2n, + 1) — n, — | (44)
or

M=+l (45)
2ny, =3, +1

Forn, =1 m =% foralln,
Forn; =2and#n, =3 m=20

3.5 +

| %
Also,ifny, = © m— %

The parabola Z = x* was found by Nye (1952) to be equivalent to the relation
T, = pgaZ for a plastic solid. This form is also approached for high values of ..
Mauny existing ice caps (cf. Section 7) approach this in shape. For the higher
values of 1/m calculated above, we see that slightly different values of m and ne
are required to maintain compatibility between the relations

1620:23
2 8x*

Actual values of these parameters will be discussed in Section 6.
Although variations in bedroek slope and the parameter B require modification
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THREE-DIMENSIONAL FLOW 5.2

cation of these general considerations, it appears that the presence of the term

<

aix?ffrﬂdzdz in equation (22) does not conflict with the use of the longitudinal

velocity and strain rate equations (40) and (33), for determining the flow para-
meters. This will be found to be the case in Section 6.

The results of this two-dimensional analysis are applicable to ice sheets where
transverse strain rates are negligible. An extension to certain simple three-
dimensional models will now be carried out in Section 5.2 to cover the cases
of glaciers, where transverse shear is important, by considering averages over the
cross-section and appropriate shape factors {cf. Nye 1965). Transverse extension
and compression will be discussed in Section 5.3.

5.2. THREE DIMENSIONS

The analogous equations of motion for a ice mass moving slowly down a slope
under its own weight for three dimensions to equations 5.1 (4) and (5) are

do, 0T, | 01,

+ g T 1
PRI o pgp ¢y
do ot 01,y
E o D EE T 2
oz ox ay pl @
doy | 0% | 0T _ (3)

— + +
dy’  dx Jz
{1*} We now assume that the echanges in cross-section shape and width of the
ice mass along the line of flow are sufficiently small to be neglected. Then the
main changes in the ice mass along the line of flow are just in the thickness Z
and the surface slope a.
Since the channel is non-diverging, we have no wvelocity components perpen-
dicular to the flow lines, and therefore

and
Tpx 5V,
where s is a shape factor which is constant across the section for the special
shapes of
(1) semi-circular cross-section,
(2) infinitely wide cross-section,

(3) infinitely deep cross-section,
but is generally a function of y and z. Here we shall assume s 1s independent of x.

Hence,
e g
dx
and from equation (3)
%% — g
dy

Equation (2) reduces to the equivalent equation of two dimensions, 5.1 (6).
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We integrate equation (1)} over the cross-section area to obtain

8F, _
= —pgAp + p1, (4
ox

where F, is the total force over the cross-section in the line of flow, p is the length
of the boundary perimeter and T, is the mean shear stress around the boundary

defined by

(r [z

%b=1J Jy(%u%)dzdy (5)
plodo Ydy oz

Integrating (2) over the cross-section and using assumption (1*} we obtain

~ 1 [r[zxm
g, = — g,(z)dz dy
A 040

Y rZowy (=
=—BEIYJZ(y]zdzdy—LaIOIO J;Oszdzdzd}'
A 0 A 0x

(6)

Q
(2*) We assume to a first approximation here that, similarly to equation 5.1 {23),

Tyz = Sngz(as - @ + Sngz(za - a:) (7)
where §» is a second shape tfactor constant over the cross-section.

It was shown in Section 3 that, although this approximation generally only holds
near the centre line, it is close for rectangular cross-sections and also ice masses wide
compared to their depth. For other cross-sections it is necessary to consider varia-

tion in s, across the glacier. We also consider only the case for a constant over
the cross-section.

Equation (6) now may be written
_ 1 =
g, = —-—pgl — == - (8)

where the bar denotes the mean value over the section, i.e.,

s IJYJ‘ZtyJ v d
L= zdz dy,
A Qv Q y

and
72
Sy =8, 2.
ZZ
The mean longitudinal stress is given by
. F,
g, =
A
which from (4) becomes
— 1= - .
O, = ——J paAB — f)dx (9)
Ao
where we define the friction coefficient § by
F_ P T
f==—= (10)
A pg
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We now find for the mean stress deviator from (8) and (9)

-, 11 = pg(= - 5309 faAZ> (11)
.= — | =pgZ — = | Af — fHdx — 25 ——
:z[:z Pae Ty L G =N 24 ox
Hence
éAo, tff1 04z . Sypg D*aAZ?
05 = Y g2 — pgd(p - ) = BEE 12
. 2[2 pg—— —rg (B =1 R (12)
Adopting a flow law of the form
R ’c—}_ (AW
g == 13
) @

analogous to our case for two dimensions, where ¢ is the strain rate on the centre-

line and o', and B are averages over the section, and defining ¥ by A =Y Z (14)
equation (12) becomes

dABel" it —oz? -5 o Sapg o EaZ? .
S e S 7 B G iy i 15
o 2{2 pgY =" — ¢ B -1 ) 2 (15)
or for constant ¥
8ZBel/" 1 ~(82 —) s40g 9222’
el S Z1ZZ + 5 — — 37 16
ox 2[,) GG TIT) =7 e (16)

Finally, with ?—Z = o — f and assuming the last term on the right negligible under
ox

similar conditions to those discussed for two dimensions, we may write

AZBel!" 1 = -

P = — g7 - ) a7
ox 2

which is analogous to the result for two dimensions, with some of the parameters

having more generalized meanings in terms of averages over the section. Similarly,

we can express f in terms of the average velocity or the velocity of the centre-line,
using approximate shape factors—as calculated for particular cross-sections by Nye
(1965 ). These results then allow the results for two dimensions of section (3) to be
extended to ice masses bounded at their sides—such as typical pglaciers or ice
shelves—provided the transverse extension or compression is negligible. The effect
of such diverging or converging flow on the longitudinal strain rate and velocity
profile will now be examined.

5.3. EFFECT OF TRANSVERSE STRAIN g, ON THE LONGITUDINAL VELOCITY
PROFILE

Weertman (1957 appendix), considered a special case of three-dimensional
strain in an ice shelf. For the two-dimensicnal case, ie., with zero lateral
strain &, = 0;

‘ér = - éz}
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Weertman obtained
éx = (2A)_”|Jx - 0-;.'"_1(0-:: - Uz) (1)

whereas, for the case of an ice shelf expanding equally in all (horizontal) direc-
tions (three dimensions), he obtained

. . 1, _ g, — a "_L(G'—O')
gy = E,= — —p = n X — T X 2 2
X ¥ 25- \’/3 3 ()
We note that
s=a s (G
Ex === (3)
NEAWE
and, since
5 ()
— =] =1 forrn ~ 4,
J3\/3

we obtain the interesting result that the longitudinal strain rate for a given stress
deviator is decreased with the presence of an equal lateral expansion for
fow values of n (< 4), but for high values of n it would be increased.

We shall now consider the effect on the longitudinal strain rate (g,) of an
arbitrary transverse strain rate g,.

We adopt a flow law of the form

g, = Ao,
where o, = o, — 10 (4

where oy =0,+ 0, + 0,
and A=At (6)
and 2t = ¢ + 0;2 + o (7

where « is the “effective shear stress” (equal to v/ 3/2 times the octahedral shear
stress, A4, and n are parameters of the power law for flow.

Now, we require the longitudinal strain rate ¢, in terms of the longitudinal terms
of the longitudinal and vertical stresses oy, o, and the transverse strain rate g,. From
(4) and (5) we obtain

é.r = A[O-x - %(0-:: + O-y + az)]

- g [26, — 0, — 0,] )
We obtain o, from
i, = Ao ©)
_ % [20, — o, — 0,] (10)
0= 2+ Lo+ o) (11)
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Substituting this in equation {8) above, we obtain

or a=§ﬁa—ag—5} (12)

Next, to obtain A from (6) we first require + from (7) for which we require the
stress deviators.
From (4) and (12) we seec

1 £,
v =—(o, —0.) — - 13
o 2( ) Y (13)
similarly g, = l(.:7 -0, — fl {14
i o 22
/ éy
and o= (15)

Hence from (7) we obtain

22 = %[(crx — o)+ (?) 2] + (;2)2 (16)

Now, let us write the lateral strain rate as a certain fraction {y\, say) of the stress
difference (9; — 9,), ie.,

?=m~@y (17)
Then from equation (12)
a=ga—@w—w (18)

and from equation {16)

2‘(2 = %[(Ux - 62)2(1' + ,},2)] + (o-x - 65)2?2
= (0, — oG + H?) (1%9)
or = (0, — o )& + HD* (20)

We now substitute this for r in equation (6) to obtain A which we can substitute
in (18) for the longitudinal strain rate to give
A_ﬂ

€ , (O — ol = G + FpHm e (21)

Sinee we wish to know the relation between the longitudinal strain rate ( g,) and
the stress difference (o, — 5,} tor a given transverse strain rate (g,), which is a
certain fraction (say, v} of the longitudinal strain rate, we write,

&, = VE, (22)
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then from (12) we obtain

1

R ()
By comparing this with equation (18) we see y and v are related by
(1—?)=1:¥'!201'?=2:_v0rv=1—-2_y—v (24)
Finally, then, from (24) and (21) we can write the strain rate as
tx = (24) (o, — 0, )¢ (25)
where ¢7h = (L =)L + 3D (26)

or 6 = (1 4 %)[1 + 3(2 . vﬂ(ﬂm @7

Hence, as analogous to equation (1) for two dimensions, where the lateral strain
rate is zero, we now have for a lateral strain rate, which is v times the longitudinal
strain rate,

($e.) = (24) (0, — 0" (28)

In other words, if atransverse straing, = vg, IS present, we can incorporate its
effect into the association of the longitudinal stress and strain simply by using
/7 M instead of g,/

Tables of ¢ and $*/* for various values of » and » are given below. These are
iltustrated in Figs. 5.1 and 5.2.

From the tables we can see that, for a flow law with n = 3 or 4, the presence of
a lateral strain rate which is a small fraction of the longitudinal strain rate makes
no appreciable difference. Even values of v = 1, -2, 4-3 only cause slight varia-
tions for large » values, For n == 1 or 2 the deviations become more significant.

When the lateral strain is of opposite sign, however, the deviations become very
important, In particular for » = —2, we find that the longitudinal stress difference
is zero. This may be easily seen from the continuity condition for an icompressible
medium:

E,+ & + & =20

and, if

then
&, = £,
ie., the longitudinal strain rate can exist even with ¢, —e; = 0.

This means that, for v = —2, the longitudinal motion is being dominated by
the lateral stress, which causes equal vertical and longitudinal strains simply to
conserve volume, For greater negative values of v (—3, —4 . . .) the longitudinal
mean stress difference is of opposite sign to the longitudinal strain rate.
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Finally, our general equation of motion for three dimensions may now be
written as
GZB(pe )" 1 = - pg 8*Z3
o 2.092(0! D+ ¢ (29)
and we can relate the Jongitudinal slope « to the longitudinal strain rate e and
include the effect of the transverse strain in ¢. An examination of the consequences
of this result for particular ice masses will be carried out in Section 6.

oo (o) {1ea(s)t)

] 3
n={
f_z..
5] n=2
n=3
—__—__.________P‘
| \\\—
T nv4
et /
=3 — ar - 0 4 2 a 4
n-ﬂ/ | V—-'
net |
|
L 9

FiG. 5.1. Transverse strain function g{»,n) where » = &,/2,, such that gé. = (24)"{s. —0.)"
is shown for different values of » and », in order W correcl lhe two-dimension Jongitudinal
strain rate {e:) results to three dimensions, where the {ransverse strain rate is £y
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PN L {us(z’,,)'}"":—?i’

| [
3
)
ak
2
__——"/ ne?
__—’-"—'-’-_/
n=J]
1
n: 4
-]
‘8
4
2
k)
J ‘ 4 2
-3 -2 -t of t z 3 #
LIX] Y —
1)~
A2 -
net
|
-4 |

FiG. 5.2. Since the longitudinal strain rate equations involve (pe:)l¥n, the values of ¢l/n

are shown against » and #. For positive values of » and high values of n there is litlle cffect

of the {ransverse strain on the longitudinal strain. For negative » values, the {ransverse strain
18 very important.

TaBLE 5.1,
v v \2) (=12
T I
n
v / 1 2 3 4
4 3-000 1-990 1290
3 2-500 1-740 1-200 0-830
2 2000 1-4%0 1-140 0870
1 1-490 1-300 1-120 0970
+ 1-250 1-180 1-110 1-060
+ 1-120 1-110 1100 1-060
; 1-000 1-000 1-000 1-000
—% 0-876 0-853 0-825 0-808
—% 0-751 0-655 0-565 0488
—1 0500 0:250 0-125 0063
-2 ¢ 0 0 0
—3 —0-500 —0-095 —0-018 —0-005
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TABLE 5.2.
Lfn 2y —(n—1})/2n
e 142} h 3(—«‘H ) .
¢ (I + 2) { + 2+
/ R
v 1 2 3 4
4 3-000 1-410 1-090 0-950
3 2-500 1-320 L-060 0.950
2 2-000 1-220 1-050 0-960
1 1-4%0 L-140 1-040 0-990
4 1-250 1-080 1-030 1-010
* 1-120 1-050 1-030 1-010
0 1-000 1-000 1-000 1-000
—% 0-876 0-924 0-934 0-930
—% 0-751 0-810 0-823 0-835
~1 0500 0-500 ¢ 500 0-500
—2 0 0 0 0
—3 —0- 500 —0-310 —0-260 —0-260

5.4 FLOW OF ICE OVER UNDULATIONS
5.4.1. Short wavelength undulations

Many examples have been reported of wave-like features on the surface of
cold ice caps by Bentley (1964), Robinson (1966), Budd (1966), Robin (1967)
and Mock (1967). The mechanics of waves on the surface of an ice mass have
been discussed by Weertman (1958), and Nye (1958, 1959). The general theory
of time-dependent waves is quite complex and will not be discussed here but,
so far, in the present work the effect of irregularities in the bedrock has not
been considered. This has been because the base slope # does not appear explicitly
in the final equations for longitudinal strain rate. However, the equations derived
for longitudinal velocity and strain rate can be used to study steady-state flow
over bedrock undulations.

Consider non-diverging flow (two-dimensional) of an ice cap down a small
sleady slope 8¢. In general, the bedrock is rough and irregular, but here we con-
sider the flow over an undulating base given by
(1*) B = Bo + B, cos wx (1
where B, is the regional slope, 8; is the slope amplitude and « is the frequency
of the undulations along the line of motion x. It may be expected that real bedrock
shapes can be approximated by sums of these forms of undulations with different
amplitudes and frequencies.

Only the simplest form of steady-state flow is treated first, but several generali-
zations can be readily carried out, some of which will be given later.

(2*) We assume that the average regional ice thickness varies insignificantly over
the undulations with the ice thickness gradient given by
Z—u-p @
dx
where a is the surface slope.
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(3*) It is assumed that the surface slope is given by

o = &g + o COS wx + & Sin wx (3
where o, is the constant regional slope,
and «a; and o, are constants to be determined.
(4*) It is assumed that the accumulation rate A is constant over the undulations.
(5%) We also assume that the variations in ice thickness Z, and the average
horizontal velocity through the ice thickness ¥, are small compared to the regional
values of thickness and velocity.
(6%) As a result of the last section for low strain rate, we take the sirain rate
gradient proportional to the surtace-slope deviations from the regional slope, i.e.,
from equation 5.1 (29) viz,

delin P4 (27: z) -
= e — ) + —a) |,
Ox 2B ( “ J34 )
For low longitudinal strain rates, the results of Section 6 (c¢f. Fig. 6.7} suggest

that we may take n = 1
de

or - = c{a — ap)1 + pH) (4
dx
where c= -2 g =L T (5)
2B J32 w
The continuity condition demands
vz _ ,
dx
v L7 4 ©®
dx dx
From equations (1), (2} and (3)
Z—Z = (ag — Bo) + (¢; — By) cos wx + o, sin wx ¢
X
From equations (3} and (4)
2
v _ el + p®)ea; cos wx + @, sin @x) (8)
dx?

. 2
ﬂ/= gy + M(al sin wx — a, cos wx) )]
@

dx
207

A

Substituting {9) and {7) in (6) we see that assumption (3%) is compatible with
(1*) and the steady-state continuity condition if

Vieg — fo) + Zep = A (10)

since p may be considered constant provided a <«

2
R e

=0 (11)
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Zeay(1 + p*)
w
Equation (10) is simply the continuity equation for the regional (smoothed)
values independent of the undulations. 'The remaining equations determine the
surface undulations in terms of the basal undulations and the other parameters:
ice thickness Z, velocity V, wavelength A, and the “viscosity” parameter B.

Ve, + 0 (12)

From (12) we obtain

2
= = 2L+ D) (13)
Vw
and from (11)
2
a =, + 20+ P, (14)
Vw
Substituting from (13) this becomes
@ = i — Py,
2
where = Zel + p7) (15
Vi
@ =P (16)
1+ 4
From this and (13) we find for a.
1+
o~ By for Wy F 1
Y
For ¢y > 1, (16) and (17) show that the surface undulations are out of phase

-
2
surface slope occurs over the highest point of the bedrock. This means that the
surface slopes are in phase with the bedrock elevations. It is obvious from (16) and
(17) that the surface waves are always smaller than the bedrock waves, ie.,
damped by the factor ¢, which we may call the “darmping factor™.

Expressing ¢ in full from (15) and (5)

2 2
v |l () (18)
VBin | Z 32
This function has a minimum for the wavelength

A.m = Tj (19)

~ 3637
This implies that bedrock undulations of wavelength about three to four times
the ice thickness tend to be less damped out than other wavelengths. Table (5.3)
below, however, shows that ¢ Is not a rapidly changing function of A, especially
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for larger values than A,. Shorter wavelengths appear to be rapidly damped out
but the longer waves only slightly more damped. This gives rise to scope for
harmonics, i.e., waves of 2A.,, 3X,, o1 41, may also prevail, particularly where they
are superimposed on the shorter waves.

TaBLE 5.3.

2
WAVELENGTH FACTOR ¥(A) = [Zl + (i) é }

vi/
Mz o ¥ 1 2 4 8 16 32
W) 53-3 26-9 14-2 86 7-3 9-7 [6-8 323
W)W (An) 7-31 3-69 1-95 1-18 1-002 133 2-30 4-32
W(Aa) WA 0-136 0270 0-513 0-846 0-998 0-750 0-445 0-232

From equations (17) and (18) it is apparent that increased iee thickness
causes greater damping of the undulations. For other effects held constant, there
is less damping for higher wvelocities and also higher “viscosity” parameters
B. It is possible to estimate B from the relative amplitudes of the bedrock and
surface undulations as follows:

2 2
panlofi ()2 e
B, Van | Z J3 A
An estimate of the order of magnitude of the damping may be obtained by recalling
from equation 5.1 (40)
Vo 2 () @n
Z n+ 138,
Forn =1
2
y o P9z
B
2
or gz _ 1
VB o(

If we denote by B, the value of B, of (21) converted to the units with » = 1 by
means of the general equation (cf. Budd 1966)

o) -

p9Z* _ B,
Vv o

then (21) may be writien

Hence, from (18)  becomes

B, (,1 (27{ )1 z
= S+i=) = 23
v aOch[ AWKV | =
Here a, is the regional slope and typical values range from 1073 to 107%. The value

of B in the denominator is the value from equations (4) and (5) appropriate for
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the longitudinal strain through the whole ice thickness. The value B, in the
numerator is effectively the value in the basal layers and (in units with n — 1)
may be an order of magnitude smaller because of the higher temperatures there.
Hence, we may expect typical damping from 2 to 100 times decreasing towards
the coast as the average surface slope increases. The damping factors from the
bedrock and surface undulations for the Wilkes ice cap will be discussed in
Section 6.3.5. and used to calculate the flow parameter B.

Extensions to three-dimensional bedrock perturbations may be estimated by
introducing the transverse strain factor ¢ of equation 5.4 (28) and generalizing
the continuity equation. The net result for an equal transverse strain rate is an
increased damping by a factor of 4/3 for low strain rates (n = 1). Across the
line of fiow the surface and bedrock undulations are in phase. Hence, for directions
between the Iine of flow and across the line of flow, the phase difference between

surface slope and bedrock elevation varies from O to ——%.

Similarly, the above analysis can be extended to the case of variable accuinu-
lation rate over the undulations, as was found to be the case by Black and Budd
(1963). In this case we may write

A=Ay + A, cos wx + A, sin .
In this case we obtain, instead of (16) and (L7),

=n81 + ¥ AV — AV

&y 1+ 42 (167)
_UB WPV — AV A, ’
ay = 1+ g2 v (177

For ¢ ® 1 agzﬁ—il, and alzé.
N 14 14
From this, it appears that for large y—resulting from large strain rates, or
small B—the accumulation variation is not very significant. Black and Budd (1963)
found that accumulation maxima tended to occur near the positions of minimum
surface slope (downhill). This effect becomes important for small  (or large B
causing small strain rates). Putting ¢ = 0O in (16°) and (17") gives

A fr

@, =B, — T/l {(L6”)

A v

and oy, = — ?2 (177

showing that, for Jow strain rate, the accumulation pattern can become very im-
portant in determining the steady-state surface configuration.

5.4.2. Long wavelength undulations

On the larger scale, taking smooth values over ~ 20 times the ice thickness,
then instead of equation (4) the relevant relation for velocity V, ice thickness Z
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and surface slope o may be taken from 5.1 (40) as
V= kx"Z"*1 (18)

where &k = L (Eﬁ) ’
iy =+ 1 BZ

and n, =3
and k& may be taken as constant, provided the temperatures change insignificantly

over the distances involved.
Similarly to the analysis in Section 5.4.1, take

vz _ 4 (19)
dx
az 1
dx «=F
(20)

B =py+ B coswx

=0y + &, COS WX + &, sin wx
Then the substitution of equations (20) in (19) leads to the results

_ B
“= (1)
#y = li’iﬁl;i (22)

As before, the surface and base undulations are out of phase by »/2.
In this case the damping factor y» is given by

n 2nZ
= =< 23
Vis i w (23)
This result implies that the damping increases with ice thickness, decreases with

increasing wavelength and is inversely proportional to the surface slope. The
following table indicates the magnitudes involved, for n = 3.

TABLE 5.4
LARGLE SCALE DAMPING FACTOR ‘}L'B
a 1/10 1730 17100 1/300 171000
N7
10 3.80 11-0 18-0 110 180
30 1:10 3-8 11-0 18 110
100 0-38 11 3.3 11 38

For a more general form of bedrock variation we substitute equations (18)
and (20) into (19} to obtain

| 2
sz[ﬂ de  n+2. _ ,8)] ~4 (24)
& dx VA
atdx  a\ nZ nkVZ nZ
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Now, if it is assumed that the variations in Z and ¥ are small compared to their
average values over the region, then this equation can be written as

o+ lef-o)
gLt - =r 26
s —aly (26)
where y :% and p, g and r are constants. This equation may then be integrated
to give
. epbfZ—qx
A 27

where b is the bedrock elevation above that at x — 0. The full import of this
equation will not be discussed here but, by considering an undulating bedrock
profile of the form b = by + &, cos wx, it can be shown that equation (27) implies
a slightly more cusped surface than a regular sine wave, i.e., it has shorter peaks
and longer valleys.

5.4.3. Distance scales relevant to long and short wave undulalions

On the large scale for smoothed values of velocity V', slope and ice thickness
Z we have equation 5.4.1. (21)
n+ Sy
V= 2zt (@) (28)
n+1+v8,
For small-scale undulations, where the strain rates are so small that the stress
and strain rate are linearly related (n = 1), we have, from equation 5.4 (4},

dex £9g = 2
— = (x —a)l + 29
6% 28, (@ — )4 + p%) (29)

where o is the average regional slope. We are here concerned with finding the
distance over which the @ of (28) and (29) needs to be smoothed. For the longer
waves p ¢can be neglected.

As the wave length A of the undulations increases, these two relations will
interact and equation (29) will be gradually replaced by (28), i.e., as

AL v 1 T
A= Ar Az a 0ty .0 V—)Qz (Pga]

Oy n"‘l Bz,
.
g @

N

oy I

™~

[s] A A i) A
4 4 F] 4
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This merging will occur when the velocity increase, from the crest of a wave to
the point of maximum slope due to the strain rate by (29), equals the increase

in velocity over this interval due to the increase in slope from (28),
ie.,

e dv .
f i dx are equal from equations (28) and (29).
0 X
We assume that the slope of the undulations is given by
o= o + o COS wx (30)

2r
where @ = — -

From (28) for the smoothed slope relation

r n+1 n.n
Hedv o _ 2L _(%) o
0 dx n+1 B2

22u+1 (pg)n o N -,
= ) [(a + a)" —
n+ 1\B, [« 0 «"]

=22n+1 (pgal)n
n+ 1 B2 Ln

T4z

[+ 4

G

where x,(3) = (y + L)' — " (y = 3‘—) (32)

ay
From (29) and (30) for the short-wave undulations
e ) Aja
AV e = P0G ol 29T (33)
o dx 2B, w? lo 2B,w*
Equating (31) and (33),

4

pgo, _ 221 (pga1)

2Biw* n+ 1\ B,
Now B; and B, are in units of bars sec and bars set:?‘ respecively.
ie.,

pgZay _ (e@)"
B, By [’

provided B, — B, when converted to the same units, B, for the column, say, and
B, for the base when n = 1. For the case in which they are not equal, as is gen-

erally true for typical temperature profiles existing in cold ice caps where B, > By,
we write

B,
Y =
B,
Then
1 272
_— = Vv 34
20 n+1 i 9

Therefore, the transition wavelength is given by
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Ar = 4nZ [ - (39)

For the Wilkes ice cap it is shown in Section 6.3 that » = 4.

Tables of ¥} and v/x/(n + 1), 4V x/(n + 1), and 4=/x/(n + 1)v with +
4, are given below. For the Wilkes ice cap it was found that »=¢3.4 and typically
@/a,~4. Hence it can be seen from the table for Ar/Z = 4=/ X,/ (n -+ 1)v that
the transition wavelength is about 30 times the ice thickness, for this region.

The results of this section indicate that, to avoid discrepancies in the smoothed
velocity—slope equation (28), it is necessary to average over distance greater than
Ar. On the other hand, we may expect the equation for the strain and slope fluctua-
tions

ox 2B
to hold only for ‘@ taken as smoothed over distance greater than ar and slope

a—s——&(tx—&)

fluctuations over distances shorter than Ar.
In Section 6 we next examine the application of the theory developed in this
section to measurements on existing ice masses.

TABLE 5.5
TRANSITION WAYELENGTH Ay

A=V E -y \/ o

a+1
¥ in 1 2 3 4 n 1 2 3 4
o [ 100 100 1-00 071 0-58  0-50  0-45
¥ 1 1-22 1-39 1-56 0-71 0-70 0-70 0-70
T 1 1-41 1-80 2-24 0-71 0-81 0-90 1-00
1 1 1-73 2-65 3-87 0-71 1-00 1:33 1-73
2 1 2-24 4-36 g-06 0-71 1-30 2-18 3-60
4 1 300 7-80 1920 0-71 173 3.90 860
411\/ X ArjZ =4z | A
n+1 {4+ 1
0 8-9 73 6-3 57 4-45 3-65 3-15 2-85
+ 8-9 88 §-8 g-8 4-45 4-40 4-40 4-40
¥ 89 10-2 11:3 12-6 445 5-10 5-65 6-30
1 8.9 126 16-7 20-8 4-45 6-30 8-35 10-50
2 89 16-3 27-4 45.2 4-45 8-15 13-70  22-60
4 89 21-8 49-¢  10%-0 4-45 10-90 24-350  54.50
8 §-9 30-0 91-2  278-0 4-45 15-00 45-60 139-00
x B,
y = — V = ~—
@y b

L =(y+ 1) =)
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6.1 APPLICATION TO DIFFERENT ICE MASSES

6. APPLICATION OF DYNAMICS THEORY TO DIFFERENT
TYPES OF ICE MASSES

In this section the theory developed in the earlier sections will be applied to
the three major types of ice masses: ice shelves, glaciers, and ice caps. The scope
of the application of the theory to the analysis of measurements on ice masses
is very broad bul space here prohibits more than a brief outline of two main
avenues of investigation. As more detailed measurements become avalaible more
refined testing of the theory will be possible. The two major 2ims here are to

(i) determine longitudina! velocity profiles from the ice mass boundary dimen-
sions and an assumed flow law, and

(i1) determine flow law parameters from the ice mass boundary dimensions
and measured velocity and strain rates along a flow line.

6.1. 1CE SHELVES
0.1.1. General equations of motion for determining flow parameters

The general dynamics theory of Section 5 has been applied to the Amery Ice
Shelf by Budd (1966) where it is shown how the theory can be used to determine
the flow parameters of the ice from measurements of velocity and strain rate,
together with the elevation profile, along the centre-line of the ice shelf.

The main principles of this application are outlined below. If, as for many ice
shelves, the range of stress is comparatively small (0 — 3/4 bars) the B, n notation
for the power law for ice flow can be used and average values over that range can
be obtained. Having determined the n and B values it is then possible to calculate
the velocity distribution throughout the rest of the ice shelf.

We consider the general equation for the longitudinal strain rate g, at distance x
along the centre-line of the ice shell [cf. Section S, equations 5.1(31a), 5.2 (17),

&z, , . e
5.3 (29)], where the term JJ 2% dz dz 1s neglected, since here we are not considering

ax

short-wave slope fluctuations but rather averages over long distances,

AT s YT
P g - M
ox 2
where B is the average value of the flow parameter through the ice thickness,
¢ is the transverse strain function [cf. Section 5, equation (27)],
a is the longitudinal surface slope averaged across the ice shelf at x, and
fis the “friction coefficient” of the boundary defined by

= - 2)
sApg
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ICE SHELVES 6.1

wliere T, is the boundary shear stress,
p/A is the ratio of the cross-section boundary perimeter to the area, and
sis an appropriate shape factor for the cross-section. For an ice shelf the
shape factor s for the transverse velocity profile is unity, as for the infinitely deep
channel, because there is no shear stress at the base.
Let o, be the longitudinal stress and r,, the transverse shear stress at position

O

ax

x along the ice shelf and distance y from the centre line. We first assume
is independent of y. Equilibrium for a central element then gives
= 00
T ax

Hence, for a power law for flow with parameters # and B, the velocity gradient
across the ice shelf is given by

LAV _ ey (2]

Ty

2 @ ax
If the half width of the ice shelf is a, then the velocity in the centre ¥ is given
by (cf. Section 3.4.1.)
n+ 1 a
. (d&) 3)
{(n + 1)B" \dx.
The shear stress at the edge is given by
da
T, =a—= 4
b Ix (4)
From equation (3), this may be written
1/n
2 a

This value of r, may now be substituted in equations (2) and (1) to give (noting
p/A = 1/a for such an ice shelf)
- N Lfm Iin
_ B 1 B [n +,1,H]
dx 2 2a 2 a
Hence, if in addition to the dimensions of the ice shelf the flow parameters, » and
B, are known as well as some boundary values of velocity and strain rate, then

this equation can be solved iteratively to give the velocity and strain rate along
the centrat flow line. [Note that a correction is made here to Budd (1966) equation

(6)

. . . . . oH ;
(7) in that the surface slope a is used instead of the thickness gradlent—b;, which

is only applicable for base slope # =0.]

On the other hand, if the velocity along the central flow line is known, equation
(6) enables the flow paramecters to be calculated. Generally, the values n and B
have to be obtained by numerical solutions of equation (6), except where special
forms of the boundary conditions allow simplifications to be made. These special
cases will now be examined.
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6.1 APPLICATION TO DIFFERENT ICE MASSES
6.1.2. Special cases of velocity distribution

In three special cases Budd (1966) showed that analytical solutions are ob-
tainable. We consider the case of an ice shelf bounded at its sides where the width

(2a), the flow parameters # and B, and the transverse strain factor ¢ change only
slowly along the ice shelf.
For the following context we reverse the direction of the axis x, i.e., we take
x horizontal along the centre line directed inwards from the seaward front.
Equation (6) may be written

_i (d_V)Un=l(‘LV)m_lﬁ/= pgr 1 (n-i» lv)un
dx \dx n \dx dx*  2¢1"B 24 \ 2¢a

I. Flat ice shelf (« = 0).

In this case, equation (6) reduces to

dZV dV 1= Lin 1/n
el A 7
where a= (n + 1)1."n -
2a \ 2¢a
This has the solution for the particular case of ¥ =0, when %: =0, of
V= Ve ** (9)
Z—:.—- — W™ = AV (10)
1{n+1)
where 1= gt L kD) (’i_l) 1 (11)
&b 2a

and V, is the velocity at the front of the ice shelf where x = 0. This result implies
that both the wvelocity and longitudinal strain rate in a flat ice sheli decrease ex-
ponentially going inland trom the front, with rate of decrease depending on the index
n, the ice shelf width and the transverse strain rate.

In the more general case when V — V,, When%t{i = 0, the integration is
more difficult, but we find the [ollowing relation between the longitudinal strain
rate and velocity

dv 1+1/a . .
)

This may also be used to determine the n value from the measured velocity
profile along the centre line.

IT. For constant viscosity (n =1).
We have n = 1| in equation (6)

v |4 og
axt 242" ap” (2

140



ICE SHELVES 6.1
In this case. we have for constant surface slope a, and the condition

2 2
Yo P9 hen Y _ 0 v= e 4 PIT, (13)
2B dx 2B
and we see that the resultant velocity is simply the sum of the velocities due to
creep and the pressure gradient acting independently.

Here again the velocity and velocity gradient decrease exponentially going inland

pga’n
2B
mal viscous flow with no longitudinal strain. In this case the exponential decrease

from the front until the strain rate is zero, when ¥ = as expected for nor-

is governed by ix :\/15 *and depends on the ice-shelf width.
pa

ITI. For a comparatively flat ice shelf, where the slope varies slowly along the
centre-ling, the following approximate solution may be used.
We write the total velocity at position x as

V=V, + V. (14)
where Vi is the velocity due to the pressure gradient alone, and ¥, is the velocity
gradient due to varying creep.

Now, if

Ve = BV; (15)
then, for the region towards the front of the ice shelf, where 8 only changes slowly
along the ice, we obtain the equation

dv , (dy LT fa
e ()Y (1)
where
. B+ =1
wo=upu [F-—" an
The solution may now be written as
2
V = pg; + Voe—w(n]xlﬂ (18)
where
n(n + ])Uﬂ (p’ + 1)1,"!1 -1 a/(n+1)
Y(n) = @(n‘i" Dt Dim —'ﬁlkn" — (19)

This function is plotted in Budd (1966, Fig. 10, where the function y is called ¢)
for the transverse strain factor ¢ = 1,

. . av . . . . .
An exact solution for strain rated—x in terms of velocity ¥ in this case is

dV 1+ 1/n l + o +1 1/n . i

dx 247R 2 a
where V' =V, when ﬂ = 0.
dx
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6.2 APPLICATION TO DIFFERENT ICE MASSES

Now, if the parameters a, B, a, only vary slowly with x, then the values of »
can be obtained from the second term on the right of equation (18) which governs
the exponential decrease of velocity going inland from the front. Far inland this
term decreases to zero. The value of B can then be readily determined from the
velocity, slope, thickness and width of the ice shelf. By examining equation (18)
numerically for the Amery Ice Shelf, a value of » = 2 was found by Budd (1966).
After applying the correction for basal slope, noted previously, the value of B is
determined as

B = 63 x 10° dyne cm™? sec'/?:

This value appears to be somewhat lower than the value expected (=13 x 10%)
from the flow law (cf. Fig. 2.2 at —16°C, the mean temperature calculated for
this region of the ice shelf). The low £ value may reflect the lower density of the
ice-shelf ice (p~ 0-85 g cm™) which, from Section 2.5.1. could cause the value of
B {(in these units) to be lower by about a factor of 1-6. However, in view of the
inaccuracies in the preliminary data available for the Amery Ice Shelf, more exact
apgreement cannot be expected at this stage. Phase IT of the Amery Ice Shelf project
now in operation (1968) aims at providing sufficient data for a complete analysis
by measuring the ice thickness and velocity distributions in detail and by core
drilling to supply the information on the temperature and density profiles with
depth.

6.2. GLACIERS
6.2.1. General equalions of motion

To examine the longitudinal velocity along a glacier, first with parallel sides
where, at distance x along the centre-line the cross-section area is A, the mean thick-

ness is E, the basal slope is 3, and the mean boundary friction co-efficient is f, we
consider equations 5.2 (12) and (13}, neglecting for the moment the final term on
the right of equation {12}, according to Section 5.1:

0ABEL" 1 [63Z4 -
- 2 g[z —A(ﬁ—f)] (20)
ox 2 ax

In practice, for most glaciers the cross-sectional shape only varies slowly with

x. Then the main factor influencing the velocity, as the cross-section area changes,
is just the mean thickness Z. Thus, if we write

A=ZY 21

and if the mean width ¥ only changes slowly with x, then we may adopt the
simpler equation 5.2 (17), analogous to the two-dimensions equation

azpet™ 1 - - - 1 = pZ
- =-pgZio— )= -pgloa — 551 (22)
. 5 P9 o= f)=5rg 54T
with the generalization that the parameters with bars represent means over the
cross-section, and =, is defined by equation 5.2 (3), and

f= (23)
Apg
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GLACIERS 6.2

Along the centre-line we can express the velocity difference (V. — V) between
the surface and the base in terms of 75 by using T., = s.pgoz and the flow law,
and integrating from O to Z, the thickness in the centre.

_ - 1/n
5,092Z = B [” + ILZI@]

Here s is a shape factor for the particular cross-section, which can be estimated
empirically from Nye's calculations, as outlined in Section 2.

By introducing another shape factor defined by 3 — Sapgu’ %

5 T,
iz, _ B [n + 1@]”"
24" 25 L 2 z ’
so that from (22) the final equation becomes

0ZBé™ 1 —-- B [n +1V, - V,,]”"

- - =cpgZa — — |—— St
&x 2 2s 2 VA
The basal velocity is a difficult parameter to obtain. Although several theories
have been presented on glacier-sliding, viz., Weertman (1957a, 1964, 1967),
Lliboutry (1959, 1965, 1968), the confirmation of these is far from satisfactory
(cf. Meier 1968). The empirical measurements to date of glacier-sliding are also
inadequate. Measurements of horizontal velocity from vertical boreholes have been
limited so far to the depth at which the thermal drill stops. This leaves as unknown
the very interesting transition zone at the base of a glacier—which may be a sharp
icc rock interface or include sand, meoeraine, or a mixture of ice and rock. In
general, it will be difficult to distinguish between pure sliding, high shear in basal
ice, or a combination of high shear and sliding, in a basal layer of an ice-rock
mixture. In the present work it is proposed to calculate the effects of differential
motion first. This then allews the sliding motion to be analysed by reference to
the theories of basal sliding.
If we have no slip at the base, equation (25) becomes (dropping the bars)

(24)

we can write

(25)

;

_ ozBitt 1 B (nr iy
2 z/

Ox 2 IEET 35
This, then, is the fundamental equation for the centre-line longitudinal velocity
and velocity gradient in a glacier as a function of the ice thickness, surface slope,
shape of cross-section and the flow law parameters of the ice. If the glacier is
widening or narrowing, such that the transverse extension or compression is appre-
ciable, then instead of &, we use (cf. Section 5.3)

(26)

E% = ks (27)
27— (- 1)/2
where ¢ = (1 + %) [l + 3 (2 :_ v) ] (28)

and » is the ratio of the lateral to the longitudinal strain rates.
We also note that the n and B values on the left-hand-side and right-hand-side
of equation (26) will in general be different because of the different stress ranges
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6.2 APPLICATION TO DIFFERENT ICE MASSES
involved. Since the shear at the base may be =~ 1 bar, the longitudinal strain rate

would have to be z%yr‘l to give comparable values of 7 and B. Since, in typical

glacicrs of small slope, mean longitudinal strain rates > 1:30 yr™ are unusual
in undisturbed regions, we may expect lower values of n for the left-hand-side.
Equation (26) can be used as follows:
(i) given the dimensions of an ice mass and the ice flow law parameters to de-
termine its velocity distribution,
(ii) given the ice mass dimensions and its velocity distribution to determine the
appropriate flow law parameters.

Since the fow law parameters for naturally deforming ice are still not wel
known, we examine (ii).

6.2.2. Observed relation between velocity and slope (smoothed)

We look at a typical glacier (Athabasca Glacier in Alberta, Canada) that has
been measured in detail for ice thickness, slope, cross-section shape and centre-line

TaBLE 6.1.
PHYSICAL PARAMETERS OF THE ATHABASCA GLACIER

Stake . . Longitudinal  Tce

position Distance Elevation Slope strain rate thickness

L No. X h a® __'"E;p Z _7;71 ama

m m 107 3yr-1 m m x 102

10 4] 458 4-5 103 310 450
11 82 452 4-0 74 318 376
12 180 447 2-8 42 323 344
13 279 442 2-8 14 320 356
14 380 437 3-1 i3 317 317 371
15 477 431 3-6 22 320 316 350
16 618 422 4-1 51 322 36 325
17 761 412 4.3 9 314 313 308
18 9]0 401 4-2 22 312 339 308
19 1046 392 3.2 18 310 303 312
20 1199 386 1-9 7 310 397 318
21 1362 381 1-7 1 310 290 324
22 1517 3176 2-2 4 290 284 334
23 1669 369 2-8 3 273 276 351
24 1811 362 3.2 1 260 264 371
25 1951 353 3-8 248 251 395
26 2042 348 42 _‘é 248 237 418
27 2115 342 5-2 3 248 242 448
28 2211 331 6-2 ~7 225 221 490
29 2354 315 6-4 18 186 207 543
30 243] 296 5.9 9 170 293 603
31 2711 281 4.4 2 155 178 657
32 2859 270 50 5 118 162 752
33 2954 262 6-8 5 115 145 897
34 3049 250 . 8-6 14 113 129 1132
35 3130 237 9-8 17 100 97 1246
36 3321 206 9.8 16 90 85 1466
37 3450 180 14-6 1 73 1745
38 2560 144 212 '10 56 2260
39 3603 131 230 - 43 3200



ICE SHELVES 6.2

velocity [Paterson and Savage (1963a,b,c), Kanasewich (1963) and Paterson
{unpublished)]. Some of these parameters for this glacier are illustrated below, in
Fig. 6.1, and also Fig. 3.5, for the cross-section profiles.

We notice the fluctuations in slope and strain rate over a comparatively short

distance (0-5 to 1-2 km), which suggest that the basal friction f follows the smoothed
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FiG. 6.1. Longitudinal profile of the Athabasca Glacier showing elevation and bedrock, velocity,
strain rate, strain-rate gradient, and surface slope. Smoothed 1200 m running means are shown
by the fine broken lines. Data from Paterson (unpublished}.
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6.2 APPLICATION TO DIFFERENT ICE MASSES

surface slope (over 1200 m). Hence, we first examine the relation for smoothed
velocity ¥, thickness Z, and slope a, in the absence of basal sliding, equation (26)
with zero strain-rate gradient,

1/n 1n 7
(K ) | _JW) spgaZ (29)
Z o+ 1 B

Values for this equation from the Athabasca Glacier are shown plotted on log-log
scale in Fig. 6.2, The smoothing has been Laken over 1100 m. The value of the
shape factor s has been estimated from Nye's (1965) caleulations of velocity pro-
files for various cross-section shapes and the measured cross-sections of the glacier
from Paterson (cf. Fig. 3.5).
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1 2 3
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Fic. 6.2. From the values of smoothed-surface slope «, ice thickness H and velocity V, for the
Athabasca Glacier from Fig, 6.1, V/2Z is ploited against oZ on a lop-log scale. The slope
of the broken line suggests a value of n ~ 2-6 for the power law index.
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ICE SHELVES 6.2

From this we obtain estimates of n and B as

n=206,

B =063 % 10" dynes cm™2secl/3,

These values show reasonable agreement with other measurements of the flow
parameters from laboratory and field determinations, for temperatures close to the
melting point. The scatter in Fig. 6.2 can be attributed to several factors such as the
shorter distance fluctuations, the errors in the measurements, and other effects nol
considered here, such as basal sliding and variation in the shape factor along the
glacier. In spite of these deviations, the results suggest that equation (29) gives a
good approximation for the smoothed velocity in terms of the other parameters.
For unsmoothed values, however, this relation is completely obscured by the

smaller-scale fluctuations in slope shown in Fig 6.1. These are now examined in
more detail.

6.2.3. Strain rate and slope fluctuations
We consider the short-distance fluctuations of strain rate and slope with
reference to the equation
aerr
X
ox
We assume, that for a temperate glacier, the parameter B is constant along the
tongue, and from this we obtain, by integrating (30) over the 4+ waves, values of

P9,
AR (30)

strain rate 4£, and stress pgda deviations for each of the + waves. There is not
sufficient range of values here to determine the power law index n precisely, but
the cluster of values is consistent with a low value of n. Hence, we determine B
by averaging the results over the length of the glacier and taking

n = 1, to obtain

B — 0-70 » 10° dynes cm 2sec'/™.
These parameters are appropriate for the whole thickness of the ice, whereas the
others (from Section 6.2.2) are associated with the region of high shear at the base.

For most temperate glaciers the temperature variation is mot very great, so
that the B values are not expected to vary widely over the glacier. However, due to
the curvature of the flow law of ice, on the log-log scales, near 1 bar the values of B
obtained from different ranges of stress may be expected to differ slightly, depending
on the distance of the stress ranges from 1 bar.

These two-sub-sections are not meant to be more than a guide to the application
of the general results of the theory of longitudinal strain rates developed for ice
masses to temperate glaciers. The method of determining the values of the flow
parameters from the longitudinal velecity profile provides a supplement to the
methods employed by Paterson and Savage (1963) and others who have used the
transverse and vertical profiles of velocity to study the flow law of ice.

0.2.4. Compression and extension

From the equaticns developed for longitudinal velocity and strain rate, some
general ideas may be obtained as to the shapes of ice masses which will have com-
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6.2 APPLICATION TO DIFFERENT ICE MASSES

pressive or extensive flow. Only a simple case is outlined here. Extensions to this
treatment to cover effects of variable bedrock elevation, varying shape factor, etc.,
can readily be carried out in specific cases by numerical techniques.
For a glacier on a flat bed the ice longitudinal thickness gradient equals the

surface slope, ie.,

az

g 3 (3D
where x is directed opposite to the motion. We note that the surface velcoity V,
in the absence of sliding, is given by equation (29) for smoothed slope and

thickness
v dz)"
= zZ= 32

yA . ( dx (32)

where @, is constant. This may be written as
[0 = [anzz,

and from this equation we wish to find the forms of the ice-thickness profile which
cause increasing or decreasing velocity along the line of flow. A typical glacler
profile Z(x) may be approximated by an equation of the form

Z = a,x" (33)

where x is the distance from the front, directed opposite to the motion, and a,
and m are comstants (m =2, 1, %, 1/3, 1/4 . . ).

Then
z _ ma,x™ "1
dx
Z£ — n7a2x2m—1
dx
and (Z d_Z) = (malyxn-bm
dx
From this and equation (32) we find for velocity
[Vl — al('nai)nazx(lm—l)n+m (34)
= Ax?
where p=02m— )n+ m, say.

Now the velocity is constant when p is zero, i.e., when (Zm—1)n+m =0, ie,

o1 33)
ie., for
n=1 2 3 4 ... o
m=1/3 2/5 3/7 4/9..... 1/2.
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ICE SHELVES 6.2

Hence, for an ice mass with a flat base and a surface of the form H — ax"™,

. . . X 3
the velocity decreases inland (extension) for m < Tfor n=23,0rm < %— for n =

4. For m >%(n = 3), the ice mass velocity increases going inland and compres-

sion exists.

We note that, for a perfectly plastic medium (» = « )}, the parabolic profile
(m = %) is required for zero longitudinal strain rate. For lower values of n,
slightly more curved profiles (m < ) are required for constant velocity. Also, for
extending Aow with any r, a slightly more curved profile (s < %} is required than
that corresponding to the zero strain case. In Section 7 we examine more fully the
forms of the elevation profiles of ice masses.

6.2.5. Waves on a glacier surface (constant ice thickness)

As an application of Section 5.4 we examine the variation in strain rate over
idzal surface waves, say, typical of thosc observed on the Athabasca Glacier..
Suppose we have an undulating glacier surface whose slope can be represented

by the equation

o~ d = @ COS X,
2r . .
where A = "= s the wavelength of the undulations.
o
Equarion (30) now becomes

.

Aplin 1
AR pgla cos wx) (36)
0x 2
or gt = — PI9Y Gnox gdim (37
@

The results of the Aow studies of Section 2 suggest, if the strain rates are low, we
may take n == 1;

then d_V = — wsin wx -+ é[, (38)
dx 2B
. pga
d V=V, -+ eqx — --"— COS8 t3x 39
an ¢ apw? o9

Hence, the velocity maxima tend to occur at the positions of downslope maxima.
Maximum extension occurs on the crests of relative elevations ¢hills) and relative
compression occurs as maxima in the valleys. This may be seen to be the case
from Fig. 6.1 for the Athabasca Glacier, showing the strain rate gradients and
slopes approximately in phase. It is expected that this relation may break down
near the front of the glacier where the ice thickness gradient is not negligible.

Similar properties of strain rate and slope fluctuations have been observed on
the surface of ice caps which are examined in the next section.
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6.3. ICE CAPS

In the case of ice caps, the only boundary holding the ice is the bedrock at the
base, unless a “stream™ of more rapidly flowing ice exists in the main ice mass.
The complications of such streams will be neglected for the present. For the ice
cap, then, there is no horizontal transverse shear and the dynamics problem be-
comes similar to that for the ice shelf, except that in the ice cap the velocity varies
in the vertical, while for the ice shelf it changes transversely in the horizontal.
In both cases the cross-sections to the line of flow correspond to infinite slabs with
shape-factor unity.

6.3.1. Velocity and slope {smoothed)

Neglecting for the moment the effect of the longitudinal strains, and trans-
verse compression or extension, i.e., provided the term of equation 5.3 (29)
AZB,($e)" /x> 0, we may expect the relation for smoothed velocity (V)

thickness (Z) and slope (o) to hold generally:

n+1 Y]
_ 2z (Pﬂ) 40)
(n+ VB
This corresponds to the equation (3) for ice shelves, with the half width a replaced
by the thickness Z, and to equation (29) for glaciers (with the shape factor equal

to 1).

As an example to see how well this relation holds for an ice cap along a flow
line we consider the 200 km diameter local ice cap near Wilkes and examine the
profiles from the Dome to Cape Poinsett and Cape Folger, cf. MeLaren (1968)
and Pfitzner (to be published). Figs. 6.3 and 6.4 show the elevation, slope, ice
thickness, bedrock and velocity profiles along these two lines. Fig. 6.5 shows the
plots of

By ( against  oZ
Z

for these two lines. From these latter we see that the linear relation on log co-
ordinates seems to hold fairly well and that we can determine # and B as

n=73-4,
B = 0-85 x 10° dynes cm™ 2 sec'/®,

The value of B is dependent on temperature and has been taken to vary with
temperature ¢ here according to the equation

By = Bpe ™™,
where & —~ 107t °CL

From this the value of B has been deduced for different values of basal temperature
# which have been calculated in Section 4 along the profile from the dome to Cape
Poinsett. The results of the temperature calculations are illustrated in Fig. 4.16
and sugeest that the basal temperatures vary with surface temperature, but are
somewhat higher with a mean value, along the line, of about —10°C.
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ICE CAPS 6.3

Finally, by plotting the strain rate against the stress pgZa e*, reduced to

n+ 1y

z
a constant temperature, on Fig. 2.2, for the flow law of ice it is apparent that these
stress and strain rate values correspond to those for temperatures in the range cal-
culated for the basal temperatures along this profile (cf. Fig. 4.16).

Complete confirmation of these temperatures, however, will have to wait for
the completion of the drilling and temperature measurement programme in this
region.

The formula (40) for smoothed velocity may also be used to estimate the

-8
2x10 T T T T T T 1T

(*C/sec)
o

(1-8 )

y
z
0

Values of

Mean

10 |
g

8 l

2
4 x10 2 T3 7 T T LI B L B
410 5 3 7 ] 9 10 1-5 2x10

«Z (cm)
Fic. 6.5. From the Wilkes ice cap dome—Cape Poinselt line for the smoothed values of velocity
V., surface slope «, and ice thickness Z, the values V/Z, corrected for calculated basal tcmpera-

tures #, have been plotted against oZ. The slope of the line suggests a power law index n ~3 4,
although lower values may operate for the lower stresses.
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0.3 APPLICATION TO DIFFERENT ICE MASSES

velocity inland of a large ice cap if the thickness and slope are known, as well
as the velocity at the edge. As an example of the use of this formula in this capacity,
we calculate the function {(aZ)}"Z for the profile of Antarctica inland of Wilkes.
This then allows velocities ¥y to be calculated along the line if the basal temperatures
were constant, i.e., by taking a constant By, say, 10? dyne cm™sec!/*. From Section
4 we obtain estimates of basal temperatures #, along this line, calculated from these
velocities. Finally, using these basal temperatures, new velocities Vg may be
calculated which take account of the temperature variation along the route. These
are shown in Table 6.2. This procedure may be repeated to obtain new tempera-
tures and velocities until convergence is reached. However, since other details in the
region, such as transverse strain and curvature of the flow lines, are still unknown,
a more advanced two-dimensional analysis is not warranted at this stage.

TaB E 6.2
WILKES—VYOSTOK CALCULATED VELOCITIES
Distance Ice VooV 1
inland thickness aZ Voo (2ZY'Z 8" 2,
x Z
km km m m/yr m/yr
1310 3-02 3-36 0-6 0-5
1205 3-17 3.99 1-0 0-8
1118 3.42 4.28 1-7 1-4
1020 3-85 4-70 2-0 2-0
921 4-44 5-46 3-6 3-8
820 4.58 5-82 4-1 4-8
720 4-15 5-40 3-8 4.2
570 4-00 6-28 50 5.5
518 279 7-28 52 5.7
464 2-70 11-88 24.3 30-1
370 2-28 13-43 27-4 360
280 2-63 16-62 60-0 1050

6.3.2. Sirain rate and slope fluctuations

We next consider the small variations in slope, causing similar fluctuations in
strain rate, superimposed on the smoothed velocity, slope and ice thickness.
Such short-wave fluctuations are governed by the equation

“l/n
LB~ pe2a - 1) (a1)

This equation can also be tested by the Wilkes ice cap data.

First of all, we note that along the dome—Cape Poinsett section beyond strain
grid G the lateral strains were smaller than the longitudinal strains and so, by
cquations 5.3 {27) and (28), they have lirtle influence.

Fig. 6.6 shows the high correspondence between the strain-rate gradient and the
slope. By examining the magnitude of these corresponding variations, values of #
and B may be obtained from

Selm = — %(a — D)dx (42)
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ICE CAPS 6.3

These results are illustrated by Fig. 6.7. This shows that the octahedral shear
stress produced by the right-hand-side varies from 0-06 to 0-25 bars.

The values of the parameters n and B are
n=12,
B =15 x 10° dyne cm™sec’™, or 3-4 x 105 dyne cm%sec.
The low value of » reflects the almost Newtonian viscosity at low stresses as re-

ported by other workers (e.g., Butkovitch and Landauer 1960, Mellor and Smith
1966},

The value of B here represents the average value characteristic of the whole
column of the ice mass:

ie., near the base, simple shear predominates, but for most of the column the
deformation is longitudinal extension or compression in the horizontal and vertical,
with the maximum shear direction at 45° to the extension and compression.
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Fii. 6.6. Wilkes ice cap, strain-rate gradient and surface-slope deviations.
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Fic. 6.7. Integrating the curves of Fig. 6.6 over +-waves, shear-strain rate plotted against shear
stress shows an approximaltely linear relation (afler McLaren 1968).

In order to compare the magnitude of B with that of other measurements, it
is necessary to convert the longitudinal stresses and strains of equation (42),

(0, €4), to the corresponding octahedral shear stress and strain values, (to, Yo)
by Nye (1953), or cf. Section 2.1:
o= V2/3 3, ~ 0-816 ¢, for two-dimensjions.
Yo=V2/3 ¢ ~ 0816 ¢ for two-dimensions.
The magnpitudes of the &x in equation (42) have not been specified as yet, but
to obtain maximum stress variation we require to integrale over a 3-wave, i.e., from

: 09, =
— = - (a0 — 0,
dx 28 ( )
if we have undulations of wavelength ) at the surface given by
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ICE CAPS 6.3

Z =2, — ax — a, COs WX,

2n
where =",
A
and hence o =a — a,sn xo.
AfZ 7 572
Then Cde= —ﬂdl sin wx dx;
o dx 2B 0
. : Pg
hence Cp — Bayg = — E2 20
) /2 B
< pgoyd
or g, = ==,
! B2n

where ¢, is the amplitude of the sirain-rate variations.
In octahedral shear values

L _2pgeld

J2' 3 B 2’
or B = P9-%
Im gy

It is also interesting to note that the maximum variation in otachedral shear stress
at the base is

2
ZpgZay.
\/399 1

Hence, the wavelength over which the shear stress produced by longitudinal stress
equals the increase in basal shear stress is given by

ipgall 2
SPINE L pgZa,,
~/3 4 3 P

i.e., A= dxZ.
This result suggests that greater wavelengths would tend to be absorbed by the
smoothed velocity relation (equation 40).

From Fig. 6.7 of the octahedral shear stress versus strain ratc, and Fig. 2.2 for
the flew law of ice, we can see that the value of B determined above would corres-
pond to an average temperature of the column of —15°C, with variations from this
temperature, along the flow line, according to the variation in average temperature.
This temperature seems compatible with the average temperature in the ice mass
as may be estimated from the calculations of Section 4, Fig. 4.16. Again, a more
precise analysis will have to await the results of temperature measurements through
the ice cap. For large strain rates the value of » may well be much greater than 1.
In this case it is necessary to follow the more general analysis of Appendix 1I, in
wiich the effect of the horizontal shear must be taken into consideration for a
non-linear flow law.

6.3.3. The effect of transverse strain on the longitudinal velocity
profile in ice caps
We can see from equations 5.3 (27) and (28) how the presence of a transverse
strain affects the relation between longitudinal stress and strain. We note that a
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6.3 APPLICATION TO DIFFERENT ICE MASSES

small transvere strain of the same sign has little effect on the longitudinal strain
in equation (41). For large transverse strain, especially of opposite sign, the relation
between longitudinal stress and strain is greatly affected.

As a first example of the effect of the transverse strain, consider the results
of the strain grid measurements over the Wilkes dome region as set out in the
table below, from Pfitzner (to be published).

TABLE 6.3
WILEES STRAIM GRIDS
|4 B ¢ DbD,| D, G H J | K L

gyr™' x 10* 10-97 0-39 0-15 1-120-28 0-05 3-52 10:70 | —0-48 0-06

gyr~t x 10> 0-89 0-47 0-72 0-75 | 1-52 1-77 1-18 5-10| —0-18 0-88

b= &fE, 0-92 1-20 4-80 067 { 5-40 35-00 0-34 0-48 | 0-25 14-60
|

v i
¢1=1+i 1-40 1-60 3-40 1-34|1-27 18-50 1-17 1:24 1-13  8-30

—0-54 0-50

. .
¢16I=ex+5y 1:41 062 5-10 1:50|0-36 092 4-10 13-40|
It is noted here that, from McLaren (1968), these strain grids were small,
rosettes with three 100m arms. Equation 5.1 (29) indicates that strain-rate

2
variations over short distances (wavelengths A <—‘;% Z) may be very high. A
Y

comparison of the strain-grid values with long-distance tellurometer measurements
(cf. Figs. 6.3, 6.4, 6.8) shows this to be the case for this region.

For those strain grids in which the transverse strain dominates, there is little
direct relation between longitudinal slope and strain rate unless the strain factor ¢
is taken into consideration. This result shows the importance of the transverse strain
rate in ice cap dynamics. Since the only transverse strain rates available, so
far, for the Wilkes flow line profiles DJ, D4 are the spot values at the strain
grids, we cannot adequately test at this stage the effect of the transverse
strain and the equations derived in Section 5.3. However, from Table 6.3
it appears that the value of the “viscosity” parameter B, calculated from equation
(42} for this line, could be in error by a factor of 2 if the transverse strain were
neglected. The coastal line J4 (cf. Fig. 6.9) is largely across the line of flow, and
the high correlation between the relative elevations and strain rates (ct. Fig. 6.8)
indicate that the equation (42} operates across the line of How as well as longi-
tudinally, thus justifying the consideration of the transverse strain factor. To over-
come the difficulty of transverse strain, an additional set of large strain grids have
recently been established by D. Carter in 1967 at intermediate positions around
the triangle. We conclude that a trilateration traverse, which obtains continuous
transverse strains along the route, is more valuable than the line traverse where
only distances and angles are measured.

Secondly, the transverse strain rate may also affect the smoothed longitudinal
velocity profite. However, the effect is generally small and may be considered
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6.3 APPLICATION TO DIFFERENT ICE MASSES

generally with the effect also of the longitudinal strain rate. From the general
equation 5.1 {39}, neglecting the last term on the right and including the factor ¢,

_ 9ZB(ge)'"

Ox

1 (nz + 1 )”"2
=-pgZa — B, | = -~V 43
5P 2\ Y (43)
By taking smoothed values over distance x > 15Z it was found that the term on

the left was small, giving the smoothed velocity relation

mtly (PQZ“) (44)
2Z 2B
When, however, the first term, which we can write as
t\1/n
B (45)
éx 2
is not negligible, then the smoothed velocity relation becomes
_ Za*\?
ry kg (pg_Zo;) (46)
2Z 2B,
)
=5
where a* = o + da and ™* = pga*Z (47)

This allows corrections to be made to the smoothed velocity profile for high
longitudinal and transverse strain rates. ‘Table 4 shows the magnitude of the cor-
rections calculated from transverse strains, due to flow line divergence, which are ap-
propriate to the Wilkes ice cap on the dome—Cape Poinsett and dome—Cape Folger
lines, The value of B, used here was that found for the variation of strain rate
over undulations. These corrections have been incorporated into the calculations
of the flow parameters described earlier in the section. The highest correction is
less than 10% but is still important in the determination of the flow law parameter
Ha.

TaBLE 6.4
STRAIN RATE CORRECTION TO SHEAR STRESS
Line Distance Shear stress Line Distance Shear stress
D—A from D T & T# D-J from D T &t T*
km bars ko bars
D 0-23 0-52 —0-05 0-47 D 0-18 0-28 0 0-28
C 23-63 068 O 0-68 - 18-50 0-70 —0-01 0-69
B 63-92 0-77 0-01 0-78 F7 50-75 0-85 002 0-87
A 92-110 0-92 0-02 0-93 J 75-101 1-20 060 1-26

6.3.4. Strain rate and flow lines
For an ideal circular ice cap, flowing out in Straight lines from the centre, a

transverse straip rate £ exists as a result of the \;{elocity V' and divergence angle 4,
depending on the distance r from the centre. If we write y = r6, the transverse
strain rate is given by
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6.3 APPLICATION TO DIFFERENT ICE MASSES

TasLE 6.5
TRANSVERSE STRAIN RATES FOR WILKES ICE CAP
104yr-1
Strain Flow Angle
grids divergence to line
A 50 2 21°
B 4.5 2-0 8°
C 80 2-2 34°
Da 7-5 35
A 10-0 3.7 5°
N 57 2.3 13°
Dy 15-2 36
G 7-5 2-1 41°
H 12-0 6-9 16°
) 44-0 14-7 13+
K —0-2 —30 °
L 0-9 3-5 0°
. e v
Bg = — = — (48)
¥ r
£
or g =72
V

Such an ideal ice cap is characterized by a circular symmetry about its centre,
and is approached by an ice cap with a smooth flat base and concentric circular
contours. For real ice caps the irregular surface contours and varying bedrock
prefiles cause divergence and convergence of flow lines (cf. Fig. 6.9).

CONYERGEHCE

IDEAL ICE CAP IRREGULAR ICE CAP
CIRCULAR CONTOURS
SIMPLE RADIAL FLOW

-

DIYERGENCE

If the strain rates and velocity are known, the divergence angle # between two flow
lines distance y apart may be calculated from
_ Ve
¥
The effect of the curvature of the flow lines (and the resulting transverse strain)
on the longitudinal velocity distribution may then be calculated from equations
(45) and (46),

Fig 6.9 shows flow lines over the Wilkes local ice cap drawn from orthogonals
to the contours. The actual measured velocity directions are shown to be in close
agreement with these. Table 6.5 lists the values of transverse strain rate calculated
from the flow line divergences and those actually measured at the strain grid
positions. There is general agreement between the two, but the measured strain
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rates are on a much smaller scale and show considerably greater fluctuations. This
implies that very large scale strain grids (~ 15 km) are required to obtain the
general flow line divergences.

6.3.5. Ice flow over undulations

At this stage only a preliminary analysis has been made of the Wilkes ice cap
data in regard to the implications of the theory of ice flow over bedrock undulations
developed in Section 5.4. The main conclusions reached there can be summarized
as follows:

(1) Bedrock undulations cause similiar but damped undulations on the ice-
cap surface.

(2) Along the line of flow, for large damping factors (¢ ~ 10), the surface
undulations are out of phase with the base undulations by n/2, such that the sur-
face-slope maxima occur over bedrock-elevation maxima.

(3) Across the line of flow the surface and bedrock undulations are in phase.
For other directions of flow the phase shift varies between O and /2.

(4) The damping factor y depends on the ice thickness Z, the forward velocity
V, the ice flow “viscosity” parameter B, and the wavelength of the undulations A,

= pgZ* [& N iﬁg] (49)
4nBV LZ 3 4
(5) There is a characteristic wavelength X,, for a given ice thickness, for
which the damping is a minimam. This implies that much shorter or longer waves
are more readily damped out and, as a consequence, surface undulations of wave-
length A >~ 2 to 10 times the ice thickness may tend to be predominant, although

harmonics of A, may also be apparent:

- _2%2 ~ 3-63Z (50)

I

Y

(6) From detailed measurements of surface and bedrock elevations (or slopes

a» and #;) the values of the flow parameter B may be determined from the mag-
nitudes of the damping factor together with the ice thickness and velocity, ie.,

A

7t

B waZ (1, 42 2) -
B, 4nv \Z 3 2

(7) Three-dimensional bedrock protrubences will be slightly more damped than
the corresponding two-dimensional ones.

To test these conclusions, an accurate profile of both surface and bedrock
elevations, as well as the velocity vector, are required along a flow line and pre-
ferably with also some data across the flow line. Continuous profiles are ideal but
in practice it is generally necessary to concede to closely spaced discrete values. In
this case, wave lengths down to about 4 times the discrete distance interval are
as short as can be expected to be studied precisely. A further limitation in studying
short wave undulations is that ice-thickness measurements from gravity readings,
no matter how closely spaced, severely damp out wavelengths shorter than several
times the ice thickness. Even the radio echo sounder will start to damp out hollows
of wavelengths shorter than a critical value A, such that the radius of curvature
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6.3 APPLICATION TO DIFFERENT ICE MASSES
at the bottom of a hollow equals the ice thickness, i.e., for a bedrock profile of

the form b = by + b, cos 2Zn

A
2
rn
Ae
; 57 or ke by
or Ae = 2n /b Z o1 7" 2n 7 (52)

With this limitation in mind we now look at some preliminary data from the
Wilkes ice cap.

D. Carter in 1967 obtained continuous bedrock profiles of ice thickness from
a SPRI-designed radio echo sounder arocund the three arms of the northern triangle,
ADJ of the Wilkes ice cap (cf. Fig. 6.9). For the line DJ, surface slopes and bed-
rock elevations from the radio echo sounder results have been plotted for each
15 km. The bedrock elevations from the earlier gravity and seismic results [cf.
Morgan (unpublished)] are also shown (Fig. 6.10).

It is immediately clear that, although there is a vcry close agreement between
the two profiles on the broad scale, the short wave undulations have been greatly
damped out in the gravity survey.

The following qualitative points are noted:

(1) Although the broadness of the 1-5 km point spacing prohibits the analysis
of the very short wave undulations (A < 5 km), there does appear to be a pre-
dominant surface wavelength between 5 and 10 km. A detailed amplitude-frequency
spectrum would be required to confirm this.

(2) It also appears that the surface undulations do reflect the bedrock and, as
predicted by the theory, the surface slopes are generally in phase with the bedrock
elevations. From Fig. 6.9 it is clear that the actual flow direction does depart from
the profile line, particularly in the region of stram grid G. This leads to a phase
shift such that surface and basal slopes are out of phase by less than «/2.

(3) The high slope variations near the coast indicate that the damping is less
here, where the ice thickness is smaller, and the forward velocity is greater.

L. Pfitzner (to be published) has made a preliminary quantitative analysis of
these results by reference to the theory of Section 5.4, in particular formula (51)
above.

In Table 6.6 are shown the values of A, Z, A/Z, V, a1, 81, ¢, B for the pre-
dominant obvious waves along the line. From this the mean wave length was found
to be A =7-31 Z.

The damping factor () (mean ¢ ' = 0-086), did tend to decrease approaching
the coast.

From this table a mean value of B was calculated as 54 X 10% dyne
cm2secl/3, The B value also decreased towards the coast as expected from the
temperature distributions.

This mean value of B differs only slightly from the value of B obtained along
this line by McLaren {1968) from the variation in strain rate over the undulations.
Tn units of dynescm 2sec!/?: strain rates B = 1'5 X 109,

damping factor B = 1-7 x 10°.
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ICE CAPS 6.3

For the dome—Cape Folger line (D/A), the wavelengths are similar but the
velocities are much Iower. The damping factor is also much lower and, as a con-
sequence, the value of B determined for this line only differs slightly from that
for the other, thus confirming the previous results from strain measurements.

This analysis is only preliminary but suggests that variations in surface and
bedrock elevations over undulations and damping factors provide a valuable
further means of investigating the flow properties of the ice masses. A more
detailed analysis is being carried out by Carter, using more closely spaced intervals
of 400 m and performing spectral analyses of the surface and bedrock elevations,
as wcll as the cross-spectra to test more thoroughly the ice flow predictions.
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7.1 MASS BALANCE AND STATE OF CHANGE

7. MASS BALANCE AND STATE OF CHANGE

7.1 INTRODUCTION

This section deals with the problem of whether or not the existing pattern
of accumulation over am ice mass exactly balances everywhere the change in the
ice mass due to movement. In the case of exact balance, the shape and size of
the ice mass remains constant in time. If exact balance does not exist everywhere,
parts of the ice mass will be changing thickness in time. In this analysis we wish
to devise means of answering the following types of questions:

(1) Given a fixed accumulation pattern over a certain arca, and constant
temperature and ice flow parameters, will an ice cap develop with a shape and
size which remain constant, provided all other parameters arc constant with time?

(2) What is this “steady-state” shape for the given parameters, and how does
it depend on the accumulation pattern and flow law parameters of the ice?

(3) How does an ice mass change when it is not in steady state? What 1s the
steady state corresponding to its present accumulation profile? Is the shape tending
towards the steady-state shape or not?

(4) How can the history of an ice cap, i.e., its build-up and decay, be related
to the changes in accumulation patterns and the ice flow parameters, which are
temperature-dependent?

Hence, to obtain answers to these questions in the following sections we ex-
amine the conditions for balance over an ice cap, imbalance and the resultant
state ol change, the elevation profiles of existing ice caps and their dependence
on accumulation, bedrock topography and the flow law parameters; and, finally,
the paths of particles with time through the icc cap and the age of the ice.

7.2. CONDITIONS FOR BALANCED STATE

We consider a generalized sector of an ice cap between two flow lines which
are a small distance s apart at distance r from the cenfre (cf. Fig. 7.1, above).

Let V¥ be the average forward velocity at position r where the ice thickness
is 4 and the accumulation rate 4.

Then the conditien for balance state is that the flow across the area sH equals
the accumulation over the area between the flow lines inland of the section at
distance r,

ie., d(sVH) = sAdr M
or sVH=_[ sAdr @3]
0

Now, we define 4, as the mean accumulation rate over ithe secior hetween the
flow lines from the centre to distance r, by
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CONDITIONS FOR BALANCED STATE 7.2

iA
\)
—
—_—

Fic. 7.1.

J‘ sAdr JA sAdr
f_lr = 0 = £ 9
f sdr S,
0

where S, is the area between the flow lines to distance r.

(3)

Equation (2) may then be written:

sHV = S, 4, (29
For the special case where the angle of divergence (#) of the flow lines js constant,
we have the corresponding equations:

d(rVH) = rAdr (1b)

rVH = j;Ardr (2b)

and VH = 1A r, (2'b)
_ 2 fr Ardr

where A= =L (3b)

When the divergence angle 8 is zero this result reduces to that for two dimensions
or a cylindrical cross-section, L.e.,

d(VH) = Adx (1c)

or VH = A,x (2'c)

.. here A, = lj Adx (3¢)
XJo

For the case of the ice cap above, with constant divergence angle, we note the

balance velocity is obtained from equation (2'b) as

A
2H

|

(4)
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73 MASS BALANCE AND STATE OF CHANGE

For the case of zero divergence the balance velocity corresponding to (4)
is given by

|

L, J— xx
V. o (4c)
Differentiating (4), we obtain the balance longitudinal strain rate as given (drop-
ping the subscript , on A4) by
ér*=£_,§fd_ﬂ+__rm@ (5)
2H 2H dr 2H dr
An alternative form for the strain rate may be cobtained in terms of the velocity V
from equation (1b) as
. VdH V A
“Twa 7T H ©)
These equations may be used to answer questions (2) and (3) of Section 7.1.
Specifically, they permit the derivation of the required veloeities and strain rates
for balance from given profiles of ice thickness and accumulation along a flow
tine. If, in addition, the velocities and strain rates are measured, then a check can
bc made on the state of balance of the ice mass along the flow line.
In the case where balance does not occur, equation (2b) may be also con-
sidered as defining the required accumulation profile A* to balance the actual
velocity and thickness profile, ie.,

A = &Ii (N
F
or, for the case of zero divergence,
A= (7)
X

i.e., half the accumulation for the same velocity and thickness profile as that
required for an ideal circular ice cap.

Similarly, we can use (lb) 1o obtain for the balance accumulation
_ LdrVH)

roodr

7.3. IMBALANCE AND STATE OF CHANGE

A* (®)

In general, for an ice mass where the accumulation does not everywhere balance
the change due to movement, there will be a resultant net change in form (given
by the variation in elevation, or ice thickness, contours with time)}. The net change

L . - 7 | .
in ice thickness in time 5 overa fixed point of the bedrock, depends on the accu-

mulation rate A, the basal melt rate M, the ice thickness H and mean vertical

strain rate F:; = (&, + éy), the horizontal velocity ¥ and the surtace and basal
slopes, =, #8, according to the relation.
%:A—M+HéZ+V(a~ﬁ) (9)
t
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IMBALANCE AND STATE OF CHANGE 7.3

All terms are calculated in units of cm of ice per year, and we neglect the variation
in density in the surface layers of the ice mass.

It all the parameters on the right-hand-side of equation (9) are known over
the ice cap, then the change in shape can be calculaled. The change in thickness
with time can also be computed from generalizations of (7) and (8) from

oH _ A, — 2VH (10)
ot r

or oH _ , _ LdUVH) (11)
ot roodr

for a circular ice cap of constant divergence angle. For the more general case
from (1)

s
X

_ 4 1 d(sH_l_i)
{ dr

(12)

2
t

. .o
and for the mean rate of surface-lowering —7 Over the total area § between two

flow lines we have

=l

=4 — sHY (13)
! hY

Using the equations (11} and (13) the surface-lowering at each point of the
surface of the ice cap can be calculated where the accumulation rate, ice thickness
and velocity are known. From equations (10) and (12) the average lowering over
a sector wnay be calculated. These results should agree with thosc obtained from
equation {9) and thus provide a check on the accuracy and validity of the method.

For the Wilkes ice cap the results of these calculations by L. Pfitzner (to be
published) for the surface-lowering are shown in Fig. 7.2. It can be seen from this
figure that the ice cap is not stationary. The western side is remaining fairly
stationary but the north-eastern section is lowering rapidly, thus changing the
ice-cap shape. This section of the ice cap is already lower than other parts of the
same distance from the cenfre and extrapolation back in time suggests that, if the
present rate of change has been constant, then the ice cap was close to symmetrical
about 400 years ago.

A direct check on the state of change of an ice mass can be carried out by
making precise measurements of the elevation profile, and the rate of change of
this elevation profile with time. Several methods are commonly used to determine
elevation or elevation change of an ice mass:

|

j=i)

(i) Precise optical levelling traverses over the ice-cap surface can determine
elevations to within a fraction of a metre over 100 km. This is generally a
Jaborious and slow process, and to detect vertical change the whole line must
be relevelled at a later date. A 100 km optical levelling profile from Wilkes to
the summit of the local ice cap and back was carried out by Pfitzner in 1966.
The round trip closure error was less than =30 cm.

(i1} Repeated aerial photogrammetry. Provided there is sufficient ground control
and at the same time adequate markers and features exist on the ice mass

171



MASS BALANCE AND STATE OF CHANGE

7.3

‘[(paystqnd 2q 01) Iauziyd
I31Ie] S9IBI UOMBINUINDDE PUT SUIENS ‘S3IIZ0[3A Palnseaw JuUlsa SUOUB[MOTEd 20UTIaATp XN|f WOILJ $3JRI SUITOMO[-20RIINS 15U |RlUUY "Z'f 'O1q

VIILOMVINY
3312v719 N3LLlol dv2 321 1v301 SIHTM
=4 W aN¥IMOT  3PVIANS
sa133w wr spybay 1y sptib uieIys jo suoiyised 2jE2IpUl 5133397

SuM 03 0§ Oy 08 02 01 S0

+49
(Y
4313v19
OMO443ANYA
R
\g
/7
/7 0
\\\ % & ]
3
= e SINTM
I! ’-
R}
439104 34D
3010 S99

WSl

L1L3SNIOd 3dvD

172



IMBALANCE AND STATE OF CHANGE 7.3

surface, an accuracy of 1 metre or better may be achieved for vertical height-
ing with present high order cameras and plotting machines {cf. Blachut and
Miiller 1966, Konecny 1966, Kick 1966).

(i) Repeated gravity readings at a marker on the ice surface can reveal its height
change. Ideally, the remeasurements should be over the same point of the
bedrock. If the horizontal movement of the ice is small compared to the ice
thickness, then the change in gravity (4g) at a marker on the surface depends
only on the lowering of the elevation (4E) and the change in ice thickness
(4H), assuming the density profile remains constant, i.e.,

Ag = AAE + pupAH {14)

where A is the variation in gravity with elevation (=~ — 0-31 mgal/m) (cf. Dobrin
1960),

p is the ice specific gravity ~ 0-917,
u is the attraction coefficient of an infinite slab of unit thickness and of unit
density contrast ( ~ 0-042 mgal/m).
For a lowering or rising ice cap following a point on the surface of a column of
ice where the accumulation rate is A, the basal melt rate M, the ice thickness H,
vertical strain rate ¢, velocity ¥, and basal slope 3 the change in elevation in
time ¢ is given by

AE = (A — M + HE, — VR)AL (15)
and the change in ice thickness by
AH = (A — M + Hze)At (16)

Hcnce, we obtain for the gravity change {4g)
Ag = (A + up)AE + ppVBAL,
5o _BAd_ ppVPAL an
(A+upy (A+pp)
= —3-74g + -10V34r m.
The change in ice thickness over a fixed point in the bedrock is given by
OH = AE + VuAtL

Table (1) shows the preliminary repeated gravity measurements by D. Carter
in 1967 at the strain grid positions over the Wilkes ice cap and the calculated
elevation changes. Also shown are the elevation changes calculated by L. Pfitzner
from the measurements of strains, movement, ice thickness, slopes, and accumula-
tion rates, at each of the strain grids for the surface of the column of ice moving
with the surface marker down the slope.

or

TaBLE 7.1
ICE CAP LOWERING FROM (g) GRAVITY VARIATION (f) FLUX DIVERGENCE
Strain grid A B C D G H J K L
Lowering rate { f 0-4 05 0-5 1-5 20 2-4 (5) 0-4 &6
m yr-i jg 05 0-6 06 1-3 1-3 22 3.0 1:5 0-9

It can be seen that the lowering deduced from the gravity results (in spite of still
large errors at this stage) agrees fairly well with that calculated from the flux
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1.4 MASS BALANCE AND STATE OF CHANGE

divergenee. Precise measurements of this kind can be used to detect the difference
between £, the mean strain rate through the ice and €, the strain rate at the surface.
Since, from Sections 5 and 6, the strain rates can be very local it is important to
obtain regional averages over a considerable area, rather than single spot values.

7.4. ICE CAP SURFACE ELEVATION PROFILES

We found in Section 6 that the velocity profile from the centre to the edge
of an ice cap was largely governed by the ice thickness, surface slope, and the
flow parameters of the ice. We have also seen above that, for certain values of
the parameters V, H, A, o, 8, the ice cap surface remained stationary in time.
If the accumulation is too large for balance, then the ice cap increases in thickness.
This increases the velocity and outward flow and so at seme stage the point of
balance may be reached. We now examine the shape of the ice cap profile for the
stationary state. This question has been treated by many workers including Nye
(1959), Weertman (1961 a and b, and 1964 ), Haefell (1961}, Shoumsky (1963},
Lliboutry (1965). The following approach is similar to Haefeli’s, since the velocity
—slope—thickness law used here is similar to his, except that the variation of the
flow parameter B with temperature is included here.

For the case in which the longitudinal thickness—strain rate gradient is small,
~1/n
dH Be 50
ax

A simple power refation holds between velocity V, ice thickness A and surface
slops ¢, and the flow law parameters n and B, viz., 5(40),

n+1 n

yo 2 (@) (18)
n+1 v B

Now, for the balanced state we sec that equation {2°b) gives a relation between

velocity, ice thickness and accumulation rate (for an ice cap of constant divergence
angle).

Le.,

VH = %Z,J"
Hence, we can obtain a balanced state profile by equating these two velocities, viz.
(dropping the subscript r),

q nti "
Ar _2H (ﬂsﬁ) (19)

2H n+1\B
For zero divergence the analogous equation is
A _ 20! (gg_z)
H n+1\B
which corresponds to a similar profile to (19), but with double the accumulation
rate. Tt is shown below that this only makes a small difference in the shape.

For the more general ice cap, where the flow line divergence angle is not
constant, the corresponding relation is found from (2°) as

SrHr 3 2Hn+1 (@)n

19’
sH n+1\RB (199
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ICE CAP ELEVATION PROFILES 7.4

7.4.1. Effect of bedrock slope
We note that the equation

&= — a +f (20)
dr
relates the surface slope to the ice-thickness gradient and the bedrock slope.
Hence, from (19} and (20),
Ar = —2 g2 [9—9 (— ., ﬁ)] (21)

n+1 B dr

o ( + 1Ar)“~ _ _ypeamed (fﬂ_ ﬂ) ,
4 B \dr

We may express the bedrock slope as — —jf, where & is the bedrock elevation.

Equation (21) may then be integrated, assuming for the moment A, and B
are constant, to give:

B (n + IZ]UnrHun = P8 grvam (?il)&ng1+2/ndb +C ()
4 / 2B n B

In many cases the height of the bedrock & is small compared to the ice thickness
H, and so may be neglected. In general, this equation can be integrated numerically
from the irregular functions of b(r) and H(r), as pointed out by Nye (1959).

To obtain an idea on the general effect of the bedrock on the steady-state sur-
face profile, we consider the particular case where the bedrock height is everywhere
a certain constant small proportion (v} of the ice thickness.

We then have db = »dH, and so from (22)

_ (g + 1_2)””,,1“/" P8 el +v ) +C (23)
4 2B

In this case, the basic “shape” of the surface is unchanged and, since v is generally

less than 25%, only a slight change is made to the profile. The net effect is

equivalent to having a smaller value of B given by

B

* = .
B=is

Furthermore, we notice from equation (23}, in answer to questions 1 and 2

of Section 7.1, that, given constant conditions (of accumulation 4 and flow law

parameters » and B), then a steady-state profile will develop, but this profile

is not unique since the boundary value C is determined by a ratio of H/r. Hence,

for a profile to be unique, the extent r, must also be specified. In practice, the

extent is generally determined by such external factors as bedrock height, sea-
water action, air temperature and ablation rates.

From equations (10) and (18)
~ o Apgntz n
o g, - AT (Pﬂ) (24)
ot (n+ 1y \ B
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7.4 MASS BALANCE AND STATE OF CHANGE

This result indicates that, if 4, or B change from the balance values, the ice
thickness will change in such a way as to tend back towards steady-state. However,
the possibility of uneven distributions of 4 and ¢H/ 9t exists which could give rise to
waves, surges and oscillations with phase delays and consequent “hunting”, without
actually reaching equilibrium more than momentarily.

We now examine in more detail the profile on a flat base, i.e., for § =0.
If we write

r=r, when H =0,

and H=H;,; when r=0,
we may write equation (23) as
2+2/n L+i/m
e )
H, Fo
This is the equation derived by Haefeli (1961) and differs from that of Nye (1959)
viz.,
2+ 1/m 1L+ 1/m
(ﬂ) + (i) =1 (26)
Hq Fo

in the exponent of (HE ) (le., 2 + 1/m compared to 2 4+ 2/n) and that Nye's
L]

m is the exponent of an assumed relation between stress r and velocity ¥ of the
form

Vo™,

where m =

I
—
o]
[o5 )

for sliding, i.e., for n 4,

m=1 15 2 2-5
Hence, we see that for » = 3 or 4 the two profiles of Haefeli and Nye do not differ
very greatly. Nye (1959) pointed cut that the profile (26) tended to a parabola

as m —* oo, the case of perfect plasticity. Ths also holds for the profile (25).

7.4.2. Effect of flow parameter B

In general, the flow parameter B varies with temperature. The average tem-
perature {8) through the ice cap may be expected to decrease as tbe surface
elevation increases. Thus, if the value of B typical of the ice mass depended on
the average temperature through the ice, then it might be expected that B increases
with H. In this case it can be seen from equation (21) that, if

B o (1 — ',
as used by Shoumsky (1961), and if
8 « H,

then

where £ is constant. The profile (25) then reduces to that of Nye, with m replaced
by n.
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But, since most of the shear occurs in the basal layers, the temperature there,
rather than the average through the ice, is most relevant for the value of B. From
the results of Section (4) on the temperature distributions in ice caps, it appears
that the basal temperatures may typically decrease inland, but depend on the
ice thickness accumulation, velocity, etc., so that a detailed general discussion of
the temperature effects on the profile is too extensive to be included here.

From equations (23) and {25) we obtain the following relation between the
maximum height, H,, width, ry, accumulation rate A4, and flow parameters n and
B (assumed constant here),

Hy _ (lﬂ"’"“ (” : IZ*)”"H(I +9) @7
re  \pg
where for balance A* = 4,
and for non-balance A* =4 — (Z—I;I .
From this we obtain an estimate for B as
0

Hence, if we know the value of n, the value of B can be estimated from the size
of the ice mass and the accumulation rate.

The value of » may first be determined from the velocity—slope—thickness
law, equation (18), provided we know a velocity profile.

It can be seen that the parameter B (if constant over the region) only affects
the size and not the shape. The shape is then determined primarily by the parameter
n. Haefell (1961) shows the profiles of equation (23) for several values of n
and shows how different ice masses compare with them. The results supgest that
the appropriate values of n lie between 3 and 4, as found for the Wilkes ice cap.

If B is not constant and is known as a function of r, equation (21) can be
written as

n+1 Alnpplin — gA+ting, af |
4 dr
and integrated to give the new shape.

Table 7.2 shows estimated mean values of B from equation (28) for various
ice-cap profiles.

For Roosevelt Island and Greenland, zero divergence has been assumed while,
for the remainder, ideal circular divergence has been assumed.

The values of accumulation listed for Wilkes are the balance accumulation A4 *,
For the other ice caps the actual accumulation is used. If Greenland were sinking
and the Antarctic rising, then using balance accumulations would bring their values
closer together. The errors in the value of B are about == 0-2 » 10% and so we
conclude that the effective average values of B de not differ by more than the esti-
mated error for the different ice caps. This means that the calculated values are not
sufficiently accurate to differentiate between different average basal temperatures
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Wilkes 1ce Cap Relative Elevation Profile
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F1c. 7.3a. The relative elevation profiles for the dome—Cape Folger line (F) and the dome—
Cape Poinsett line (P) only differ slightly from the parabola (n = ).

TaBLE 7.2
FLOW PARAMETER B FOR STEADY-STATE PROFILES FOR ICE CAPS
Tce cap ro H, A v B Comments Data
km m gem 2 dynes
cm Zsect/3
Drygalski 1. 10 426 70 ¢ 05 G-75 > 10° Average Bakayev 1967

whole jisland
Roosevell 1. 40 760 20 0-10 071 X 109 Central E-W  Clapp 1965

section

Wilkes (a) 96 1200 (100} 0-20 0-75 X 10* Dome to MclLaren 1968
Poinselt

Wilkes (b) 115 1200 {30) G-42 075 X 109 Dome to McLaren 1968
Folger

Greenland 560 3200 45 0 0-73 ¥ 109 EGIG Bader 1961
profile

Antarctica 1200 3700 15 0 068 X 10?2 Inland of Bakayev 1967
Wilkes and  Battyc {un-
Mirny published)

I'78
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Relative  Radius r'Re

:AZ‘;;: Wilkes Ice Cap Relative Ice Thickness Profile
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Fie. 7.3b. Relative ice-thickness profiles conform more closely to n=3 to 4.

for the ice caps. The values found for Wilkes are close to the values obtained from
the velocity—slope thickness profiles of equation (18) (0G-85 >¢ 10° dynes cm™
sec™*) and indicate a mean basal temperature of about —10°C, (cf. Section 6.3.1).
For a more precise anaysis the variation in the bedrock elevation, according to
equation (22), should be considered.

From equation (27) it is also evident that, with other parameters constant,
the variation of maximum ice-thickness with the average value of the flow para-
meter B is given by

Hy oc B"20* D) or forn = 3, Hy oc B®

7.4.3. Effect of accumulation

From equations (24) and (25)—assuming constant accurudation over the
area, and constant flow parameters—we see how the general steady-state ice cap
size depends on the accumulation. The actual shape is dependent only on the n
value (or the variation with r in the various parameters), but the ratio of the
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7.4 MASS BALANCE AND STATE OF CHANGE

maximum height to the width depends on the accumulation rate. From equation
(27) we see that for a given radius ry the maximum thickness is proportional to the

l
C2(n ¥ 1)
ie, Hp o AVR*D orfor  n=3 Hy « AY®

For the same extent and flow parameters, with n = 3, the rectangular-type
ice cap (with zero divergence) is 2¢  1:04 times the height of the corresponding
circular ice-cap.

A similar conclusion for the low power of the accumulation rate was reached
by MNye (1959). As Haefeli (1961) pointed out, the consequence of this general
relation is that the accumulation rate has only slight effect on the maximum height
of an ice mass. However, this conclusion is only valid for the radius r¢ held con-
stant. If the accumulation rate were to increase, the ice mass would generally
expand laterally as well as increase in thickness. In reality, the limit of the extent
of the ice mass may more often be governed by the basal topography, sea water,
and the prevailing temperatures.

For a constant height in the centre, and constant flow parameters, the extent
of an ice cap is related to the accumulation rate as follows:

th power of the accumulation,

Fp o€ Fim+t-
As a particular example of this, we notice for the Wilkes ice cap the different
extents r; and r» on the sides of different accumulation rates: A4, for the dome—
Cape Poinsett line and A4, for the dome—Cape Folger line, shown in Table 2.
Although 4, = .34, the resultant B values only differ slightly.
In the case of zero divergence, it is evident from (27), (7) and (7c) that
1

the extent of an ideal circular ice-cap is 2% 1 or >~ 1-19 for n = 3, times the ex-
tent of the corresponding rectangular or two-dimensional model. For regions of
convergence the reduction in extent is even more pronounced.

A further point noted hy Haefeli was that the larger the ice mass, the smaller
is the ratio of ice thickness to radius {provided the other parameters are the same}.
Table 7.3 lists the radius R, and maximum ice thickness Hy (above the zero bed-
rock) and the ratios Hy/R,y and Hy?/R, for a range of ice-cap sizes.

TaarLeE 7.3

RELATIVE DIMENSIONS OF VARIOUS ICE CAPS

Mean
Tee cap Radius Height Ho/ R Hé2/Ro

or width Hsm > 102 10m

Ry km
Drygalski o 426 5-30 1.80
Roosevelt 40 760 1-90 1-40
Wilkes 115 1200 0.96 1-26
Greenland 560 3200 017 1:35
Anlarctic 1200 3700 0-03 1-15
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F1c. 7.3c. The eflect of the form of the accumulation profile on the steady-state shape of an
ice cap is illustrated for four types of aceumulation profiles 4 o ™ for the ice cap profile, with
power law flow B constant and n = 3.

The table confirms Haefeli's qualitative prediction and, furthermore, shows
that the ratio Hq?/R, remains remarkably stable. Table 7.2 shows that part of the
residual variation in H,*/R, is due to the different divergence and accumulation
rates.

In general, it is unusual to find the accumulation rate constant from the centre
to the edge. However, if we know A(r) as a function of r, then equation (21) can
be readily integrated to give the appropriate steady-state profile,

As an example, suppose A(r) = ar", where a, m are constant, and further,
for the present, @ ~ 0, B is constant. Then equation {21) reduces to

(u arm+1)l;'n _ _ H1+2/n P_g é{_{ (29)
v 4 B dr
Integrating, we obtain sirnilarly as before
H 2+2/n r 1+(m+1)/n
(B () -
\H o

This indicates that, although tbe magnitude of a constant accumulation rate over
the area does not affect the shape of the profile, the pattern of the accumulation

181



7.5 MASS BALANCE AND STATE OF CHANGE

rate does. Fig. 7.3c shows how different typical patterns of accumulation rate affect
the steady-state shape of the ice mass,

7.5. PARTICLE PATHS AND AGE OF THE ICE

In studying the history of an ice mass the main task is to extrapolate forward
or backward in time the positions of each particle of the ice along its flow path.
In general, as the surface rises or falls at a rate depending on the degree of im-
balance of the budget, there will be a change in the ice cap boundary as well. This
change of form of the ice masses causes the velocity distribution to change, which
makes the extrapolation, in time, of the ice particle positions very complex. Hence,
to begin with, we study the particle paths for an ice cap in steady-state.

This problem has been discussed by several workers, including Crary, et al.
(1962) for the Ross Ice Shelf, Haefeli (1963) for Greenland, Meier (1960) for
the Saskatchewan Glacier, and Shoumsky (1963) and Lliboutry (1967) for glaciers
generally.

Here this earlier work is reviewed and generalized to examine the import of
the various parameters, first for steady-state and then for non-steady-state ice
masses.

7.5.1. Equations of irajectories
Let ¥ be the horizontal velocity of an element of ice at distance x fromn the

centre at time !, and depth z below the surface. Denote the accumulation rate at
x by A and vertical strain rate . assumed constant from surface to base).

Now, it we know ¥V, ¢, and A as functions of x, we can determine the paths
of the particles, or the positions of the particles at any time.

The time 8¢ to travel distance §x is given by

ax
8t = = 31
o (31
and hence the time taken to reach x is given by
dx
1= | = 2
V (32)
Similarly, the distance travelled in time £ is given by
X = J‘th (33
The increase in depth z of the particle below the surface in time 8 is given by
bz = Adt — g,zdt (34)
Hence, az +ez=A (39
dt
Crary (1961) showed that this equation had the seclution
. t N
2 = o~ Ju [Zo + [ Aej”d’dr] (36)
]
If we define  ; = %J edt (37)
¢ 0
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7.5 MASS BALANCE AND STATE OF CHANGE

equation {36) becomes

-

z=e ™ [20 +J Ae";'d.!J (36"
[4]
We may also express these relations in terms of x from equation (31)

ie. bz = A gx 20X (37)
V V

and dz_ e, _A (38)
dx Vv

Hence, 2 = e~ Jevix [20 + %e J-(é’v]""dxil (39)

The particle paths in some cases may be more easily calculated in terms of the
distance from the base (¢, say). If M is the basal melt rate, the relevant equations
corrgsponding to (37) and (39) are

: M
se= - B Mo, r
: 14 V g @7
and ¢ = e—f(;/V)dx [fo - Jh; ej(é/V)d.wdx] (39%)

For many ice caps the basal melt is negligible and this then reduces to

= ge e
The results of the calculation of particle paths from these equations for the centre
line of the Amery Ice Shelf, and two profiles of the Wilkes ice cap, are shown in
Figs. 7.4, 7.5, and 7.6. The age isolines of the ice are indicated and show up as
approximately parallel layers in the ice cap, but gradually becoming closer together
approaching the base and the ice front. It can be seen that the age of 90% of
the dome——Cape Poinsett profile of the Wilkes ice cap under 5,000 years.

7.5.2. Effect of various paramelers on parlicle trajectories

Haefeli (1963) calculated steady-state streamlines for the central regions of
ideal ice masses of strip shape (two-dimensional) and circular shape, where the
ice thickness and accumulation are assumed constant and the bedrock flat. The
following approach generalizes this to allow for flow lines, curved in the horizontal,
variable ice thickness, accumulation, and bedrock slope, and also non-steady state.

Let 7 be the horizontal velocity of a particle distance r from the ice cap
centre and g above the bedrock at time ¢. Let v, be the corresponding vertical velocity
(relative to the bedrock, which may be flat or irregular),

The area between two flowlines, which are distance s apart at distance r from
the centre, is denoted by §,. We define the variable coefficient A by

Se_ 11 (40)

N

Then, for the particular cases of the strip ice sheet A = 1, and for the ideal circular
ice cap A == 4. In general, however, A will be a function of r.
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PARTICLE PATHS AND AGE OF THE ICE 7.5

Let A be the accumulation rate at distance r from the centre and A4, the mean
accumulation over the area between the two flowlines to distance r.

Let the ice thickness at r be H.
Equation (13) expresses the continuity condition
— ¢H
SHV = S (A, + 0;)
at
F_ 5 (41)
where A.* is the “balance” accumulation rate.
Hence, the horizontal velocity is obtained as
dr _ S4f _ A}

— = 42
dt sH H “2)
The vertical velocity is given by
dz -
— =gz 43
i {43)
where g is the vertical strain rate.
From equation (9) this may be written
d_zzi(A_ V"fff.,.q,}.{)
di H éx at
_z (Af - W_H) (44)
H Jx |/

Consequently, the equation of the flow lines is obtained from (42) and (44) as

Tz (Af= — Vah)

iz_ &x
dr Ard¥
z (AF OV aH)
= |= - = 45
Ar (Af AF dx. (9
Hence, dz = L (ELIEJ d—r,
z ANATT F
dz 1 (A* v 5H) dr
or —_— = — 7—” _ - 46
z ANAy A} or/ r (“46)

Provided S/s, A4, H, dH/0¢ are known as functions of r, the trajectories can
be calculated using stepwise increments of 8. It should be noted that for non-steady
state this equation gives the instantancous trajectories only. In order to trace the

paths of actual particles, # and P must be varied in time along with %, even if A,

1s constant. The procedure for calculating non-steady state trajectories is indicated
in the final section. Here we merely note that the non-steady trajectories are ob-

tained by using the balance accumulation rate 4,* and A,* rather than the actual
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values. Now, to examine the effect of the various parameters, we consider steady-
state, dropping the asterisks from equation (46).

(1) Divergence of flow lines. The trajectories of equation (46) reduce to those
of Hacfeli (1963), if we consider the inland region of an ice cap where the accumu-
lation rate can be taken constant (and hence A, = A4,) and the thickness gradient

neglected (ie., V %%@ A). Equation (46) then integrates to

z = Zor M (47)
This corresponds to Haefeli’s strip ice sheet and circular ice sheet where A = 1
and + respectively and z is the height above the bedrock at distance r, and z = Z,
when r = 1. More generally, A can be estimated from the convergence or divergence
of the flow lines. For a circular ice cap, relative divergence (compared to radial)
gives A < %, while convergence gives A > %.
(2) Variable accumulation along profile. The effect of variatiop in accumu-
lation rate along the profile can be examined by considering the variation in
accumulation given by a relation of the form

A, ™ (48)
In this case the average accumulation rate from ¢ to r is given by
A= A (m>-D) (49)
m+ 1

Then, taking A =1 and%: 0, equation (46) integrates to

z = Zor~mtD (50)
Thus, it appears that a linear increase in accumulation rate away from the centre
{(m =1) has the same effect on the particle trajectorics as a constant circular
divergence (A = %).
Decreasing accumulation from the centre to the edge (m < 0) results in the
trajectories converging less rapidly than for the constant accumulation.

(3) Effect of thickness gradieni. From equation (46), for comnstant A, and
A, = ", we obtain

V oH dr
=7 —I(m+1),"}. drjr + Ly 51
7T et JA/I ar r Y

vV oHdr

= Zgr g Ad oror (52)

Hence, any decrease in thickness from the centre outwards (aH/dr negative)
causes higher convergence rates of the trajectories in the vertical profile. Typical
ice masses decrease in thickmess towards the edge, and at the same time the

velocity generally increases so that V%—i]becomes large compared to A. As a result,

in this region of the ice mass the thickness gradient is as important as the accumu-
lation rate in determining the particle trajectories, and its magnitude can be cal-
culated from equatton (52).
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7.5.3. Non-steady-state trajectories

To trace the particle paths in an ice mass that is not in steady-state we must
fiist calculate the ice thickness change 8 of the surface over a time &t from

SH = (4 — &,H + V(x — f)dr (53)
This allows us to calculate the new elevation profile.

Then we can still refer the depth to the new surface and use equations (37)
and (39) to calculate the position of the particle for the first step.

But we note that, as the thickness changes, so will the slope and the velocity.
From the relation for velocity

V = ka"HH! (54)

- 2
n+1\B

we can obtain the change in velocity, provided the temperatures (and therefore B)
remain the same, as

where

8V = nka" 'H" 182 + (n + Dka"H"6H (55)
SV du oH
or —=n— +{n+1)— 56)
” " ( ) o (

With the new velocity profile the nosition of the ice particles after the next

time step can now be calculated.%[will change as V and H change and, in some

cases, may tend to zero, giving steady-state. But a steady-state will not be reached
in general and so the above extrapolation technique will have to be continued.

The process becomes very tedious for lengthy extrapolation but, because of its
feedback properties, it lends itself very readily to iterative computer techniques.
However, we note that the accumulation rate and ice flow properties have been
taken as constant. For lengthy extrapolation with Jarge changes in the ice cap
dimensions, this may well not be valid. So, without detailed information on the
variation of accumulation and temperature (and hence the ice mass flow para-
meters) over a long period, lengthy calculations to study the growth or decay of
large ice masses remain premature.

As an cxample of the use of the technique Fig. 7.7 shows the results of a
comparatively short-term non-steady state extrapolalion to show the expected
positions of the Wilkes ice cap surface several hundred years in the past and also
into the future.
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INTRODUCTION 8.1

8. SUMMARY AND CONCLUSIONS

8. 1. INTRODUCTION

Although the general equations of motion for an ice mass, of density p, where
oy 18 the stress at x;, and X, is the external force,
% = px, M)
ox,
is difficult to solve in general for moving ice masses, solutions for velocity and
velocity gradient can be ¢btained in certain cases, because of the special types of
symmetry encountered in the moving ice, by separately considering the stress gra-
dients and velocity gradients:

(1) laterally across the line of motion,
(2} vertically from surface to bedrock,
(3} longitudinally in the line of motion.

The reason for this is that the respective velocity gradients are greatest in
different parts of the moving ice mass, i.e., the transverse gradients (vertically and
herizontally) are maximum near the boundary and least at the surface and centre,
while the reverse is true of the longitudinal gradients. Appreciable direct inter-
action of the velocity gradients only occurs in some cases which are not considered
here.

Given a flow law of ice, i.e., if we know the relation between the stress deviator
and strain rate for ice, say,

&; = 1/nof; @)
whers » is a funcion of temperature and the stress invariants, then the equations
of motion can be written in terms of strain rates and solved (nuemerically) to give
velocities throughout the ice mass in terms of the boundary conditions, viz., the
shape and size of the ice mass and the velocity and strain rate at some paosition,

8.2. THE FLOW LAW OF ICE

The flow law of ice, however, is not a simple one and depends on the stress,
tempcrature, ice type (crystal orientation, size, density, etc.). In natural deforming
ice masses the crystal sizes and orientations are not random but tend to adopt
certain common features. Although the precise nature of these features has still
to be determined, the result is that the stress and temperature are the main
variables that need to be considered in moving ice masses. The experimental results
to date suggest that the flow law can be represented approximately by the empirical
relation

7 = a,¢%t + a,(e*r)" (3)



8.3 SUMMARY

where y is the octahedral shear strain rate sec™ !,

7 15 the octahedral shear stress in bars,
f is the temperature in °C,
a; ~ 4 x 1077 bars ~'sec ™!, approximately depending on the ice type,

a, ~ 2 x 107% bars™"sec™ !, approximately depending on the ice type,
n=3-—4,
k~ 1710 °CL

The experimental data so far, however, still leaves the strain rate in doubt by
about a factor of 2, depending on the ice type. With the above values of a and n,
the first term (a,r) predominates at low stresses, up to 0-5 bars, (the two terms
are equal at = 0-6 bars for n — 4) where the stress-strain relation is Newtonian
and the ice reacts as if of constant viscosity. At stresses above 06 bars the second
term (a.r) becomes predominant, and above 1 bar the first term is negligible,
giving a simple power law for the flow refation. Over any limited range of stress,
equation. (3) can be approximated by a simple power law whose parameters
will vary with the stress range.

8.3, CROSS-SECTION PROFILES OF FLOW

8.3.1. The tranverse velocity profile, glaciers, ice shelves

When the longitudinal strain rate is small (less than 1% yr™') it can be generally
neglected in the calculation of the transverse and vertical profiles of horizontal
velocity (u). For a typical symmetrical glacier, flowing down a uniform slope «
with zero horizontal divergence, the general equations reduce to

%‘.Ln, + OTpz pge (4
oy oz
?j = QB_"’C"_ITxy; ‘?\i =2B""" g, (5
ay éz
= 22, + (6)

where B and n are the power flow law parameters, assumed constant here.

These equations can be solved numerically for a given cross-section or to a
fair degree of accuracy may be extrapolated from the results obtained by Nye
(1965) for velocity profiles across sections of rectangular, elliptic and parabolic
shapes. For glaciers much wider than they are deep the cross-section shape has
only a slight effect on the shape of the vertical profile of velocity at the centre, but
does affect the magnitude.

Tor the special case of an ice shelf of width 2a bounded at the sides, we have
for the velocity ¥, at distance y from the centre where the velocity is I,

1 (pgd)",.ﬂ
v, - v, = L (p8® 7
e~ =i\ @



TEMPERATURE DISTRIBUTIONS 8.4

8.3.2. The vertical velocity profile: ice caps
For the simple power law for flow the vertical velocity—depth profile is given by

1 (PQ“)" +1 :
V=V, =— |"=—]| 2" 7
fa+1\B (7)

This, however, does not consider the effect of the temperature dependence on the
flow Jaw and the variation of temperature with depth in ice caps.

In typical ice caps the temperature increases near the base, i.e., in the region
where the shear stress is greatest. This leads to a vertical velocity profile which is
very temperature-dependent. Hence, it is necessary to adopt the generalized flow
law

Y=a, 4T+ az ", With o, = age” ",
and also to know the vertical temperature profile to calculate the vertical profile
of velocity.

8.4, TEMPERATURE PROFILES IN ICE MASSES

8.4.1. Efject of frictional heating on the temperature profile

The temperature ¢ at depth z in an ice mass of thickness of H, in the absence of
accumulation or movement, is governed by the temperature at the surface ¢,, and
the basal temperatore gradient y, = ¢ (the geothermal heat flux).

=0+ y.z )

Horizontal movement causes heat production by energy dissipation —dg-from n-

ternal friction, depending on the shear stress r,. and the strain rate %, as

dQ :
. T Txbxs 9
= e )
Since the strain rate is temperature-dependent
ie., £ = (g) e, with v~ -1 to -3°C! (10)

the energy dissipation affects both the temperature and velocity profiles.
Neglecting other effects, the temperature variation in the basal layers is given by

2
g'zg - )_Zu+lev9 (11)
atl
where A= (p?g:‘?K— (12)

with p the ice density, g gravity acceleration, a the slope in the line of motion, J the
mechanical equivalent of heat, and X the ice conductivity.

From this, the temperature variation may be evaluated from the series solution
1 vpz  (vz)?
8 =10 4+ sz+Ae”9*z5(¥+Jf+-w~‘(+... 13
! 56 76 8721 (1)
With this form of flow law it is found that almost 90% of the heat production in
a typical 1000 m-thick ice mass occurs in the lowest 200 m. Since most of the
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heat production is in the basal layers, the effect of the frictional heating can be
approximately accounted for in most of the ice mass by simply taking the basal
gradient as
TbV
=y + — 14
Y = Yo JK (14)
where F is the average forward velocity of the ice, and ~, is the basal stress.

8.4.2. Effect of accumulation and movement on the temperature profile

The “Robin” steady-state temperature profile for an ice mass in balanced state
with an accumulation rate 4 at the surface, constant surface temperature, and
negligible horizontal transfer is

0 =0, —y,H erl y — erf {y (15)
L ¥
AH z
where = /= and == 16
y » {= (16)
The temperatare gradient at the surface for these conditions is
de) y2
YYo=y 17
dz b (17)

5

The effect of horizontal motion may be estimated by the steady-state negative surface
temperature gradient due to downslope movement and consequent surface warming
in the absence of conduction
Felt) ali
Labutl [P (18)
dz/ A
where A is the vertical annual mean air temperature gradient.

Alternatively, the steady-state temperature profile for an ice mass moving out-
wards and downwards, and warming at the surface, with conduction, but with
zero accumulation rate, is

~ 22
6=95+})bz+'{—m(Hz——) (19)
K 2
with surface gradient
i (0)
daz/, K

When both accumulation rate and conduction are present the steady-state profile
for an ice cap column moving outwards and downwards in a balanced state, and
consequently warming at the surface at the rate al/A is given by

exfy — erfly - «¥2
; A
* 2 ’ 2
where E(x) = j F(y)dy and F(yy= e -J‘ e’di (22)
0 0
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The surface gradient is

G) = e+ Yoy ky) @)
dz/ A
= e AN 4 aVd o FQ) (23)
K y

which is approximately the sum of the results for {17) and {18) or (20).

8.4.3. Temperatures in a growing or sinking ice cap
For a growing or sinking ice cap, where the elevation E is changing at the

DE C .
constant rateD—t as the column moves outwards, the result is similar to the previous

result, equation (23), but in this case expanding (or contracting), moving co-

. DF . .
ordinates are chosen andﬁh must be used-—as the warming rate instead of VL

which Is appropriate for steady state ice masses. The surface gradient in this case is

da) _anpe A DE
| = e STy F 24
.= T 6] (24)

From this last result, for those cases where climatic changes are negligible, the
state of balance or rate of change of ice thickness may be estimated from the
surface temperature gradient, the ice thickness and the accumulation rate as

aH

A
a4 — e AH2k 25
Py P (¥s ) (25)

R.4.4, Non-steady-state temperaiures in ice caps

When the boundary conditions have not remained constant for a long enough
time the steady-statc temperature profiles may not be realized.
The time lag r of the basal temperature in reaching steady-state may be
estimated from
2 ] 5
8,(0) = kt — % (1 - EL'e"”‘ 14n ') (26)
K

7'53

where k is the rate of constant surface-warming, for zero accumulation at the
surface. For accumulation at the surface the criterion for approach of the tem-
perature profile to steady-state is

ADE _ Ad _2-4x on
kDt kdz H?
This condition appears to be realized in most icc masses that are in a balanced
state.
Sinusoidal tempcrature variations at the surface in the absence of motion or
accumulation are conducted into the medium with velocity

dz I
— = [ 2rw 28
Il (28)

where o js the frequency of the variation.
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Long-period temperature changes penetrate by means of the accumulation A4
and movement, travelling with the ice which at distance z above the base has the
vertical velocity

4 _ 4% (29)
dt H

When both these velocities (28) and (29) are comparable, the decrease of

amplitude with depth may be estimated from

AL JTATE TP AN
ol [ ST E A o
FE P e T 2 W T T el 30)

Calculations from these equations suggest that, for ice caps near balance, the tem-
perature profiles in natural cold ice masses will be close to the steady-state profile
corresponding to a constant warming rate at the surface but, in those cases where
the rate of warming increases rapidly, the basal temperatures may lag the surface
temperatures. Short-term climatic changes die out quickly in the top layers, while
long-term changes are carried by the ice with decreasing speed towards the base,
with the rate depending on the accumulation and strain rates.

8.5. LONGITUDINAL VELOCITY PROFILE

8.5.1. Glaciers
The general equation for the longitudinal velocity at the surface of an ice mass
(V,) and the strain rate (¢) along a flow line, equation 6.2 (25), adjusted for
transverse strain:
@@M = lpgz-z — sB, (,
ax 2
where ¢ is the transverse strain rate factor,
V', is the basal velocity,
5 is a shape factor for the cross-section,
expresses these in terms of the glacier dimensions, ice thickness Z and surface
slope a, and the ice flow law, parameters n and B.
If the mean (smoothed) value of the left-hand-side over a certain distance is
sufficiently close to zero, then we obtain the relation for smoothed slope, velocity
and thickness, and the flow parameters as 6.2 (29)

vV Lim 2 1/n &-Z
(z) - (——) ez (32)
/ n+1 B

where B is highly dependent on the temperature profile, especially in the basal
layers and is given by 5.1 (37)

_ z —in
- [ [ hov]

Equation (32) may be used to evaluate the flow parameters of the ice (relevant
to the high shear layer at the base), when the velocity and thickness profiles are
known. Alternatively, if the flow parameters and thickness profiles are known, then
the longitudinal velocity may be estimated.

196

_ Linz
2 1V~ W) G

2 VAR




LONGITUDRINAL VELOCITY PROFILES 8.5

The longitudinal strains, however, are generally more influenced by the slight
variations in slope from the mean slope, i.e.,

alfm _
oZBoe ™) _ 1 e — %) (33)
Jx 2
By measuring the strains and the associated slope deviations along the centre-line,
estimates can be made of the flow parameters, » and B, which are appropriate
to the whole thickness and generally for much lower shear stresses than the basal

shear above.

8.5.2. Ice shelves
The general equation for velocity and strain rate along the centreline is given by
a(peyti" 1 (n + 1]”" pn
BT = pgu — B i A 34
dx 27° 2 gtttin @9
For the cases in which the parameters @, B, n, ¢, only change slowly along the
line of motion, the solution of this general equation may be obtained as

2
— pga —J{n)xfa
V="""—u4+ Ve 35
B o (35)
n(n + 1)1,’;1 (B 4 1)1!7: -1 nfn+ 1
Where f(n) = 2(n+71)[7ﬂ’ « == Eﬁ;—m""— (36)

and g is the ratio of the two terms on the right-hand-side of equation (34), i.e.,
the ratio of the stress gradient due to slope « and that due to varying creep rate.

We can use this equation to calcufate the velocity profile from the dimensions
of the ice shelf and the flow parameters, or to calculate the flow parameters from
the velocity profile.

8.5.3. ICE CAPS
Similarly to the result for glaciers, we have the general equation

0ZBpe'™ 1 pg 8z’
IoTAYE D oagZw — -
ox R PO2E =) =5 s

The final term on the right is only relevant for short distance wavelengths A =
2=/v3 Z. We find for the smoothed velocity, slope, and ice thickness (if the

left-hand-side average — 0)

(37)

g+ PAY. |
po 2270 ("éf) : (38)
n, + 1\ B,

which can be used to calculate the velocity or flow parameters from the slope and
thickness.

These values of the parameters n. and B, are those appropriate for the high
shear layer at the base. For the fluctuations in longitudinal strain rate associated
with the variations in slope from the mean, we have

3By de!™ = Lpgla — %)dx (39)
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This equation gives the flow parameters associated with the extension and com-
pression right through the ice cap — generally at much lower shear stresses than
for the basal shear.

With ice caps, the temperature dependence of the B values is very important:
in general, B, for the basal layer is much lower (due to the higher temperatures)
than B, for the body of the ice. Furthermore, there is variation in temperature
(and hence B) along the line of flow. This means that an accurate idea of the ice
cap temperature profiles is required before accurate velocity profiles may be
obtained.

Over undulations on the ice cap, surface maximum extension occurs on the
crests and minima over the troughs.

8.5.4. Transverse strain

The effect of a transverse extension g, on the longitudinal velocity profile is to
reduce the longitudinal strain rate ¢, for a given slope gradient, according to

£, = QAo — o)t (40)
L (2 NS G |
where p~t = (2 ; v) [] + 3 (i " v) ] and v = s; (41)

This means that the general equations applying in three dimensions have (g¢z'/")
replacing £'/* in the case of two dimensions, where ¢, = 0.
Now since the longitudinal strain rates are low, we are generally concerned here
with the region of the flow law where n = 1, i.e., we have
oy LV SRR
d=1+- or ge=¢ +2 (42
2 2
and see that small strains (especially of the same sign) have little effect on the
longitudinal profile, but large lateral strains of the same order as the longitudinal
strain (especially if of opposite sign) can dominate the deformation process. But
provided the divergence or convergence of the flow lines is known, the effects
of the lateral strain can be calculated and incorporated into the equations for both
longitudinal velocity and strain rate.

8.5.5. Ice flow over undulations

For a two-dimensional bedrock slope profile in the line of motion of the form

B = fy + B cosmx
an. ice mass adopts a steady-state surface with undulations given by

o = oy + &, COS wWx + o, sin vx,

where oy = Lﬂ and oy = le ~ &,

1+ 1+ i

pgzz[}. 47322.]
here S o= b 43
e V=awslzt 3 @

where Z is the ice thickness,
V is the ice velocity,
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B is the ice “viscosity” parameter,

A = 2n/w is the wavelength of the undulations.
The damping factor ¢ is a minimum for A, = %%Z Equation (43) can be
used to determine values of the flow parameter B from the damping factor and
the velocity .

8.6. APPLICATION TQ PARTICULAR ICE MASSES

The general equations of longitudinal velocity and strain rate have been ex-
amined by studying actual ice masses whose longitudinal velocity and dimensions
have been measured. Since the flow law parameters from laboratory measurements
show considerable variation, rather than calculating velocities for the ice masses
from these parameters, the measured velocity profiles have been used to calculate
the flow parameters.

(1) Ice shelves

Near the front of an ice shelf the strain rate becomes high while the surface
slope is small. This means that the smoothed velocity—slope relation is not satis-
factory but the combined equation (34) can be used to determine the flow para-
meters 7 and B. The values of » and B determined from the velocity profile of
the Amery Ice Shelf are of the right order of magnitude and confirm the application
of the general equations. To determine these parameters more accurately, higher
precision is required for the ice thickness and velocity profiles, and also the
temperature and density distribution with depth.

(2) Glaciers

The general equations (31), (32), (33) applied to the longitudinal velocity
profile of the Athabasca Glacier give reasonable confirmation. The flow parameters
were calculated from both the smoothed velocity, slope and thickness, and also
from the variations over undulations. If unsmoothed values are used in equation
(32), the short distance variations over undulations almost completely mask the
broad effects. The calculated flow parameters from the two methods show reason-
able agreement with each other, as well as with values obtained from transverse
and vertical velocity profiles, as would be expected for a temperate glacier. To study
the effect of the short-distance undulations in more detail, a more closely spaced
profile of ice thickness and strain rates is required.

(3) Ice caps

An analysis of the longitudinal velocity, strain rate, surface slope, and ice
thickness over the Wilkes ice cap provides an extensive set of data to test equations
(37), (38), (39). Flow parameters were calculated from both the smoothed
velocities (38) and the deviations (39). The resufts of Section 4 on the temperature
distributions in ice masses had to be used to incorporate the effect of the variation
in temperalure on the flow parameters.

The equation (38) for smoothed velocities had to be generalized, using equation
(373 to include the effect of significant longitudinal and transverse strain rate.
The transverse strain factor ¢ of equation (40) was used successfully to incor-
porate the effect of transverse strain in botb equations (38) and (39). It was found
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that the low parameters for a given temperature are much the same over the area.
The values of the flow parameter B from the smoothed velocity profile correspond
to the basal layers of the ice and are generally lower than that for the body of
the ice calculated from the strain over the undulations. This is as one would expect
from the temperature calculations showing higher temperatures at the base. Final
confirmation will not come, however, until the temperature profiles can be
measured.

8.7. MASS BALANCE, STATIONARY STATE AND CHANGE IN FORM

Once the longitudinal velocity (F) of the jce mass is known, as well as the
flow lines, surface accumulation rate {A4), basal melt rate (M) and ice thickness
profile (A1), then the rate of change in the ice-cap thickness in time over each point

of bedrock (E-g—j) can be calculated from

oH

0—H—=ézH+Va—+A—M (43)
X

ot
where £, is the vertical strain rate, given approximately by the sum of the two
horizontal strain rates (longitudinal and tramsverse).

From this formula, evaluated over the ice mass, a new shape over a given
period can be calculated, provided the parameters do not change significantly
over that period. As the ice mass changes shape and size, a new velocity distribution
will develop: this can be calculated from the results of the smoothed velocity
relation (38) above. In this way the past and future histories of the ice cap can
be calculated. The further the extrapolation in time the less accurate is the result.
It can be seen that for long-term extrapolation it is also necessary to know the
long-term variation in accumulation rate.

. .. oH L .
The very special case in which -aa—t = 0 all along the flow line is the “stationary

state” in which case the ice-cap shape and size remains constant with time. In gen-
eral, the condition for balance for an ice cap of thickness H, velocity V' at distance r
from the centre, where for flow lines distance s apart at r the area enclosed by
them is S, and the average accumulation rate over this area is A, may bc written

sHV = S.4, (44)
Using equation (38) for the velocity in terms of the flow parameters, ice thickness

and surface slope allows equation (44) to give a surface profile required for
balance.

A n+1 H
e, S A, _ 2t [&J (dﬂ _ ﬂ)] (45)
sH n+ 1LLB \dr
aHd .
where B = e o is the bedrock slope.
Ir

Provided all these parameters are known as functions of r, then this equation
can be numerically integrated to give the steady-state profile corresponding to the
existing parameters.
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Alternatively, equations (44) and (45) may be used to determine which values
of these various parameters, in particular 4, V, B, would be required for the existing
profile to be in steady-state.

Steady-state particle paths, or trajectories tracing the paths of ice deposited
on the surface as it moves through the ice mass, may be calculated from

SR G

z A\A, A, ér
where z is the depth of the parcel of ice at distance r,

r

A, is the accumulation rate at distance r,
A, 1s the average accumulation rate to distance r,

and 2 =15

rs

For non-steady state trajectories it is necessary to use, instead of the actual accumu-
lation rate A, the accumulation rate for balance
A* =44
&t
In addition, for long-term calculations it is also necessary to vary the ice thickness
and velocity profiles according to equations (44) and (38).

8.8. CONCLUDING REMARKS

Although the study of the dynamics of ice masscs has still a great number of
outstanding problems te be solved, basic equations are available for calculating
the velocity distributions in natural ice masses, given the dimensions of the ice
mass, the flow law of ice throughout the ice mass, and boundary values of the
velocity and strain rate. One approach is to apply numerical and computer tech-
nigues directly to the equations of metion in specific cases. On the other hand,
ice flow in natural ice masses has certain symmetry which allows simplifications to
be made so that more direct equations can be derived for velocity and strain rate
in terms of the Aow parameters of ice and the boundary dimensions.

Generally, the boundary dimensions of the ice masses can be determined
relatively easily and also, in many cases, the boundary velogity. The major difficulty
in calculating the velocity distribution is a lack of sufficiently precise information
on the flow law of ice. At high stress the strain rate of ice is dependent on a high
power of stress; it also varies an order of magnitude for a 20°C change in tem-
perature, and depends on other factors such as the ice crystal sizes and orientation
fabrics. This fact calls, on one hand, for an extensive range of accurate long-term
steady-state stress—strain rate measurements on ice in the laboratory to establish
the flow law and its dependence on these various parameters, with sufficient pre-
cision to be able to calculate accurate velocities in ice masses. Alternatively, by
making field measurements of velocity, boundary dimensions and the ice properties
(temperature, crystal size and orientation) of natural ice masses, the flow law
parameters can be deduced.

It has been shown here that for both temperate glaciers and ice caps the longi-

201



8.8 SUMMARY

tudnal velocity profile provides a valuable supplement to the transverse and vertical
velocity profiles for determining the flow law parameters.

In addition, the analysis of the relative amplitudes of the bedrock and surface
undulations provides a new powerful means of determining the ice-low properties.

For cold ice masses the major factor governing the ice flow is the temperature.
Hence detailed field studies are required which make complete measurements of
ice mass dimensions, surface velocity distribution, and temperature—depth profiles
to establish the flow law precisely. Once this is done it should be possible to calcu-
late the velocity and temperature profiles in other ice masses with the minimum of
field measurements.

If the velocity distribution over an ice mass is known, together with the accumu-
lation and ice thickness, then the mass balance can be calculated, not only for the
ice mass as a whole but, of more importance, the disiribution of the net balance
over the jce mass. From this, the rate of change of the ice-mass shape may be
deduced. This latter results in an elevation change which can be measured most
directly by repeated, precise gravimetry surveys. Alternatively, an analysis of the
existing shapes and states of balance of ice masses enables further information
on the flow properties of the ice to be deduced.

The results of field measurements, in particular those for the Wilkes ice cap
project, so far confirm the predictions of the equations for longitudinal velocity
and strain rate., As a result, flow parameters are deduced which take account of
calculated temperature profiles in the ice mass. The next stage will be the measure-
ment of the temperature distribution through the ice cap to examine the validity
ol using the calculated temperatures in the present flow analysis, and to give
information on the change in climate and the state of balance with time.

The continued combination of extensive field and laboratory measurements
with theoretical investigations presents a powerful method for sclving the still
outstanding problems in the dynamics of ice masses.
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APPENDIX 1

DERIVATION OF LONGITUDINAL STRESS DEVIATOR GRADIENT WITH
RESPECT TO A LONGITUDINAL AXIS OF ARBITRARY INCLINATION
Two-dimensional motion or “plane-strain rate” only is considered.

We adopt a right-hand orthogonal axes system x, z, such that the horizontal
Is inclined at an arbitrary angle x to the positive x direction. All angles will be
taken positive for an anticlockwise rotation from the y axis.

Let —a be the surface slope of the ice mass at position x,
— /i be the basal siope of the ice mass at position x,
z,  be the ordinate of the surface at position x,
z,  be the ordinate of the base at position x.
Write Z = z —z» for the ice thickness at x, and —8 = —a2 4y, —¢ = —8 + ».

The stress components at (x, z) are denoted by (o,, 7., 7,). We consider an ice
mass of constant density p.

Let g be the gravitational acceleration, and write g, = 4+ g sin y, g: — — gC08 y
for its components in the axes’ directions.

The equations of equilibrium for slow steady motion may then be written as

)

T4 Sy g, =0 (1)
ox oz
da at
L4 4 pg. =0 2
o T oo, T e (2

These equations are true everywhere in the ice mass for any such axes system so
defined.

We require an expression for the longitudinal stress deviator v’ = % (o, —a.).
Hence, differentiate (1) with respect to z and (2) with respect to x and substract
to yield

oy —a) | Pry O (3)
Oxdz ax? 9z
This equation also does not depend on the choice of the axis orientation. It 1s
only when this equation is integrated that it becomes necessary to specify the
boundary conditions in terms of the axis direction.

We integrate (3) with respect to z from z, to z
A z a2
Aoz =) _ _ 2o +@&) + &) _&Jrj Pty @
0x dx/z, Ox/z 82/ Oz 7 6x*
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From equation (1) we note at the surface

%) + QT..JF_Z) = —pg (5)
Ox/z 8zl *
Hence (4) may be written
oo, —a,) acr) 8t an é%r
x 2= _pg, - zp Oy L P 6
5X pg 6)( z dz 71 5)(2 ( )

Now, integrating again with respect to z, this time from z, to z,, noting the first
two terms on the right are constant with z and also Z = z, -— g, gives

2 = — 6 _ zz |z =2
V[ 9(?%02) dz = —pg,Z — Z J‘) = Tapy + Typy + J J\ O—T"z’dzdz N
ER ox 6x I PR -1 X

This equation is exact and expresses the mean longitudinal stress deviator gradient
in terms of the boundary conditions at the surface and base of a column of ice.
We shall shortly examine the surface and base boundary conditions in detail. But,
firstly, it is often required to integrate this equation with respect to x. To do this
we note that the left-hand side may be written

d rz (o, — 0,)dz

JA— O(Jx..—iaz) dz = 24— — (Crx - az)zz aﬂ + (Ux - az)zl ; (8)
. ox dx &x ax

<1

BOUNDARY CONDITIONS
At the surface we make the assumption that the shear stress parallel to the
surface is zero, and that the normal stress is the atmospheric pressure p.

It —@ is the angle between the x axis and the surface, then the normal and
shear stresses are related to the components in the x, 7 directions at the surface by

—p=a_,sin*d — 2t sinBcos O + g, cos? Q)
0= {0, —0,)sinfcos @ — 1_(sin*> 0 — cos* &) (10)
For (8) we require only (10) in the form (dividing by cos?d)
(o, — o), tan 0 = —1, (1 — tan® 0) (11)
Similarly, at the base, if —r is the basal shear stress parallel to the bed, where
—¢ 18 the angle between the base and the x axis, then
—1, = (0, — 0,)sin ¢ cos ¢ + 1,,(cos? ¢ — sin?¢)
and therefore

(0p — o) tan ¢ = —7,, (1 — tan® ¢) — 2 - (12)
cOs” ¢

Since % = —tan ¢ and aai = —tan 8, using (11), (12) and (8) in (7) gives, writing
X X

Zo, —a) for J (0. — ¢,)dz,
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0Z(s, — 0,) 60,) 2 2 h_
L %) - _pg.Z - 222 41 tan?é — 1., tan?f + —2
ox P ax) IO T T cos* ¢

za [z aEsz

i v Zy

éa,\ . . .
The term —) is zero for points where the surface is parallel to the x axis. For

I
other slopes, however, this term depends on the longitudinal stress and stress-gradients
and the curvature of the surface. We now evaluate this term in full to show under
what conditions it may be approximated by pg, tan 8.
If s denotes the distance along the curved surface,
8g, da, do, 1

— — g %L
e Gz MU Ay Cose 9

Using equation (2) this may be written

do
= tan @ tan & .
Ox tpgstant Ox anb -+ ds cos@

do, 1

z Oz

ot
Similarly expanding —3-';5 and using (1) gives

do
dx

z

ot,, sin @ b, 1

ds cos’@ 85 cosé

ot 1
=] i n +

85 cos“ 6  Os cosf

o1,
+ pg.tanf + —“tan® 6 +
oz

e SN G Oa

I

i}
=pgztan9—aix-tan20—pgxtan29+ (15)
x

Now, at the surface, if ¢, g, are the normal and longitudinal stresses and

O-]’ = %(al - n)

T, =0}sin20 and o, = 6,cos* & + o, sin’f.
Hence
ot, da . o
20 = Lsin 26 { 2 cos 260 —
ds ds sn U i os
and
é a6 doy . a6
% _ —0g,2cosfsinf— + D in? 0 + 6,2sinfcosd .
s &s  Os ds

Substituting in {15) and taking surface values,

a do, a .
i pg,tan f — 92} tan?@ — pg.tan? B + 25 §in 6 tan 6
éx Jo ox /. as

) ¢ 0 a0
+ gj{2¢cos20tand — — g, sin29°— + Pisingtan 6 + g, sin 20 — {(l6)
ox dx s ax
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Hence, to take as the first approximation
da,
Ox

) = pg, tan 0,
I

it is necessary (and sufficient) that not only the slope 8 be small but also the slope

180 1 ¢ : - .
Sl less. Since the longitudinal stresses vary with the

dient, i.e., - — ~
gra;en,le,eas 5.3

surface slope this is usvally the case. However, abrupt changes of surface slope or
stress (e.g., surface crevasses) will not be covered by the approximate formula.
Finally, substituting (16) in (13) and writing the components of g in full gives

o2, — T

0
— pgZsiny — pgZ cos y tan f — 7% tan? g
ox ox

z)

af
— pgZ sin y tan® § + Z%Zsinﬂtanf)
5

2 A
+ a;ZZcos29tan9—9—— Za,,sin?_ﬁf-?
dx Ox

d of
+ 2% Gn 0tan g + 6,Zsin20 — + t,,, tan® ¢
o5 ox
Th B2 az’rx:
— 1, tan* 8 + cos? § + _|;, J;I 2 dz dz (17N

This equation 1s exact; it has arbitrary orientation y for the x axis, and applies every-
where along the ice mass with the same rectilinear co-ordinates, and hence it may be
directly integrated with respect to x, without resorting to curvalinear co-ordinates.
From this equation the conditicns required for various simplified forms may be
determined.

SPECIAL CASE OF SMALL SLOPES

For small slopes g, 6, ¢, and slope gradients (i.e., neglecting second and higher
orders), all except the first two and Iast two terms of equation (17) are negligible, so
that it reduces to the form given by Budd (1968),

éZo; 6%t
Y= i pgZ(e — f) — 2 dz d 18
a z[pg {2 = 1) J.J. i 2'] (18)
Th
P9z
relevant and it is therefore immaterial whether the axes are taken horizontal, parallel
to the surface or parallel to the base.
Other simplified forms of (17) may be readily obtained by choosing the longitudinal
axis in directions such as: horizontal {y = 0), or parallel to the surface (6 = 0, y = @),
or parallel to the base (¢ = 0, y = [, at some particular position.

where ¢, = (o, — 0.),/ = . =% + 8. In this case only the surface slope is
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APPENDIX II

THE FLOW LAW OF ICE F'ROM THE LONGITUDINAL STRESS
GRADIENT

To convert the equation for longitudinal stress gradient to an equation in strain
rate gradient we re-examine the flow law of ice.

)

Tt is only satisfactory to replace o, by Bel/™ if 1,, <€ w"% orifn = 1. The

major problem then is to consider the relation between &, and &, when 1, is not
necessarily small.

We abandon the power law formulation of the stress-strain relation for ice

A Trr—]. ,
& = ¢ 39 o, (1)

since » and B are not constant with stress. Instead, we adopt a ‘“‘generalized
viscosity” relationship of the form

1
£ o}

'ij = ;J iy (2)
where 5{7, #) is a function of both stress and temperature.

For the octahedral shear stress 7, the strain rate g, (2), gives

P (3)
n
Hence
=1 )

&

This may be regarded as an alternative definition of 4. Equation (3) may be
regarded as the flow law of ice and for each constant temperature represents a
single curve on g versus r diagram. It is these curves we wish to determine.

So, substituting for the average longitudinal stress deviator through the ice
column ¢, = #¢, in the equation for stress gradient

= lazﬂrﬂdz dz ©
o
a2’ gla =Sy =3 ox?

1

we obtain
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I 9% J\‘cndz dz
dne, 1 1

= - o — _— T 6
PR UG D e (6)
= % pgda*  (as a definition of doc*) (N
or

— |7 1 *
HEL == pg'[ do*dx (%)

X1 2 x
We now define a weighted mean flow parameter 5* through a vertical column by

= rg'_g
&

We now oblain (for fluctuations around a mean value, i.e., taking EI[ = ( for
du* = Q)

o Pd f Sardx ®
2n*
or
- 1 -,
g, = ;}; o (10}
where
. = %pgjéa*dx (an

Hence, from the ratio of the lopgitudinal stress to longitudinal strain-rate o,

and £, we obtain »* for each r and . We now use these to determine the flow
law in terms of octahedral values.

Since, m terms of the octahedral values, * =<, we can now obtain the flow
3

3

law of ice calculating ¢ from »* and r for each value and illustrate this by then
plotting ¢ against r.
Faor two-dimensional flow the octahedral shear stress = is calculated from

PN RN = (12)
taking

T, = ipgaz and &, = ipg .( Jo*dx (13)

Here @ is taken as the mean surface slope over a distance x about 10 to 20 times
the ice thickness.

These values of stress are derived directly from the measured elevation and
ice-thickness profiles. The surface strain rate ¢, can be measured but, to obtain
the average strain rate through the column, something must be known about the
ratio &./¢, = A, say.

This noermally requires information on the velocity—depth profile. However,
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if the ice is not slipping at the base, then we may expect the strain rates to vary
with depth in a similar way to the velocity V, i.e.,
g _V_, (14)
e,V
For cold ice caps the velocity profile depends on the temperature profile and
estimates can be calculated (cf. Section 4).
In the absence of a wvelocity profile, the value of » can be assumed to lie
between 2/3 and 1, being near 90% for typical ice-cap temperature profiles. In
terms of the measuored surface strain-rates, then, we may write

I

s = P8 * * — I=
E, 2’7*1.[‘5@ dx or g : (15)

From the measured variations in surface strain rates ¢ and surface slope a
the generalized viscosity #*(r, #) can be determined from (15) and then, using
the values of mean octahedral shear stress from (12) and (13) and mean tem-
perature for the column at that position, a point on the stress—strain rate re-
lationship ¢(r, #) can be established by plotting

/:2 2
: Nt + o Y e
& = g, —F——> versus T = N
x
To obtain the complete set of curves for é(r, §) many values of g, covering a

wide range of shear stress r and temperature ¢, are required. For a temperate
ice-mass we may expect the ratio of the longitudinal strain-rate to longitudinal

stress to depend just on the magnitude of the octahedral shear stress.
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