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The flow law for isotropic and anisotropic ice at low
strain rates

R. C. Lile

Meteorology Department
University of Melbourne
Parkville, Victoria, Australia

ABSTRACT

One of the weakest links in present ice dynamics models is the lack of an adequate
empirical flow law for polycrystalline ice in its natural state. Inadequacies include
a paucity of creep data relevant to cold ice masses and a general neglect of the effects
of preferred crystal orientation fabrics. The present study reports the results of 150 000
hours of creep tests on isotropic aggregates replicating conditions of temperature and
shear stress relevant to polar ice masses, from which an extended isotropic flow law
has been constructed. It is shown how anisotropic crystal orientation fabrics can be
incorporated into such a flow law. The quantitative model developed for this purpose
1s made possible by: (a) the definition of a normalised third deviatoric stress invariant
as a configuration parameter describing the geometrical distribution of shear stress;
and (b} a reinterpretation of the scalar geometric factor employed in the analysis of
monocrystalline creep as a tensor coefficient of correlation between the orientation
fabric and the stress configuration parameter. Laboratory experiments are presented
to substantiate the validity of the model.






1 Introduction

1.1 OUTLINE OF THE PROBLEM

The large ice masses of the earth hold significant clues to the climatic history of our
planet., Several stable physical and chemical characteristics of precipitated
hydrometeors and trapped atmospheric gases have been related to prevailing climatic
conditions at the time of their deposition (Dansgaard 1964, Johnson et al. 1972,
Raynaud and Lorius 1973, Berner et al. 1977, Boutron and Martin 1980, and Morgan
1982}. These tagged volume elemenls are preserved in the earth’s larger (polar) ice
masses for tens or hundreds of thousands of vears before returning to the surface.
With an increased understanding of the earth’s past climate gained through analysis
of ice cores removed from deep boreholes, especially those of the Antarctic and
Greenland ice caps, man’s potential ability to understand past climatic change, and
thereby predict future climatic change, may someday be realised,

One of the real interpretational limitations at present rests with our inability to
accurately extrapolate the trajectory of a glacier volume element backward in time
to its position at the surface. To overcome this limitation, increasingly accurate glacier
dynamics models are necessary.

1.1.1 The equations of motion

The dynamical behaviour of an ice mass deforming under its own weight is governed
primarily by its equation of motion and its rheological properties. For natural ice
masses, Reynolds numbers are typically of the order of 10™; thus accelerations are
far smaller than other forces and may be neglected. The equation of motion then
takes the form

Ty = PE (1.1)

where g;; is the stress tensor; pg, is the gravitational force per unit mass acting in the
ith direction; a subscript following a comma indicates partial differentiation with
respect to that co-ordinate direction; summation is implied on repeated subscripts,

Boundary conditions in terms of stress are generally unknown; however boun-
dary velocities can normally be measured or inferred. We therefore require a rela-
tionship between the stress and strain rate tensors.

1.1.2 The flow law for ice

The relationship between the stress and strain rate tensors, the flow law for ice,
describes its rheological properties. Glen {1958) discussed the theoretical possibilities
for such a flow law, assuming isotropic polycrystalline ice for which the strain rate
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tensor &; for steady state flow depends only on the stress tensor o;,. Under these
assumptions he showed that the most general form of the flow law can be written

Ei, = Ad, + BJ]j + CUikOk], (1.2)

where §; = 1ifi = j, and 8, = 0if1 = ); A, B and C are scalar functions of the
three invariants of stress, I,, I; and I, (Section 2.1.2). Glen (1958) further assumed
incompressibility and independence of the flow law on I, (Rigsby 1958), showing that
equation (1.2) can then be expressed in terms of the deviatoric stress tensor aj =
g, — 1,6, and its invariants I3 and Iy {Section 2.1.2):

& = =¥ CI:, 198, + B(l, Loy + C(L, Laioi,. (1.3)

Nye (1953} suggested the possibility that the components of strain rate are pro-
portional to the components of the stress deviator, and that the constant of propor-
tionality is a function of I only. Incorporating these assumptions, equation (1.3)
reduces to

& = B(la, (1.4)

Taking into account the effects of temperature and crystallographic structure, equa-
tion (1.4) may be written in terms of the polycrystalline fTuidity A:

éij = ?\01], (]5)
where
A=Al LD (1.6}

is a scalar function of the second and third deviatoric stress invariants, temperature
T, and crystallography f (Section 2.3.1 and Section 3).

1.1.3 Closure of the problem
The strain rate tensor is related to the velocity gradients by definition:
éi) = U],] (17)

where the u; are the velocity components in cach coordinate direction. For incom-
pressible flow we have, in addition, the relationship

g = 0 (1.8)

Thus, given the mass distribution and the strain rates at the boundaries, equa-
tions (1.1) and {1.5) may be solved for the strain rates. If the boundary velocities
are known, equation (1.7) may then be solved with equation (1.8} for the velocities.
Knowing the velocities and the surface distribution of accumulation and ablation,
the new mass distribution is cetermined, and so forth.

1t is clear that a successful dynamics model relies on an accurate specification
of the flow law (equation 1.5} for ice.



1.2 EMPIRICAL APPROACH TO THE SPECIFICATION OF THE FLOW
LAW

Empirical studies of the flow law for polycrystalline ice involve the measurement of
various components of the strain rate tensor, i.e. dimensional changes as a function
of time, of a specified volume or mass of ice for which the state of stress has been
either measured or calculated. Two approaches to such studies are through field obser-
vations of natural ice masses and through laboratory observations of natural and
synthetic ice specimens. Each approach offers certain advantages while suffering from
inherent limitations.

1.2.1 Historical background

The first important laboratery observations on the deformation of ice were recorded
by McConnell and Kidd (1886). Their experiments on lake ice showed that their
specimens would yield plastically to shearing stresses in a plane parallel to the plane
of the original water surface, even at temperatures substantially below pressure
melting. Hagenbach-Bishoff (1889) expressed the view that crystalline plasticity was
the primary cause of glacier flow, arguing that the irregular interlocked crystalline
structure would inhibit intracrystalline rotations and displacements. Chamberlin (1928)
made direct measurements of the strain rate across a thrust plane on several glaciers
in an effort to test the theory of rigid motion via thrust planes. Utilising a mechanical
strain gauge with a waxed recording disc, he identified periods of constant creep,
no creep, and rapid adjustment. He interpreted his results as an argument against
purely viscous behavicur in favor of idiomolecular exchange, vielding, and rotations
between grains in conjunction with bulk sliding over bedrock and slip along well-
defined thrust planes {(veined structure). He concluded that glacier motion was, in
fact, typical rock deformation behaviour (see Chamberlin 1936).

Following the discovery by Barnes {1929) and Bragg (1922) of the arrangement
of water molecules in an ice crystal utilising x-ray analysis, Hawkes (1930) concluded
that ice flow was caused by intragranular flow along basal planes, intergranular {amor-
phous) flow at grain boundaries, and flow along fracture surfaces within grains. It
became clear that an extensive field program concerned with the structural
characteristics and changes, including the transition of snow into glacier ice, was
required.

It was with this goal that the Jungfraujoch Research Party of 1938 was organis-
ed. The results (Perutz and Seligman 1939; Perutz 1940; Hughes and Seligman 1939)
represent a great milestone in our understanding of structural glaciology: clarifica-
tion of the origin of stratification bands and their relationship to glacier motion;
ellucidation of the time sequence of crystallographic features in terms of the
mechanisms of grain.growth, deformation, and reorientation; and the association
of crystallographic-preferred orientations with the orientation of greatest shearing
stress.

Assuming a decrease of ice viscosity with depth, Streif-Becker (1938) postulated
the existence of a layer of fast moving ice in the interior of glaciers, while Demorest
(1941, 1943) postulated a similar ‘extrusion flow’ theory for ice sheets. The extru-
sion flow theories, (indeed all theories of glacier flow) are based essentially on a par-
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ticular assumption about the rheological properties of polycrystalline ice. However,
it wasn’t until the middle of the twentieth century that the first carefullv controlled
laboratory experiments aimed at establishing the flow law for ice were undertaken.
Glen (1952, 1953, 1955) tested polycrystalline blocks of ice under compressive stresses
in the range from one to ten bars at temperatures from — 13 °C to the melting point.
His results were similar to results found for the plastic creep of polycrystalline metals
near their melting point, and provided a good fit to a power law type of flow law.

Nye (1952) then examined the flow of a valley glacier using the results of plasticity
theory. Nye, approximating Glen’s flow law, assumed ice to be a plastic substance
having a well defined vield stress.

Glen’s experiments were undertaken in conjunction with a field program (Gerrard
et al. 1952) designed to measure the interior velocity distribution of a glacier, as velocity
distribution predictions by the various glacier theories had not been previously verified
by experiment. The results of this field study are in general agreement with the power
law found by Glen, and together indicate that the power law exponent is an increasing
function of increased stress. A transition region is indicated at stresses near 0.05 MN
m? (0.5 bar).

With the present availability of numerical computers, glacier models are no longer
restricted by the necessity of vielding analytical solutions; an empirical flow law can
now be incorporated into a numerical model with relative ease. A brief summary
of the empirical evidence at hand to date ts given in Figure 1. Excellen! reviews of
recent results have been provided by Weertman (1973) and Hooke et al. (1980).

1.2.2 Field observations

Field observation programs relating to the flow law of ice have been carried out on
glaciers, ice sheets, ice shelves and isclated ice caps through measurements of
horizontal and vertical velocity gradients on exposed surfaces, interior vertical
gradients of horizontal velocity and closure rates of boreholes and tunnels.

The techniques of surface observations of strain and associated data analysis
utilising strain grids have been discussed by Nye (1959), McLaren (1968) and
Holdsworth (1975) among others. The deep borehole measurement of the vertical
components of strain rate, the horizontal shear rate and the relationship of the vertical
to horizontal components of strain rates were discussed by Bader (1964), Nye (1953)
treated the contraction rates of cylindrical holes in 1ce masses theoretically; his results
are applicable to borehole and tunnel closure rates. Butkovich and Landauer (1959)
presented a technique for the measurement of ice tunne!l deformation rates.

The inherent advantage of measurements on natural ice masses is the potential
ability of field results to reflect steady state conditions in the ranges of independent
parameters operating in natural ice masses. The accuracy of observed strain rates
is potentially excellent as a result of the Jarge dimensions employed. On the other
hand, measurements made in the interior of natural ice masses seldom offer sufficient
data for the specification of the complete strain rate tensor. Together with the
difficulties associated with the measurement or calculation of the stress field, the
analysis of field data in terms of the flow law must often proceed under severe
interpretational handicaps. These difficulties become most pronounced when the
dimensions of the observed volume or area is small in comparisen to the dimensions
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of the region disturbed by excavation, e.g. observations of borehole and tunnel closure
rates (Paterson 1977).

Interpretational difficulties may be greatly relieved with the judicious selection
of observational sites. Meier (1958) argued that the common tendency to analyse field
results in terms of a priori assumptions concerning the form of the flow law contributes
little to progress in this field and, indeed, may lead to ambiguous conclusions. He
suggested that vertical profile sites, in particular, be chosen with full consideration
given to determination of the associated surface horizontal strain field.

1.2.3 Laboratory studies

In the laboratory, a high degree of control can be realised in the specification of the
independent parameters of the flow [aw. Though specimen dimensions are necessarily
limited, sensitive deformation transducers can be operated under near optimal
conditions in the laboratory, thereby making possible the complete determination
of the strains to a high precision.

However, the inherent steady state deformational response of natural ice to the
stress field, and the apparent (Budd [972) compatibility of ice characteristics such
as texture, grain size, and preferred crystallographic orientation with the stress and
deformation fields, are lost. Strain rate, texture, grain size and crystallographic
anisotropy are generally observed as tinie dependent features of laboratory creep tests.

1.2.4 The creep test

The precise measurement of creep rates in the laboratory can be undertaken with
the accurate specification of the independent creep variables. A laboratory creep test
may be carried out at an accurately controlled temperature and known load on ice
of specified dimensions, crystallographic characteristics, density and grain size and
shape through petrographic examination and selection of natural or synthelic ice
specimens. Calibrated loads are applied by means of rigid plattens, the displacement
of which can be measured accurately with sensitive transducers. Specimen temperatures
may be monitored continuously and controlled to the required accuracy.

The purpose of the creep test depends on the parameters beirg studied. Because
the parameters associated with ice type are, in general, time dependent the creep test
is useful in studies of the development of crystallographic orientation fabrics,
syntectonic meodification of grain size and shape, para- and post-kinematic
recrystallisation, grain boundary migration under stress, dilatation, densification, etc.
Constant strain rate tests on monocrystalline and polycrystalline specimens have
proven useful in studies of microcreep mechanics. The concern here is with the use
of the constant load creep test to provide ‘steady state’ creep results applicable to
the specification of the flow law for polycrystalline ice.

The complete specification of the deformation, strain and strain rate tensors, and
their octahedral values for pure shear deformation (i.e. deformation of incompressible
materials) requires the measurement of two independent displacement vectors in
addition to a knowledge of the relevant initial dimensions of the specimen. However,
under certain conditions of symmetry, observation of a single displacement vector
may be sufficient (Section 2.2.3). In order to avoid confusion, let the displacement
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function be defined as the measured platten displacement with respect to time, the
(octahedral) creep function as the (octahedral) strain as a function of time, and the
{octahedral) creep rate function as the (octahedral) strain rate against time.
Polycrystalline materials including metals, minerals and ice exhibit similar creep
functions, the general form of which is illustrated in Figure 2. Three distinct periods,
or stages, can be identified and are discussed below.

The instantaneous strain response of a specimen upon application of the load is
elastic and recoverable {(AB of Figure 2). During the earliest time dependent stage,
commonly referred to as the primary stage of creep (BC of Figure 2), the rate of
strain decreases with time. The primary stage is transient and is often recoverable
if the total strain is insufficient to induce changes in the structure of the material.
This period of deceleration has been interpreted (Gilman 1969, and Finnie and Heller
1959) as a period of work hardening during which the mobility of dislocations is
decreasing due to mutual interference as dislocations move in response to the applied
stress, [f linearly time dependent plastic strain is removed from the curve ABCF,
its similarity to the relaxation curve FGH (Figure 2) is well known. The residual strain,
HI, is a result of this irrecoverable plastic strain component.

When the rate of work hardening has decreased so as to balance the rate of thermal
softening, the creep function exhibits a period of unaccelerated or quasi-viscous creep
known as the secondary stage of creep (straight line CD of Figure 2). This is a stage
of irrecoverable, purely plastic strain. An extended period of secondary creep (CD
of Figure 2) may in some cases reflect an equilibrium state characteristic of the
structural parameters measured prior to deformation, i.e. before the onset of dynamic

Creep strain —

0 Time —»

Figure 2. Typical creep curve for a polycrystalline aggregate.
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recrystallisation, Whenever possible, a post-deformation structural analysis should
be made to confirm the invariance of these parameters during the test.

The third, or tertiary, stage of creep is characterised by a period of accelerating
strain rate (DE of Figure 2). For stresses sufficiently high to cause failure, this
acceleration has been attributed to the onset of intercrystalline cracking (Rotherham
1951). However, at reduced stress levels, the increase in strain rate is apparently caused
by flow-induced structural changes of the material, e.g. polygonisation, dynamic
recrystallisation and grain boundary migration leading to the development of preferred
crystallographic orientations (Kamb 1972, Vialov 1970, Steinemann 1938b, Shumskiy
1964, and Finnie and Heller 1959). Duval (1972) and Budd and Matsuda (1574) noted
a cyclic variation in the tertiary creep rate of ice in the laboratory. Gifking (1959)
and Richardson et al. (1966) have observed a similar phenomenon in the creep
behaviour of lead and nickel respectively. Gifkins attributed the tertiary periods of
increased strain rate to the primary creep of large new grains formed by dynamic
recrystallisation. Luton and Sellars (1969) noted a critical shearing stress separating
states of periodic and continuous recrystallisation.

Kamb (1972} sugpgested that fabric development proceeds in a stepwise fashion,
noting distinct reorganisation of crystal structure at total shear strains of 0.04, .1
and 0.3. An alternative possibility presented by Kamb (1972) is that fabric development
proceeds continuously, but that at a given total strain large statistical fluctuations
influence the extent of reorientation in localised regions of the specimen. However,
in light of the inhoemogenous states of stress and strain in laboratory specimens (Section
2), local regions of a specimen reach & given total strain at varying total bulk strains.
The observed effect might then be similar to that observed by Kamb (1972).

Evidently, then, the structural changes characteristic of the tertiary stage of creep,
once initiated, may proceed rapidly, leading to catastrophic failure; through a series
of transition periods, each followed by a certain degree of recovery, thereby resulting
in a periodic tertiary creep function; or continuously, exhibiting a smooth transition
to an equilibrium tertiary state.

An important point to be raised here is that the secondary creep rate, while
apparently characteristic of an equilibrium state, may, in fact, be that of a quasi-
stable state preceeding the accumulation of sufficient strain for the onset of
recrystallisation and subsequent establishment of a crystallographic structure
compatible (Budd 1972) with the local stress situation and flow picture. The argument,
then, is that prolonged steady secondary creep often leads to recrystallisation and,
therefore, to maodifications of the independent structural parameters of the flow law
as exemplified by a modified rate of strain (tertiary creep phase). The stresses operating
in natural ice masses are maintained for extremely long periods of time. Furthermeore,
there 1s considerable evidence (Budd 1972) that ¢crystallographic and other structural
properties of natural ice are flow induced, resulting from dynamic recrystallisation
and other dynamic mechanisms. It seems reasonable, therefare, to associate a final
stage of tertiary creep with a flow law for natural ice masses.

For an important range of naturally occurring temperature and stress, tertiary
creep has not been attained, even after prolonged laboratory creep tests. Indeed, at
low temperatures and stresses, the existence of a tertiary creep state has not been
established by laboratory tests. When the tertiary stage is achieved, and settles to
a subsequent period of constant rate of strain persisting sufficiently long to establish
beyond reasonable doubt that all dynamic mechanisms are in equilibrium, the final
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strain rate may then be regarded as characteristic of the final structure of the specimen
under the test conditions of temperature and stress.

Following the above arguments, degeneration of the secondary stage to a point
of inflection between the primary and tertiary stages suggests that there is no
justification in associating the minimum strain rate at the inflection point with the
steady or secondary rate; i.e. the independent variables related to ice structure remain
time dependent.

1.2.5 Need for further investigation

From Figure 1 it is evident that two independent variables, octahedral shearing stress
and temperature, account for the major proportion of the variance in observed
deformation rates. Budd (1969) pointed out that the experimental data still left the
strain rates in doubt by a factor of two, and probably more, due apparently to effects
associated with ice structure, e.g. grain texture and crystallegraphic orientation fabrics.
This doubt persists even now. In addition, much of the data is based on isometric,
isotropic specimens, whereas the crystals of natural ice masses tend to adopt systematic
orientation fabrics and textures (Rigsby 1960, and Budd 1972).

Laboratory studies yielding strain rates less than 10"sec” present special
problems related to the measurement of extremely small deformations over long
periods and, not unexpectedly, in the interpretation of these results. Indeed,
Steinemann (1958b) cautioned laboratory researchers as to the pitfalls accompanying
the measurement and interpretation of deformation rates less than 10sec™'. The
relative paucity of laboratory data at deformation rates less than about [0'%ec™,
shown by Figure 1, attests to the inherent difficulties. It is only through the relatively
recent introduction of stable, sensitive and accurate electronic displacement transducers
that studies in this important region are practical. Even so, time scales of the order
of months or years are required.

In light of the fact that the range of octahedral stress aud temperature relevant
to the flow of natural ice masses spans values from approximately 0.01 to 3 bars
and 0°C to —60°C it is clear that an urgent need for additional data extending into
this region exists. Two areas of investigation are suggested: the extension of the flow
law for 1sometric isotropic ice down to octahedral values near 10'’sec”’; and the
methodical investigation of the flow law for natural anisotropic structures in terms
of, for instance, an enhancement factor relative to the isotropic flow law.

1.3 PURPOSE AND SCOPE OF THE PRESENT STUDY

In the introduction it is shown that neither field nor laberatory studies can stand
alone in providing an adequate specification of the flow law for ice. Indeed, both
field and laboratory studies must proceed hand-in-hand with a program of numerical
modelling to achieve useful results. The study described herein is but one aspect of
a continuing joint project undertaken through the co-operation of the Metecrology
Department of the University of Melbourne and the Antarctic Division of the
Commonwealth Department of Science and Technology. The purposes of this study
are as follows:
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¢ To extend the suite of isotropic creep data into the ranges of temperature and
shear stress commonly observed in natural ice masses. This aspect of the study
is a continuing effort with its long-term goal being coverage of the temperature
range between 0°C and — 50°C for shear stresses between 0.05 and 2.8 bars
octahedral. The imimediate concern here is with polar ice masses. Data are
presented for temperatures ranging from —10°C to — 50°C at shear slresses
between 0.05 and 2.8 bars octahedral. Creep studies near pressure melting require
special treatment and are beyond the scope of the present study.

* To extend the applicability of the isotropic results to natural ice masses through
a model of strain rate enhancement due to anisotropy effects; and to test it.



2. The rheological variables

While the flow law for polycrystalline ice is influenced by many variables, the most
important of these are evidently the stress tensor, temperature and the structure cf
the ice itself. The emphasis of the present study is the interrelationship between the
stress situation and crystallographic structure, and the combined influence on the
rate of strain. Consequently, the stress tensor, strain rate tensor and crystallography
are examined in some detail. The remaining variables are considered primarily to
establish an appreciation for the necessary controls and limitations imposed on
experiments designed to isolate the effects of the aforementioned control variables.

2.1 STRESS
2.1.1 The stress lensor

The stress tensor g;, is written in the usual manner as

Txx Txy Txz

2.1

Ty = | Twx Tyy Ty

Tan Tay [e£7%

From a consideration of the equilibrium of a volume element, the couples given by
7y — 7, must vanish; therefore 7, = 7; so that ¢, is symmetric. It can be shown
generally (Taeger 1969) that by a suitable choice of co-ordinate axes a symmetric tensor,
say 7ij, can be represented in the form

T 0 0
=10 T3 0 (2.2)
0 0 T

where, by convention, r,
the principal axes. In particular, then,

= 7, = 7, are the principal tensor compenents parallel to

T, 0 0
o=0 @ 0 (2.3)
0 0 0,

where ¢, = a0, = 0,.

Subtracting the hydrostatic pressure from the stress tensor yields the deviatoric
stress tensor

Oi; =

where

7y

— péy

(2.4a)



p = Y50u dn (2.4b)

The principal stress deviators are parallel, respectively, to the principal stress axes.
Thus, in the principal stress co-ordinates

of O 0
g, = ﬂ 0 154 0 (2.5a)
| 0 0 03

where the principal stress deviators are related by the expression

o) + o + i =0 {2.5b)

Denoting the magnitude of the resolved shear stress on a given plane by 7, Jaeger
(1969) shows that there are three stationary values, 7, associated with the planes
whose normals bisect the angles between the principal axes. The magnitudes of these
principal shear stresses are

Ty = 1/2(01 - 03) = ]/2(0; - 0’3’)
7, = Ya(o, — 0,) = Ya(al — o7) (2.6)
7, = Yo, — o) = Vi(ol — o))

Just as the principal stress deviators are related by equation (2.5b), we have a similar
relationship among the principal shear stresses

W — T+ 1. =0 2.7
Manipulation of equation (2.6) together with equation (2.5b) vields

ol = 24{r, — 75)

ai = Y(n — 1) (2.8)

o = = %(r + T2)

2.1.2 Invariants
Hydrostatic pressure
The first invariant of the stress tensor (Jaeger 1969) may be written
[, = a8, = 3p (2.9)

Thus 1, is physicatly related to the hydrostatic pressure. It follows from equation
(2.5b) that the first invariant of the deviatoric stress tensor vanishes:

[l = a6, = 0 (2.10)

The physical effect of hydrostatic pressure on the deformation rate of an
incompressible material evidently vanishes in principle. Empirical confirmation of
this is provided by Rigsby (1958).

Qciahedral and effective shear stress
The second invariant of the deviatoric stress tensor is (Jaeger 1969)
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I, = Va0, (2.11a)

Il

Wl{o: — o) + (02 — o))" + (0, = 0.)7]

Since the second deviatoric invariant can be represented in terms of the differences
of the principal stresses, we have by equations (2.10) and (2.6)

I = %(r2 + 728 + 719 (2.11b)

The shear stress across the octahedral plane, whose normal has direction cosines
(3)" referred to the principal axes, has been shown (Jaeger 1969) to be

7o = (o,0,/3)"
= 2173y (2.12)
= ¥t + 1+ T

Hereafter a zero subscript denotes the octahedral value of the associated tensor defined
as in equation (2.12).

The effective shear stress defined by Nye (1957) is related to the octahedral shear
stress and second deviatoric stress invariant as

7. = (1) = 2/3)7 (2.13)

Stress configuration
The third invariant of the stress deviator is defined (Jaeger 1969, and Glen 1958) as

i = Y o400 (2.14)

[

= 0g:0:

This invariant contains information related 1o stress configuration. When dependence
on [ 1s eliminated from I; by scaling the components of oy to an octahedral value
of 2", the resulting normalised value {A) of 1{ ranges from + 1 for uniaxial tension
{o0; = 0; = —Vaa)) through zero for a two-dimensional stress situation (g; = 0, s0
that of = —a) to —1 for uniaxial compression (o) = o; = — Y203).

Kamb (1972) proposed two alternative configuration parameters. The first and
most general is defined in terms of the principal stress differences as
[A« = ] {o. — a}{o, — o). Many of the tests described by Kamb (1972) were
performed on an annulus of ice in combined torsion and compression. As the
tangential force in such tests varies inversely as the radius, it is clear that the stress
situation is distributed inhomogeneously through the annulus and is strongly
dependent on the ratio of the difference and sum of the outer and inner radii. Evidently
to overcome the difficulties associated with determining the effective value of Ay,
Kamb {1972) defined a second parameter [As = lo/7 directly in terms of the applied
compressive o and mean shear 7 loads. Budd (1972), considering the relationship
between the symmetry of the stress situation, flow picture and orientation fabric,
used the configuration parameter [hs = Joi/0/.

The parameter A offers two main advantages over those suggested by Kamb
(1972) and Budd (1972): its symmetry with respect to the sign of the dominant normal
stress, 1.e. whether tensile or compressive, and its unity limits. However, the extended
computations necessary to evaluate A would seem to offset these advantages in
practice. Therefore, an alternative definirion of the third deviatoric stress invariant
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in terms of the principal shear stresses is proposed here. The invariant
A = (T; - Tl)/Tl (2'15)

1s non-dimensional and independent of I while retaining the symmetry and unity
limits exhibited by the normalised form of 1;. The relationships between the various
stress configuration parameters discussed above are now considered.

Expanding A in terms of the principal stresses using equations (2.15) and (2.6)
we obtain

o, — 20, + 0,
A=————
g, = g;
200 — g — O ay — a,
ds — dJ, a, — o,
_ 2 g, — a0, —l
Gy — 0y (216)
thus
A =2 x -1 (2.17)

Continuing with equation (2.16) and introducing equation (2.6} then equation
(2.5b) gives

A=2]2T9
a, — g,

i
T
1
a |9
- Lo
| |
a =
|
|

_ _ 5 oz’—o.'_ 20 + o4
[20.’ + 02’] |: 20/ +a; }
- 3a;

200 + o} (2.18)
Finally, dividing both the numerator and denominator of equation {2.18) by o/ yields

- 3
Ag + 2 (219)

The stress situation in a combined torsion/compression experiment approaches
homogeneity as the ratio of the distance between the outer and inner radii to the mean
radius diminishes. The stress situation then approaches the case of a sample between
parallel plattens to which a normal stress ¢ and a shear stress 7.are applied in
combination. It is shown from equation (2.41) that the associated stress configuration
parameter is



A=o(@ + 4y

:Q(i+ 4\ "
TAT

= As (N5 + 4y (2.20)
The relationship between these various configuration parameters is illustrated in Figure
3. As no definite relationship has vet been found between the stress configuration
(i.e. third deviatoric stress invariant) and the octahedral strain rate of an isotropic
agpregate (see, however, Glen 1958), a stress configuration parameter will be most
useful when considering the effects of anisotropy on the strain rate (Section 3).

2.1.3 Sutate of stress

An arbitrary deviatoric state of stress may be specified in terms of the octahedral
shear stress 7,, the stress configuration parameter A and the orientation of the
principal axes of stress. To demonstrate that this is so, expressions for the principal
stresses and the principal shear stresses are next developed in terms of 7, and A.

Beginning with equation (2.15) and eliminating first 7, then 7; using equation (2.7),
we may write

T — Ty + T,
A=
T2
_n
T2 (221)
or
I+ A
T :( )Tz (2.22)
2

and then similarly

0=
2

71 (2.23)

T

By equation (2.12)

= %1 a-aAa+1+ {1+ A)"] (2.24)
2 2
50 thart
L3 T (2.25)
26+ Ay

It follows that



2:0 T I  A—

-2:0

e 0 I-O

Figure 3. Relationship between the various stress configuration paramefers.
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" :jii(l ; A)(3 :0 A7)

. :jz 3_ N (2.26)
(3 + AY"

71(1 + A) To
RN 2 3+ Ay

Therefore, by equation (2.8)

\

, A+ 3
6 =———— To
206G+ A
P .27
J2 (3 + AY-
, A-3
6y =————— To
J2 (3 + AY- ~
Also
I = of 07 o)
B+ A3 -ANA
= TD‘
J2 (3 + A (2.28)
Finally
>\.={3 + A3 -MA

3 + A (2.29)

Even in the simplest cases, the task of determining the distributed state of stress
in an isotropic laboratory specimen stressed under externally applied forces is
complicated by end effects. Generally a homogeneous distribution of 7 and A is
required. The extent to which end effects permeate a laboratory specimen and thereby
modify an otherwise homogeneous distribution of these parameters depends primarily
on the geometry of the specimen and the nature of the specimen-platten interface.

As the ratio of specimen volume to the surface area under load is increased, the
distribution of stress becomes increasingly homogeneous. This has been confirmed
experimentally using the stress analysis techniques of photo-elasticity theory. St
Venant, in 1885, was apparently the first to appreciate this phenomenon. The principle
bearing his name states, in essence, that if the external forces applied to the surface
of an elastic body are replaced by a differcnt but statistically equivalent set of forces,
then gross modifications to the initial stress field will occur near the region of the
applied forces, but that the stress distribution at points sufficiently removed from
the applied forces will remain essentially unaltered {page 22).
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2.1.4 Common types of stress configuration

Assuming that end effects are negligible, the state of stress in a [aboratory specimen
is now examined for the most common constant load configurations.

The uniaxial configuration

Consider a specimen mounted between parallel plattens to which a constant normal
load o is applied. If the load is tensile (¢ > 0}, the principal stresses are (¢, 0, 0);
the principal deviatoric stresses are (2¢/3, —o/3, —¢/3); and by equations (2.6) the
principal shear stresses are {0, ¢/2, ¢/2). Thus

o =% (i + 13 + 1)

3 (2.30)

A=(rn — n)r
=1 (2.31)

For a compressive load (¢ < 0) the principal stresses become (0, 0, ¢); the principal
deviatoric stresses, (—a/3, —a/3, 2¢/3); and the principal shear stresses, {—o/2,
—o/2, 0). Therefore

2

7o = — |o] (2.32)
3

and

A= -1 (2.33)

For the tensile case the first principal axis of stress is normal to the plattens, while
in the compressive case the third principal axis of stress is normal to the plattens.
The remaining axes may be chosen arbitrarily due to the symmetry of the stress
situation.

The two-dimensional configuration
Consider a specimen loaded in a uniaxial configuration as discussed above, but with
movement confined to two dimensions by a pair of parallel fixed lateral platrens.
With the application of a compressive load (¢ < 0), a reactive compressive load is
induced normal to the fixed plattens of magnitude ¢/2. The principal stresses are
(0, 6/2, 0), and the principal deviatoric stresses are (— /2, 0, 6/2). The second and
third principal axes of stress are normal to the fixed and loaded plattens, respectively.
The principal shear stresses are (—o/4, —¢/2, —a/4) which give
5
v = W2 lal (2.34)

J32

and
A = 0. (2.3%)
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The composite configuration

When combined normal ¢ and shear r loads are applied to parallel plattens, a
composite stress configuration is obtained. If a set of co-ordinates is chosen so that
X; 1s normal to the plattens and x, is tangential to the plattens and directed parallel
to the applied shear load, the stress tensor is

0 0 7
o, = |0 0 0 (2.36)
_'1 T 0 a

Solution of the characteristic equation associated with g;, (Jaeger 1969) vields the
principal stresses

g, = Yo + 2 (07 + 47 h
g, = 0 (2.37)

a; = Yeo — Va(o? + 477}

The principal deviatoric stresses are thus

o/ %o + (g + 41
g, = - A0 (2.38)

g, = Yo — (c® + 477

It

Substitution of equations (2.38) into equations (2.6) gives the principal shear stresses

7, = Y(e® + 41 — lag

T, = Yo’ + 477" (2.39)
T, = Yi(et + 47t + Vig
therefore
T = “;—Z(cr’ + 477y (2.40)
and
A = oo’ + 47" (2.41)

The second principal axis of stress is oriented normal to the plane containing o
and 7. The first principal axis is tilted at an angle

o

§ = v tan[ﬂ (2.42)

toward the x, axis, i.e. into the direction of shear for ¢ > 0 and away from the direction
of shear for o < 0.

The specimen-plalten interface
Nearly perfect contact can be achieved between an ice specimen and a metal platten
by freezing the warmed platten onto the specimen. A platten bonded in this manner
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is capable of transmitting a highly uniform normal force to the specimen. If the
boundary stress required at the interface is to be purely compressive {negligible traction
or shearing forces), such a ‘frozen bond’ may prove to be unsuitable.

In order to achieve complete radial freedom in uniaxial tests, three approaches
are possible (Hawkes and Mellor 1970}, The first 15 to match the radial strain of the
platten to the radial strain of the specimen; the second is to reduce the coefficient
of friction between the specimen and the platten to a value less than that which prevents
slip; and the third is by hydrostatically loading the ends of the specimen,

The best guarantee of strain compatibility between the platten and sample is
through the use of a polycrystalline ice platten. Dumb-bell-shaped specimens achieve
this effect, but this complicates the measurement of axial strain. Lubricating fluids
and thin sheets of low friction or deformable materials have been interposed between
the platten and the sample to reduce friction. The third method is difficult to achieve
in practice due to difficulties arising from the need to isolate the pressurised fluid
from the free surfaces of the specimen.

In simple shear tests, on the other hand, a bond capable of transmitting shear
forces without slip is essential. Raraty and Tabor {1958) conducted a series of tests
in which they measured the adhesion properties of ice to various metals. Their results
showed that significant differences in specific adhesion exist in regard to the various
metals tested, the preparation of the surfaces and the temperature of the bond. The
dependence on temperature was interpreted as a difference in the mode of fajlure:
below —7°C a brittle form of failure was attributed to the propagation of cracks;
above —7°C failure was ductile and temperature dependent.

D. S. Russell-Head (personal communication) found that aluminium plates,
anodised and then baked to form many minute cracks in the anodised surface,
produced a frozen bond with ice stronger than the ice itself. The platten surface had
been prepared by washing with a solution of soap and water followed by several hot
water rinses.

Specimen geomefry

The shape, size and proportions of test specimens are important in insuring the
homogeneity of the stress field. An intuitive notion is that the test specimen should
at least exhibit a geometric symmetry in conformity with the symmetry of the applied
stress configuration. In uniaxial tests this notion suggests a circular cylindrical shape;
in simple shear a rectangular shape is implied.

The smallest dimension of a specimen loaded uniaxially is determined primarily
by its grain size. Creep tests on polycrystalline ice are intended to represent the bulk
properties of the material. Sample diameter should, therefore, be Jarge in comparison
to the average grain size. Brace (1960) concluded that the extent of the controlling
defect mechanism in rock is of the order of the grain size. Hawkes and Mellor (1970}
have assessed the ratio of cross-sectional area unaffected by the free surface in relation
to the ratio of mean grain diameter to sample diameter. They concluded that it is
desirable to maintain a sample to grain diameter ratio in excess of 20.

As regards specimen length in uniaxial tests, a compromise must be met when
considering homogeneity of stress (a long sample is suggested by St. Venant’s
Principle), stability {a short sample is implied to minimise buckling) strain resolution
(a long specimen is preferable) and practical implications.

22



Unstable creep due to buckling in compression is a direct consequence of either
angular misalignment of the plattens or asvmetric centering (eccentricity) of the
specimen and the plattens. Because an initial misalignment or eccentricity is amplified
as creep proceeds, it i1s particularly important that the specimen be cast and/or
machined precisely and that the plattens be accurately bonded to the specimen. Hawke
and Mellor (1970) have estimated the error (ratio of peak buckling stress to mean
stress) due to eccentric loading to be 8A/D, where D is the diameter of the specimen,
and A is the eccentric displacemcnt of the load axis with respect to the specimen axis.
The effect of the initial error is proportional to the length of the specimen and is
amplified by increased buckling as deformation proceeds.

Angular contact alignment between the load transmitting members of a
compression apparatus and the specimen plattens 1s often accomplished through the
use of locking spherical seats. Free spherical seats also limit the net shearing stresses
(torsional and lateral) at the platten-sample interface.

The distribution of stress in a uniaxially loaded cylinder with a length to diameter
ratio (L./D) of 2 has been provided by Balla (1960), assuming an elastic material with
a Poisson’s ratio of 0.33, and complete radial restraint with perfect contact at the
platten-specimen interfaces. Based on Balla's (1950) reported results, distributed values
of 7, and A have been calculated. These distributions are illustrated in Figures 4 and
S, respectively, The figures show only the upper right hand quarter of the cross
sections, as the distributions are symmetrical about the centre of the specimen. The
contours of Figure 4 have been normalised by the octahedral stress, calculated using
equation (2.32). Note the penetration of boundary effects, leading to large gradients
of the control parameters 7, and A near the peripheries of the plattens, Based on the
contours shown in Figure 4, 28 per cent on the sample volume deviates from the
octahedral shear stress calculated with equation (2.32) by more than 10 per cent.
Approximately 8 per cent of the sample volume exhibits a stress configuration
parameter greater than —0.9; the target value for uniaxial compression is — 1.

2.2 STRAIN RATE

The time rate of change of the strain tensor is regarded here as the dependent variable
of the flow law. In this section the strain rate tensor is considered. We will use true

. . o 1d/ . . .
or logarithmic rate of strain, ¢ = ~ —, in preference to ihe nominal rate of strain,
[ dt

i |

6 = — —, where /, is the initial sample dimension and / is the instantaneous
{, dt

dimension associated with a particular strain rare component; true and norminal strain
rates are related by equation (2.43)

¢ =1In( + 6 (2.43)

In practice, true and nominal strain rates are essentially equivalent for total strains
less than several per cent.
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Figure 4. Distribution of normalised octahedral sheer stress for a cylinder of cir-
cular cross section in uniaxial compression.
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cross section in uniaxial compression.
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2.2.1 The strain rate tensor

Denoting the strain rate tensor in the customary way, we write
éij = .ny Cyy l‘fyz (244)

where the strain rate components ¢, are related to the velocity {u,) gradients by the
expression

&y = i (2.45)

The strain rate tensor may be expressed as the sum of symmetric and skew symmetric
terms. Thus,

b e e | 10 by
é\J = ;Yw é:v's' '.Y)'z +owy 0 Wy (2.46)
'.sz ;Yyt ézz E—'-’x‘/_ L.Uyz 0

where

Yo = G + &)

= Yy, + u,) {2.47)
and
w, = Ya(ey — &)
= Yy, — u,). (2.48)

The first term on the right hand side of equation (2.46) is the deformation rate tensor
and represents a pure distortion, while the second term is the rotation rate tensor.
The dual of wjj is the vector rate of rotation. Although rotations play an important
part in the interpretation of crystallographic orientation fabrics, they may be neglected
in dealing with deformations alone.

The deformation rate tensor may be expressed further as

| . . .

A 1 0 0 i €xx Yy Yz

Yo = _3_ 0 1 0 Rl CYR Yoz (2.49)

. 0 0 1 ':Y,\z ;sz éz’z
where

1 dv )

A= —— = Yu (Sij (250)
YV odt

is the dilitation rate or fractional volume rate of change arising from the deformation,
and

Y = v — YA S, (2.51)

The first term on the right hand side of equation (2.49) is the spherical rate of
deformation while the second term 5 is referred to as the deformation rate deviator
and describes the rate of deformation of an incompressible material. With the
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exception of the firn layer, the density distribution in glaciers and ice sheets is relatively
constant. Unless otherwise noted, incompressible flow is assumed; thus A = 0 and
Y, = 7, in the present text.

Since ¥, is symmetric, a set of axes called the principal axes of strain or strain
rate can be found such that

&0 0 |
=10 & 0 (2.52)
PR

where, by convention, €, = €, = ¢, are the principal deformation rates parallel to
the principal axes of strain. The principal shearing rates analogous to the principal
shear stresses are

Y= Yaler — &) = Vil(ed — &)
'.Yz - 1/2(61 - EJ) = %(é; - 6;-) (253)

2.2.2 Invariants

Compressibility and pure shear
The first invariant of the deformation rate tensor may be written

J; = :Yu 61]
=& + & + & (2.54)
. . ; e L dv
Thus J, is physically equivalent to the dilitation rate A = — —.
V dt

For A = 0, the flow is incompressible and called a pure shear deformation,

Octahedral and effective rate of deformation
The second invariant of the deviatoric deformation rate tensor is

J: = Vi v
= Ul(e: — &Y + (6 — &) + (&0 — &)

= BT+ ) (2.35)
Jagger (1969) shows that the octahedral shear rate of deformation
) o § 2J;
Yo = (Y5 /3" = (-3 1 (2.56)

is the shear deformation rate resolved on the octahedral plane, possessing direction
cosines (3) referred to the principal axes. Alternately, Nye (1957) defines the
effective shear rate as

. 3.
Ye = ()" = J?'yu (2.57)
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0o o ~ X
2 |
w,=[0 0 0 (2.68)
T o0 o
2

Thus simple shear, or laminar, flow may be regarded as a pure shear in two dimensions
plus a rigid rotation about the second principal axis at a rate v/2.

2.3 1CE STRUCTURE

The specification and analysis of ice structure in conjunction with creep tests of
polycrystalline ice is an area too often neglected in laboratory flow law studies. The
inconsistency and scatter illustrated in a graphical summary of deformation studies
in Figure 1, reflect the variety of ice structural types examined. It 1s clear from the
limited evidence available that a number of structural parameters enter into the flow
law for polycrystalline ice. In this section several parameters commonly considered
to be among the most important are discussed.

2.3.1 Anisolropy

That crystallographic anisotropy plays an important role in the flow law for
polyerystalline ice can be inferred from the results of studies on the shear deformation
of single crystals of ice. Shumskiy (1958), Rigsby (1958, 1960), Butkovich and
Landauer (1958) and Viaiov (1958) have shown that single crystals oriented for easy
glide deform at a rate 10* to 10° fimes faster than single crystals oriented for hard
glide under similar conditions of temperature and applied stress. Qualitative results
concerned with the influence of anisotropy on the deformation rates of polycrystalline
specimens are available from creep tests on anisotropic specimens and on specimens
devcloping preferred orientations under stress (Steinemann 1954, Kamb [972, Rigsby
1960, Budd and Matsuda 1974, Dillon and Andersland 1967, Gold 1973 and
Frederking 1972). These results confirm the view that polyerystalline deformation
rates are enhanced when preferred orientation fabrics are compatible with the stress
situation and that compatible preferred orientations are induced by the flow situation.
Budd (1972) presents substantial evidence that such preferred orientations arc a
pervasive feature of natural ice masses and are compatible with the overall flow
picture.

Quantitative studies related directly to the effects of anisotropy alone are nearly
non-existent. Thus, as a major part of the present study a first model of the effects
of crystallography on the flow law for polycrystalline ice is presented (Section 3).
A precise parameterisation of a crystallographic orientation fabric will be required.
Most fabric data are presented as scatter diagrams on an equal area (Schmidt net)
projection of the lower hemisphere distribution (Phillips 1971). These distributions
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are often contoured in terms of the number fraction or per cent of the oriented crystals
per 1 per cent area of the Schmidt net. As it may be expected that the influence of
a constituent crystal on the flow law for an aggregate is in proportion (o its size,
a more relevant quantity would be the orientational distribution per unit volume of
the aggregate rather than number of crystals per unit area in the thin section {(Budd
1972). While a volume-related orientation density cannot be obtained directly from
a single thin section, an area-refated distribution may be obtained by weighting each
oriented crystal with its area fraction of the total thin section area. Then, if the crystal
size and shape distributions are known for the aggregate (Rigsby 1968) it is possible
to estimate the volumetric orientational distribution from the area distribution
(Steinemann 1958a). Hooke (1969) argues that for an aggregate of grains equant in
three dimensions, differences between the various distributions should be negligible.

It would appear practical, then, to define the crystallographic crientation density
f as the volume fraction per steradian of an aggregate of total volume V possessing
optic axes oriented within the elemental solid angle d @:

; 1 dv

VvV dQ (2.69)

It follows that for an isotropic aggregale the orientation density is

f == (2m" (2.70)

2.3.2 Density

The evidence presented by Mellor and Smith (1966) regarding the effect of density
on the strain rate of snow clearly indicates a decrease in strain rate with an increase
in density. They have associated a ‘step’ in their curves between (.53 and 0.64 MN
m™ with the attainment of the maximum practical density for close packed grains
and close packed spheres within this range. They argue further that this limit is
responsible for a transition in the rate controlling mechanisms. Budd (1969)
extrapolated the curves of Mellor and Smith to the maximum density for ice and
concluded that the resulting strain rates were consistent with the results of other
workers. Budd (1969) also noted that the density of naturally deforming ice below
the surface firn of glaciers and ice sheets is generally high and constant, arguing that
since the firn layer is but a small fraction of the total depth in most ice caps and
glaciers, density effects on strain rates may be neglected.

2.3.3 Texture

Few results are available concerning the effect of texture (grain size and shape) on
the creep of polverystals. The results of Butkovitch and Landauer (1960) indicate
a tendency for higher strain rates to be associated with increased grain size. However,
this trend cannot be separated from the effects of anisotropy in their test specimens.
It is known that the range of crystal size can extend over two orders of magnitude
at a single site. For this reason, the effect of texture on the flow law is an important
area for future investigation.
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2.3.4 Inclusions

Interstitial, intergranular and intragranular inclusions have an effect on the
deformation rate of polycrystalline ice. In relation to natural ice masses, moranic
material may play an important role as it is often observed in the basal region, where
shearing stresses are large.

Nayar (1966) investigated the effects of small volume concentrations of dispersed
ultrafine amorphous silica particles in a polycrystalline ice matrix. For concentrations
between 0 and 1 per cent by volume, he noted a decrease of strain rate with increasing
concentration. At | per cent concentration the strain rate decreased by a factor of
from ten to thirty with respect to pure polycrystalline ice. This inverse dependence
was greatest at low concentrations and low temperatures, Nayar suggested a
mechanism of cross slip enabling dislocations to bypass particles.

The effect of volume concentrations up to 35 per cent dispersed fine sand has
been studied by Hooke et al. (1972). Again a reduction of strain rate with increased
particle concentration was found. Analysing their results in terms of dispersion
hardening, Hooke et al. viewed each particle as surrounded by a cloud of tangled
dislocations, At higher volume fractions of sand, the effective volume fraction of
ice increases at a rate less than the volume fraction of sand due to the overlap of
spheres of influence of adjacent particles — thus the observed exponential law relating
volume fraction sand to strain rate.

At volume fractions less than about 0.1 the results of Hooke et al. were inconsistent:
they concluded that at small concentrations individual particles might be acting as
dislocation sources or decreasing the nominal crystal size, thereby promoting grain
boundary slip.

Goughnour and Andersland (1968) reported experimental results on the creep of
a sand-ice system with volume concentrations extending to 60 per cent. Displaying
their results in terms of peak strength, they obtained a bi-linear distribution of strength
against concentration. Strength increased slowly to a critical concentration of
approximately 42 per cent; at higher concentration the strength of the sand-ice system
increased sharply. The sharp increase in strength above the critical concentration was
attributed to dilatency and friction between sand particles.

Clearly the gross effects of dispersed particles is complicated by many factors
including the size, geometry and concentration of the particles. Whether particulate
inclusions act as sources or barriers for dislocations remains unclear. It is the
contention of the author that the role of particulate inclusions may be related to
position within the polycrystalline matrix relative to the grain boundaries.
Intracrystalline particle placement can be expected to preferentially influence
intracrystalline creep mechanisms. The placement of particles relative to grain
boundaries would then govern the rate-contrelling mechanism and thus explain some
of the observed scatter, especially at low concentration.

2.4 TEMPERATURE

The control of the thermal environment of a specimen and creep apparatus is essential
to the successful interpretation of creep data, especially at low values of creep rate.
Temperature variations influence not only the creep rate, but also the dimensional
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stability of the specimen and apparatus, and the extent to which thermal stresses
become important. In addition, most electrical displacement transducers exhibit both
mechanical and electricat sensitivity {o temperature variation. In this section, the effects
of temperature variations on the creep rate functions and the requirements of
temperature control used in the present study are considered.

There are two types of variations: those showing no well-defined periodicity, or
relatively long periods compared to the duration of the test; and those represented
by a periodic fluctuation with no variation of the mean value. Each type of variation
contributes to the form of the creep function and c¢an mask the real deformational
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Figure 6. Temperature drift (niillidegrees per dayj versus temperature and octahedral
sheer stress which will introduce a 10% error in observed octahedral strain rate. (Based
on Budd’s (1969, Figure 2.3) idealised extrapolation of previous empirical results (o
fow lemperatures and shear siresses).
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contribution to its form. The linear thermal coefficient of expansion for ice is
approximately 5 x 10°°C"; that is, a temperature change of 1 °C causes a thermal
strain of § x 10, As an indication of the importance of this masking effect at low
temperatures and small shear stresses, Figure 6 shows the magnitude of temperature
drift rate which will introduce an error of 10 per cent in observed octahedral strain
rates. The rheological strain rates on which Figure 6 is based have been taken from
Budd’s (1969, his Figure 2.3) idealised extrapolation of previous empirical results
to low temperatures and small strain rates. Clearly, Figure 6 indicates that below
about 0.02 MN m? and —20°C the precise control of temperature drift rate is
essential.

Of equal concern at small creep rates, where the specimen may not reach a steady
secondary creep rate even during a prolonged test, is the necessity of estimating the
secondary creep rate from the form of the creep function during the primary stage.
When thermal equilibrium within the test ¢chamber has not been established at the
time of loading, the specimen and apparatus temperatures may be expected to exhibit
a transient, exponential approach to equilibrium, thus superimposing an exponential
component of thermal strain on the creep function. Depending on the direction of
approach to equilibrium, this effect may either diminish or enhance the real transient
primary creep response as seen in the observed creep function. The duration of the
thermal transient response can usually be measured or estimated and the effected
creep data neglected. It might be noted that this effect must be considered if Glen’s
(1958) method is used to estimate secondary creep rates from the initial slope of the
creep function.

Periodic fluctuations of temperature within the test chamber are revealed as
periodic fluctuations of the observed displacement or creep functions. Observed
periods longer than that of the actual thermal cycle may be misleading, arising from
systematic differences between the data sampling rate and the period of the thermal
cycle (Blackman and Tukey 1958). This effect is most pronounced with the use of
an automatic data logger. The principle problem here is to separate the thermally
induced f{luctuations in the observed creep function from real fluctuations in creep
rate {Budd and Matsuda 1974, Duval 1972, Gifkins 1959, and Richardson et al. 1966).

An additional, though usually minor, concern is the inducement of thermal
gradients arising from a rapid rate of temperature change. These in turn generate
thermal stresses within the specimen. Although thermal stresses are unlikely to cause
fracture at elevated temperatures, fractures may become a real possibility at low
temperatures where the ice is more brittle. Of greater importance at low stress
magnitudes is the modification to (he state of stress which can be caused by a
superimposed thermal state of stress.

Certainly the most satisfactory solution is to minimise temperature variations to
a level where the effects mentioned above become negligible.
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3. The effect of anisotropy on the creep of
polycrystalline ice

Empirical flow laws for polycrystalline ice presently in use are based for the most
part on the suite of existing data relating to tessellate, fine-grained, randomly oriented
polycrystals. In this chapter a model relating the deformation rate of an anisotropic
polycrystal to that of an isotropic polycrystal is developed in terms of an enhancement
factor. The utility of this approach is evident; once the stress and temperature region
aver which the model is applicable have been determined on the basis of a limited
number of carefully designed laboratory experiments, an anisotropic flow taw for
polycrystalline ice in that region can be readily deduced for any crystallographic
orientation fabric on the basis of established isotropic results through the application
af the results of the present model.

3.1 INTRODUCTION

Consider an aggregate in which the octahedral strain rate ¢, i1s a function of the Root
Mean Square-resolved basal shear stress, as might be expected if the rate controlling
mechanism is basal glide. It is shown in Section 3.2.1 that the shear stress 75 resolved
on a basal plane with direction cosines /; relative to the principal axes of stress is

TR = @ T (3.0

where

_ 122 172 ppoag 2.
i{‘f\ D20+ 41 + (A + DY, /,} 5.2)

$2 AP+ 3

is the geometric {stress) factor (Weertman 1973) for the grain.
Defining the r.m.s.-resolved basal shear stress for an aggregate of total volume V as

!
Tom = {— Vo d\f} (3.3)
Vv

and substituting equations (3.1) and (2.69) gives

Time = |i i fcx’dﬂ} To (3.4)
2%

The integral in equation {3.4) may be evaluated for an isotropic aggregate using
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[, = sin 8 ¢cos o

{, = sin @ sin «

3.5
Iy = cos @ (3.5)
dQ = sin 8 df do
then
9 o . )
VPrerd = (A + )] 12 [(A - 1)sin’f cos’d sin‘w
2'11' 4““— a o
+ 4sin’# cos?8 cos’a
+ (A + 1) sin® sin’a cos’a] df da
9 = .
= :1 (A" + 3" P [{A - 1)%sin’8 cos?d
+ 4 sin*# cos*8
1
+ ;(A + 1)? sin’f] df
3 3
= 1—0 A+ A - 1D+ 4+ A+ D7
3
= — (A” + 3" 2(A* + 3)
10
3
== (3.6)
5

which is notably independent of A. [f, as proposed above, ¢, 1s a function of 7ims,
the implication of eguation (3.6) is that for an isotropic aggregate ¢, is a function
of 7, and not of stress configuration. This suggests a flow law of the form (Nye,
1953)

.ED = )\(To) To. (3.7)

The large suite of empirical creep data applicable to isotropic ice presently available
indicates (cf. Weertman 1973) that &, o« 75°, implying (Nye 1953 and Langdon 1973)
that A oc {(r,/G)" ' where G 1s the shear modulus for ice.

Weertman (1963) viewed an ice polycrystal as a collection of grains deforming
independently by basal glide governed by a monocrystalline flow law of the form

éu = )\B(TB) T8 — >\B(To) o' Ta, (3-8)
where ¢g is the basal rate of glide and Ay o {75/G)" ' is the basal fluidity. Assuming
an isotropic aggregate in uniaxjal compression under an axial stress a.(= 3/J27,,

page 20) and using an axial geomerric strain rate factor {b,) to resolve ¢, into its axial
component, he found the average resolved axial srrain rate to be
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€& = Aa 8 baa" 1o (3.9)

An additional factor [§] was introduced to account for effects of intergranular
interference; the factor (As 8 baa™) is the axial fluidity of the aggregate. As the axial
geometric sirain rate factor is only one component of a general transformation lensor
bi, (Section 3.2.1) equation (3.9) may be written for each component of £, as

£, = Ay To. (3.10}

Also, since « is known in terms of A (equation 3.2), equation (3.10) may be regarded
as a flow law for anisotropic ice deforming by basal glide in an arbitrary state of
stress. The tensor fluidity A, = A 8 b, " accounts for the effects of f and A through
the composite geometric tensor

a, = by = | f by a'(A) dR (3.11)
2

If the symmetric part of a, is written g,, then the aggregate octahedral deformation
rate i§ yo = ho 7o, where

he = Ap B(F, A) golf, A). (3.12)

Consider two aggregates differing only with regard to their orientation fabrics
and deforming under identical conditions of lemperature, state of stress, etc. If one
is isolropic, the ratio of their octahedral deformation rates is

E _ —;QEI‘) A)

T (07

N (A

RN

— ﬁ(f, A) go(f, A) (313)
BU7) gof7)

or
T, A) = B Fo(f) (3.14)

Equation (3.14) provides a flow law for an abritary orientation fabric and state of
stress through application of the enhancement factor E to the flow law for an isotropic
aggregate.

As a first step toward the development of a generalised flow law for an anisotropic
aggregate, the results (o be expected (rom equation (3.13) for a linear stress-strain
rale dependence {n = |} are now examined. This value of n deserves some comment.
Empirical results indicate that n is a decreasing funcuion of decreasing octahedral
shear stress, approaching the limiting value of unity at small octahedral shear stresses
(say less than 0.05 MN m-2). Theoretical considerations (Weertman 1973, 1968 and
Langdon 1973) on the other hand, predict values of n ranging between 2 and 4.5,
depending on the assumed rate controlling mechanism, which are independent of
octahedral shear stress. Weertman (1969, 1973) believes that the apparent contradiction
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between theoretical and empirical results is due to the necessarily short-term (with
regard to total strain) tests at the small octahedral shear stresses in question. The
factor (7,/G)+t of the fluidity (Nye 1953 and Langdon 1973) arises from the
expression for dislocation density which is often treated as a function of total strain
(Higashi 1967 and Wakahama 1967). If this is the case, Weertman (1969, 1973) argues
that the duration of creep tests at small octahedral shear stresses is insufficient for
the dislocation density to increase to its final value, and concludes that the linear
shear stress dependence observed is due to the dominance of the linearly stress
dependent dislocation velocity at small strains (see also Gilman 1968).

Whether the linear dependence of ¢, on 7, at low octahedral shear stresses is a
result of a real variation in the exponent n due to an inadequate theoretical description
of the functional form of the dislocation density, or, as concluded by Weertman (1969,
1973), a result of the practical limitations placed on the duration of creep tests, must
awail further theoretical and laboratory results to be resolved (cf. Sinha 1977). [t
may be noted, however, that field results also indicate a trend toward n values
approaching unity at low values of r,. The various explanations of the apparent
linear dependence notwithstanding, empirical laboratory data at small octahedral shear
stresses can evidently be represented by an n value of one.

The geometric tensor, interference factor and enhancement factor are developed
in Sections 3.21, 3.2.4 and 3.3, respectively. External flow constraints are incorporated
into the model in Section 3.2.2.

3.2 THE MODEL

3.2.1 The geomeilric tensor

Let the unit-vector normal to a given basal plane be specified by its direction cosines
(/\, ©, 1,) with respect to the principal axes of stress. A general expression for the
resolved basal shear stress vector, t, is required. The total stress vector s, acting
across the given plane has components (Jaeger 1969)

s, = { a,
S, = {g az (3.15)
5; = /) oy

where a,, 0, and o, are the principal stresses. The components t, of the resolved
basal shear stress are

t, = £ [I'IJ2 (01 - Ua) + ‘”2 (U: - 02)]
=6 (e, — a) + 55(e: = o)) (3.16)
1, =L (e -~ a) + 3o — 03]

Substitution of equation (2.6) into equation (3.16) for the principal shear stresses
in terms of the principal stress differences yields
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L 201251 + H o1

[

!

20 + 61 3.17)

Ly 2!3 [!f T, + ]% T|]

Further substitution of equation (2.26) into equation (3.17) yields the resolved shear
stress in terms of the stress situation parameters 7, and A.

[ 32+ A+ D
2 (A7 + 3)" Te

-R[egen).
y =1£[ (A - D# - 2!1 ,
J2 (A? + Y» ¢
The magnitude of the resolved shear stress is
T = (L)% = ar, (3.19)

where

(3.20)

2 AT+ 3

is the geometric (stress) factor (Weertman, 1973) for the grain.
Assuming that the basal glide direction is paralle} to the resolved shear stress (Kamb,
1961), the basal glide rate is

_3_[ (A - DA+ 4005 + (A + 1) /f/%l "

€g = ATy = Aga T, (3.20)

Defining a co-ordinate system associated with the basal plane such that
x7 is parallel to t, and x% is parallel to /, the strain rate tensor for simple shear (page
45) on the basal plane is

00 0
=1 0 0 0 (3.22)
e, 0 0

It will be convenient to express the strain rate tensor of each grain in a common co-
ordinate system. The obvious choice is the systemn defined by the principal stress axes
of the applied load. The transformation law for a rotation of axes is

€ = Caly 65 (3.23)

where ¢, is the cosine of the angle between the positive x2 axis and the positive x,
axis. Since the only non-vanishing component of &, is &, = &g, the strain rate in the
principal stress co-ordinate system is

&y = Culy & = Ap Culy O 7, (3.24)
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where

Cjk - ik (3.253.)
and

cy = L/7p, (3.25b)

The product by, - ¢4, is a geometric strain rate factor (cf. Weertman 1963} for the
gramn. Let the geometrically related factors in equation (3.24) be absorbed into the
composile geomelric tensor

ay = CGuly a = by«

= 2 f22 272 P g
3[ (A D235+ 4550 + (A + DU ] b,,. (3.26)

J2 A+ 3
The tensor e, may be writlen as the sum ol a symmetric term g,, and anti-
symmentric term w,

Qe = Byt Wy (3.27)
where
BIE(A + 1)+ 28] L[ =20 A + D+ 28] LL[AR+ -1
g = %3— LE[E A+ 1)+ 28] —BIRA+ D+ BA-1D] LLA-v)A—-10-28 | 3.28)
V2 " {JAE =1 LB - ANA-1) 28] BlEA- ) -28)
and
0 — b+ 1) -1,
= g Vali(A + 1) 0 Vit (A - 1) (3.29)
(AT 3)a
LI — hh (A~ 1) 0

The geometric tensor ay for an individual grain relates its strain rate tensor in
principal stress co-ordinates to the applied octahedral stress through the geomeiry
of its c-axis orientation T and the stress conliguration parameter A, This geometric
tensor is a generalised form of the scalar geometric factor (Weertman 1963 and Gilman
1968) to which «,, is analogous for uniaxial compression. To illustrate this point,
consider a specimen in uniaxial compression (A = —1). The compression axis is x..
The geometric factor for the axial component of the strain rate tensor is accordingly
a5, Bquation (3.28) for a;, with A = —1 becomes

B25 + 28]

2
I

22

Il

Al - A (3.30)

—

~

Let the unit vector /, normal to the basal plane of a particular grain make an angle
8 with respect to the compressive axis. Then /; = cos 4, and

40



-3
Q= — sin‘d cos’d, (3.31)
J2

[cf. expression (3.31) above with Weertman’s (1963) discussion of the geometric factor
leading to his equation (3); Gilman’s (1968) discussion of the geometric factor in his
equation (16); and Wakahama’s (1967) equation (1)]. Note, however, that «, yields
a geomelric factor of each component of the strain rate tensor of an individual grain
for an arbitrary stress configuration. An aggregate geometric tensor is required to
obtain the octahedral strain rate of an anisotropic aggregate.

3.2.2 The effective fluidity of a non-interacling aggregate

Setting the bulk strain rate resulting from the intragranular deformation of non-
interacting grains equal to the volumetric mean granular rate of strain (cf. Weertman
1963} vields

¢, dV. (3.32)

Substitution of equation (2.69) replaces the volume integral of expression (3.32) with
a spherical angle integral over all possible basal plane orientations:

&y = | fe d2
27
= )\a To 5 fCXide
2T
= a”}\m’o (3'33)
where
o = | fo,d® (3.34)
27

The weighting function for each orientation is the velume fraction of the specimen
possessing that orientation, i.e. the crystallographic orientation density, f. It follows
that the bulk octahedral strain rate is

ton = (& 6,/3)”
= ha 7o (o, )™
= o A o (3.35)
where
o = (o, ony/3)" (3.36)

Similarly, the octahedral deformation rate is
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e Tolgi€)/3)"

Yon =
= 2N (3.37)
with
o = (2u8y/3)" (3.38)
The effective fluidity of the non-interacting aggregate is thus
Now = Am £o (3.39)

The subscript N is a reminder that the associated parameter refers to an aggregate
of non-interacting grains.

3.2.3 Satisfaction of external flow constraints

In this section external boundary constraints imposed on the aggregate as a whole
are considered. These conditions or constraints are generally specified in terms of
velocities, either by direct measurement, e.g. of the surface velocity component, or
inference, e.g. by the presence of rigid bedrock boundaries. For a laboratory creep
test, boundary conditions on the velocities are given by the platten constraints. It
is useful, therefore, to exhibit the bulk unconstrained strain rate tensor in a co-ordinate
system (xV) associated with the platten geometry. The simplest creep device capable
of generating all possible states of stress (though not all possible states of flow, since
the rotational flow field cannot be varied independently) is one incorporating a single
set of parallel opposed plattens. When the applied load is a single-valued composite
of a shear load and a normal load, the results on page 20 show that the second principle
stress axis is oriented parallel to the platten faces and normal to the shear load. Thus
it is convenient to choose the platten-associated co-ordinate system such that xV is
parallel to the applied shear load and x! is normal to the plattens. Let the
orientation of the principal stress axes be specified by the transformation tensor p,,
which relates tensor and vector components in the principal stress co-ordinate system
to their components in the xf system. The load-induced strain rate tensor expressed
in the platten system is then

e = Pi Py é_fj. (3.4

As the fundamental notion of an anisotropic material suggests that the components
of strain rate are not necessarily proportional, respectively, to those of the applied
stress, an anisotropic specimen need not deform in sympathy with the applied load.
If the plattens are constrained against rotations or against translation, reactive couples
and/or stress situations may develop, forcing the bulk flow field into conformity with
the platten constraints.

Let a double overbar denote a parameter which fully satisfies the platien
constraints. There are three possible translational constraints:

{a) W%, = ¥n = O (ay = 0), plattens remain equidistant {simple shear);

(b)y ul, = € =0 (@5, = 0), no platten translation parallel to x4 (laterally
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constrained uniaxial tension/compression or
simple shear); and

=

(¢} uy,, = Tn=0 (E?. = {)), no translation paralle[ to x7 (laterally constrained
uniaxial tension/compression).

The two no-tilt rotational constraints are:

=r

(d) 5, = % = 0 (a» = 0), no rotation about x;; and

(e) Us, =z, = 0 (@), = 0), no rotation about x5.
Operating together, constraints (d) and {(e) specify that the plattens remain parallel.
Addition of the no-twist condition,

() Uj, = &3 = €5 = Us (@: = &), demands no rotation about the platten

normal, x5.

Physically, bulk translational constraints result in a constant load creep apparatus
acting as a constant strain rate apparatus at a rate equal in magnitude but opposite
in sign for each of the constrained, load-induced strain rate components. For each
translationally constrained component, a new stress situation is induced by its
counteracting strain rate component. The no-tilt constraints impose bulk couples on
the specimen, resulting in a superimposed rigid bulk rotation (page 29). The torsional
moment arising from the no-twist constraint about x% yields a non-homogeneous
stress situation. As the incorporation of non-homogeneous stress fields is beyond
the scope of the present model, no attempt is here made to deal with the satisfaction
of the no-twist constraint.

Let the constraint-induced reactive strain rates arising from cases (a) (b) or {c)
above be respectively, é‘i’j? TE.f]"and E!’j‘, with associated reactive octahedral stresses h,7,,
hy7o and he7,. The respective geometric tensors are then &) &l and &f Clearly at
most two of the three possible translational constraints (a) (b) or (¢) can be imposed
simultaneously, as at least one component must be in the direction of the applied
load and therefore unconstrained. Let the index k designate the origin of a particular
stress situarion, k = 1 indicating the applied stress situation and k = 2 and 3 indicating
the constraint induced situations. Let ~ denote a parameter which satisfies the
translational constraints. Then

& = h, ap
= h, & + h; & + h, af (3.41)

where h, = 1, and summation is implied over k, i.e. over all stress situations applied
and induced. It follows that

g = he g% (3.42)
and

_ | S

& - F@e (3.43)
It is easily verified that the composite octahedral stress in the aggregate is

7o = (hh; 8" 7o (3.44)
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Satisfaction of the no-tilt constraints {(d) and (e} may cause a flow-induced bulk
rigid rotation. In order to account for this rotation, an antisymmetric term py, is
added to the geometric tensor & so that their sum

Tl = al + of (3.45)

satisfies all external constraints, translational and rotational. Platten constraints are
now applied to equation (3.45) together with the condition that p!, be antisymmertric:

o + pf = 0 (3.46)

This leads to a set of simultaneous equations which may be solved for the hy and
0. To illustrate the general procedure, the two most common creep 1lest
configurations, simple shear and uniaxial tension/compression, are treated by
example.

fa) Simple shear

Consider first a specimen in simple shear with the plattens constrained to remain
equidistant (@%5; = 0) and parallel (&% = &% = 0) with no lateral translation
(@5 = 0). The simultaneous constraint equations are:

=g+ h g+ h,gli=20 (3.47a)

TG =&l + h,afl + hyafl + p5 = 0 (3.47b)

Fo o=l + h.all + hoa8l + o3 =0 {3.47¢)
o= &l + h: &l + hyafl + oy =0 (3.47d)
o+ ph =0 (3.47¢)
ph + o = 0 (3.471)

Adding equations (3.47b) and (3.47¢), elminating 0% and p% with equation (3.47f)
and noting that

aft+ afr = 268 (3.48)
we have
g% + h,ghf + hy g8 =0 (3.49)
Solving equations (3.47a) and (3.49) for h; and h, gives
hy = (88 g8 — g8 gi/(gh g5 — 8 g5 (3.50a)
hy = (85 it — gh g8)/(eh g — B &) (3.50b)

With h: and h, known, the non-vanishing components of pf, are
ﬂrfs = &gl (3513)
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s (3.51b)

ph = &% (3.51c)

e = &h (3.51d)

The composite geometric factor for the strain rate component parallel to the applied
stress, i.e. the measured component in a simple shear creep test, is

A
oy o= ah + ph

T

1+ oahn

6 (3.52)

=&

=2

[T}

(b} Uniaxial compression
As a second example, consider a specimen in uniaxial compression between parallel
plattens constrained against lateral translation. The constraint equations are

ThH = afl + h. &bl + hsafl + 05 =0 (3.53a)
Th = all + hyafi + hyafl + 0% =0 (3.53b)
@h = aff + haali + hyafi + pfy =0 (3.53¢)
Th = adh = h,é¥ + hyall + o =0 (3.53d)
phh + o5 =0 (3.53¢)
ph + ph: = 0 (3.530)

Addition of equations (3.53a) and (3.53¢) and substitution of equation {3.53e) yields
g+ h g + hygli = 0 (3.54a)
Similarly, equations (3.53b, d, f) yield
g5 + hy gf + h; g =0 (3.54Db)
The simultaneous solution of equations (3.54a) and (3.54b) then gives

h;

(g8 gt — gl &)/ (gH gii - N & (3.55a)

h,

(g7 gf1 — g8 gi)/(ehi g — &71 g5 (3.55b)

Returning to constraint equations (3.53) with h; and h;, the non-vanishing components
of pf become
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ol = am (3.56a)

ph = @&n (3.56b)
pE; = &32 (356(:)
0% = an (3.56d)

Finally, the axial geometric factor is

o5 = &% = 8% (3.57)

3.2.4 The incorporation of internal flow constraints -—— intergranular interaction

Rotational and deformational interaction between grains is now considered, once again
in terms of bulk integrals. Three assumptions are made: first, that on the average
the interference between a particular grain and its immediate neighbours is equivalent
to the hypothetical interference between that grain and the bulk material; second,
that the interference rate between that grain and the bulk material is measured by
an interference rate tensor, i.e, the difference between the strain rate tensor of that
grain and that of the bulk material; and third, that the degree of interference for
the aggregate as a whole is proportional to the volumetric mean second deviator of
the interference rate tensors, i.e. to the r.m.s. octahedral interference rate.

The requirement (Taylor 1956) that each grain conform to the bulk state of flow
leads to a physical interpretation of the r.m.s. octahedral interference rate. The bulk
octahedral interference rate is the sum of a bulk rotational rate of interference (derived
from the antisymmetric, or rotational, part of the interference rate tensor) and a bulk
deformational rate of interference (derived from the symmetric, or deformational.
part of the tensor). We may associate its rotational contribution with the bulk rate
of intergranular accommodation sliding at grain boundaries, and its deformation
contribution with the bulk rate at which additional creep mechanisms (Shumskiy 1958,
Voitkovskii 1960, Gold 1963, Langdon 1973, and Steinemann 1958a) must act to
provide the necessary degree of deformational accommodation.

The rate of interference between an individual grain and the aggregate as a whole is

d\] = élj - E\J (358)

It follows that the square of its octahedral rate of interference is

df, = VJ d,J d,j

Vi by by — Yidj e, + VA6 (3.59)

The mean square octahedral interference rate for the aggregate is therefore

= T rgdv
W

1
Vv
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where appropriate substitutions have been made using equations (2.69) and (3.33).
Let the mean square octahedral geometric factor be

=1 [ayd =1 (o df (3.61)
29 2

Incorporating equation (3.61), expression (3.60) may then be written
Jo= M Fa — MB @
= A i fod — @) (3.62)

vielding the r.m.s. octahedral interference rate:

Qo = (d2) = Ny (@ — G2) (3.63)

The effect of intergranular interference on the bulk strain rate is realised as an
increase in the specific rate of dissipation arising from the bulk r.m.s. octahedral
interference rate operating against the mean boundary stress. Assuming that the mean
boundary stress is of the order of the mean octahedral shear stress 7,, the specific
rate of energy dissipation due to interference is approximately

4 = dow 7o = Ay TG - G (3.64)

This additional specific rale of dissipation has been related by Batchelor {1970, his
equation 4.11.16.) to an increase in the effective bulk viscosity.
Then, following Batchelor,

G = 6(A — Aok ¥l (3.63)

where 'q—m is the ambient deformation rate of the substance {in the present case, that
of the non-interacting aggregate); A,n (equation (3.39)) is its ambient fluidity. The
increase in viscosity is &' — AN, Ao being the effeclive bulk fluidity of the substance
with interference effects included. Eliminating § between equations (3.64) and (3.65)
and replacing the deformation rate tensor in terms of the geometric tensor using
equaltions {3.37) and (3.39), the effective fluidity of the specimen due to the effects
of ¢rystallographic anisotrophy becomes
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= Mg £ 1 + _ 31.66
» Bg‘”[ ( 368 ) } 069

It follows by equation (3.12) that the required interference factor is

g - [1 + (L . 5“2’) } (3.67)
368,

When interference effects are excluded by setting § = 0, the implication of
equation (3.64) is that &} = & Then 8 = | and & = [«d]”. By equations (3.61)
and (3.35) it follows that

Eon O [ | fa dﬂ} . (3.68)
2r

As 3 1s independent of stress, equations (3.68) and (3.4) yield
€0 O Trms- (3.69)

Thus the assumptions of the present model lead to the conclusion that &, is
proportional to the r.m.s.-resolved basal shear stress (cf. Section 3.2).

3.3 THE ENHANCEMENTS

The octahedral enhancement factor given by equation (3.13) may be written

E = B(f,A) G {f,A) (3.70)
where

B(f,A) = B(f,A)/B(") (3.71)
is the interference component of the enhancement, and

G(f,A) = Bo(F,A)/E:(f") (3.72)

is the geometric component of the enhancement. In order to evaluate equations (3.71)
and (3.72) the isotropic geometric tensor &;(f‘) must first be found by the analytical
integration of equations {3.28) and (3.29). When equations (3.28), (3.29) and (3.5)
are substituted into equation (3.34), the result, by symmetry, is

Wi(f) = 0 (3.73)
and
g (f) = 0fori # j. (3.74)

Thus only the components g,,, g;. and g,, require detailed treatment. In particular

g 2w w2
A4+ 3y et Tee . .
= u I | sin*d costaf{A + 1) sin®d sin‘a 4+ 2 cos?f] dff do
2J§ T 0 0
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A+ 3

[

e UEE—— (3.75)
542 (A* + 3)
_3(11; n 3)7‘/_ 27 w2
|1 sin®® sin‘e[(A + 1) sin’f cos’a + (A — 1) cos'fl] df de
ZJE T 0 o
-1 2A

N I uu— (3.76)
502 (AT + 3y

Az 3 A 2‘:1' 7!'/2
3T+ 37 i1 sinfcos®[(A — 1) sin® sin’a — 2 sin®¢ cos’e] df de
227 o 0

RENCSE)

= (3.7
502 (A + B
Written in full the geometric tensor is
A k)
Aty 0
(A + )
— 2A
alf) = g(f) = —| o = g (3.78)
52 (A + 3y
0 A -3
(A2 + 3)‘/:

A comparison of equations (3.78) and (2.27) shows that the components of the
geometric tensor are proportional to those of the stress deviator. The state of flow
must therefore be isotropic and thus satisfy translational flow (platten) constraints
identically:

a0y (f7)

= gi(f") = a(f") = gi(f") (3.79)

The octahedral geometric factor becomes

&o(f")

=g = d'o(rr) :g-t)(f')

(A" + 3)[(A + 3) + 4A% + (A - 3"

s
]

= —. (3.80)
5

Indroducing the result given by the above equation into equation (3.67) which defines
£ and using equations (3.61) and (3.6) for o, we have

- 3
BEy = 5(f) = - (3.81)

so that

4
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B(f, A) = — B(f, A). (3.82)

Wl

Similarly, the octahedral geometric enhancement becomes
G{f, A) = 5 & (f, A). (3.83)

Finally, the octahedral enhancement is obtained by substitution of equations (3.82)
and (3.83) into (3.70):

E=?mﬂMamA) (3.84)

The octahedral shear stress acting in the agpregate is given by equation (3.44),
This stress is enhanced over that of the applied load by a factor

E. = 2 = (hh; 8,)" (3.85)

To

The typical creep set-up yields only that strain rate component associated with
the direction of the applied load. For an anisotropic aggregate, the octahedral
deformation rate and strain rate cannot be evaluated from one measured component
of &, without a priori assumptions concerning the state of flow. Thus, if the model
is to be tested conveniently or applied generally to past single component anisotropic
creep results, a definition of component enhancement is needed. This task is simplified
if platten co-ordinates are used. Let the component enhancement be defined as the
ratio of the component strain rates, i.e.

& (f, A)
&N
B(E, Ay @y (f, A)

R g AURY (3.86)
BI) dis (£)

Ef =

Here summation on i and j is not implied.

Consider first the case of simple shear (page 44); we require Ef,. By equation
(3.52)

ES = M (387)

B(E7) 85.(F7)

The geometric tensor component g5,(f) = g5,(f’) is obtained from equation (3.78)
by the co-ordinate transformation (cf. equation (3.40))

£5.(F7) = pupy &il(f") {3.88)
where (cf. page 21, with ¢ = 0)

[
0 2 0] (3.89)
-1 0 1

pfm =

w1l =
£
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Expanding equation (3.88) with A = 0,

S'L(f') =1 [g'..(f') - g”(fl)]
J3
N3 (3.90)
5

|

[\]

Equations (3.87), (3.81) and (3.90) are then combined to obtain

2002
33

~

ES ([} = B (f) (D). (3.91)

For uniaxial compression the principal and platten axes coincide (page 45), so
we have directly from equations {3.78) and (3.79)

LU 108

L) = . (3.92)
By g3(7)
For A = —1 (uniaxial compression), equation (3.92) becomes
20
S0 = 1B B0 £5:(f) {3.93)

N

The octahedral enhancement factor (equation (3.84)) and the component
enhancement factors {equations (3.91) and (3.93)) must be evaluated numerically for
a given orientation fabric. The bulk geometric tensor &; is first evaluated
numerically in principal stress co-ordinates using equation (3.34). Equation (3.88)
is then used to obtain the geometric tensor &l in platten co-ordinates. If &, satisfies
all platten constraints identically, the interference factor 8 and the component and
octahedral enhancement Ef, and E¥ may be found directly. If not, the geometric
factors for the induced stress situations must be determined and the constraint
equations given in Section 3.2.3. solved to obtain ai so that the results of the
present section may be used {o find the relevant enhancement.

3.4 IMPLICATIONS OF THE MODEL

A flexible numerical computer program has been written which requires as input an
orientation density  and its orientation with respect to the platten co-ordinates, the
normal and shear stresses applied to the plattens and the platten constraints of the
creep apparatus. An apparatus similar to that described on page 20 is assumed. The
program provides as output the interference factor, bulk geometric and component
enhancements as well as the net octahedral enhancement. The bulk state of stress
is output in terms of the aggregate stress enhancement and configuration parameter.

Using this program, the model has been applied to a spherical normal distribution
of axes (Fisher 1953, McElhinny 1967, and Barton 1974) for various standard
deviations assuming an ‘easy glide’ situation in simple shear. This case was selected
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as one for which the greatest enhancements might be expected, thereby providing
an extreme situation to test the model. The results of this test for standard deviations
() Tanging up to 35° are shown in Figure 7. For a relatively strong single pole (g
< 99 in easy glide, shear enhancements in excess of 3 are predicted by the model.
As the standard deviation becomes large, the fabric becomes isotropic and the
enhancements approach unity. Due to the symmetry of the fabric with respect to the
plane of maximum shear stress, platten constraints are satisfied identically, so that
the aggregate octahedral stress and configuration parameter are those of the applied
load.

As asecond test aimed at investigating the results for a fabric not in conformity
with the applied load or bulk state of flow (Budd 1972), a spherical normal fabric
was once again used. This time the axis of the pole was tilted at an angle 0 = & <
45 degrees from the easy glide orientation into the direction of shear. Model-derived
estimates of the shear and stress enhancement factors and aggregate stress

(e l l 1

10 20 30
Ue (degrees)

Figure 7. Model-derived shear compornent enhancement in easy glide for a single
pole spherical normal fabric versus the standard deviation oy of the fabric.

52



configuration parameter are shown in Figure 8. At §; equal to zero and 45° the
fabric is symimetric with respect to the applied stress. Figure 8 confirms that the plattens
constraints are then satisfied identically, and the octahedral shear stress and stress
configuration are those of the applied load (E, = 1 and A = 0). Of particular note
is the modified state of stress for a tilt orientation of approximately 11 ° (Figure 8).
Here the aggregate tends to contract in a direction normal to the plattens. This
contraction induces a tensile stress at the plattens, which are constrained to remain
equidistant (cf. Glen's (1958) discussion on his page 177). The effect of this
superimposed tensile state of stress is to increase the octahedral shear stress in the
aggregate by a factor (E;) of approximately 1.8 and to alter the stress configuration
parameter to a value of nearly 0.8, i.e. inducing an enhanced state of stress more
nearly uniaxial tensile (A = 1) than the applied two dimensional state (A = 0).
If the model results given in Figure 8 are realistic, it is clear that laboratory creep
results for anisotropic ice must be interpreted in light of possible gross alterations
to the state of stress as calculated in the usual manner. Furthermore, if such tests

©¢ (degrees)

Figure 8.  Calculated shear enhancement, stress enhancement and aggregate stress
configuration paramefer for a single pole spherical normal fabric (standard devia-
tion ap = 10°) for various angles of tilt O, into the direction of shear.
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are meant to simulate in situ field conditions, particular care must be taken to ensure
the accurate orientation of the fabric with respect to the applied state of stress. The
component enhancement and state of stress are most sensitive to misalignment at
small deviations from the in situ conditions as indicated by the steep slopes of Ef,
and A at § = 0 (Figure 8).

The present model is based on the assumption that there are sufficient grains in
the aggregate to describe the aggregate in terms of its bulk properties. In particular,
the state of stress and state of flow are assumed to be homogeneous. It is recognised
that the state of stress on the granular scale is not homogeneous -—— that well aligned
crystals appear to be ‘soft sites’ where the local level of stress is diminished, and poorly
aligned crystals appear as ‘hard sites’ of enhanced local stress. Weertman (1963) argued
qualitatively that this redistribution of stress on the granular scale is primarily
responsible for determining the magnitude of the interference factor {3). The rask
of determining the redistribution of stress quantitatively at this scale is certainly
impractical if not impossible.

As these small-scale variations do not effect the aggregate state of siress, stress
homogeneity was assumed in Section 3.2.4. and interference was treated in terms of
the specific rate of dissipation necessary to guarantee homogeneity in the state of
flow. This approach led to an expression for the interference factor in terms of
invariants of the bulk geometric tensor. On the other hand, when external flow
constraints are considered, the enhanced state of stress implied by the model has
implications to the development of preferred orientation fabrics in natural ice masses.
Picturing a natural ice mass as a collection of individual volume elements migrating
through a statistically static {from the Eulerian point of view) parent body of ice,
each element incurs a slowly changing state of stress. The characteristic size of a
volume element is dependent on the magnitude of the gradients of stress configuration
and reorientation of the principal axes of stress. Neighbouring volume elements exert
external flow constraints; as a result slight asymmetries of the orientation fabric induce
enhanced levels of stress which hasten dynamic recrystallisation. Taken together with
induced rotations, the enhanced rate of recrystallisation evidently provides a positive
feedback mechanism sufficient for the crystallographic orientation fabric to remain
compatible with the varying states of stress and flow. It follows that a natural ice
mass will tend to remain in an enhanced state of flow. If 50, there is clearly an urgent
need to incorporate an anisotropic flow law such as that proposed here into present
ice dynamics models.

The implications discussed above assume the validity of the model, at least at
small values of octahedral shear stress. As the model yields estimates of the enhanced
rate of strain {through E!) and the enhanced octahedral shear stress {through E,),
two means of testing the model are possible. Glen (1958) suggested experiments
designed to measure modifications in the state of stress. This would involve the
measurement of at least one ‘cross component’ of stress; i.e. a component normal
to the applied stress. As an appropriate creep apparatus must be ‘cross’ constrained
lfor the development of a cross component of stress, a rather sophisticated creep device
is implied. The alternative used here is to observe the enhanced value of the creep
rate component parallel to the applied load. This has been done for two stress
configurations, simple shear and uniaxial compression, and for several orientation
fabrics. The results of these creep tests, reported in Section 3, point to the validity
of the present model at small octahedral shear stresses.
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4. The experimental method

4.1 CONTROL AND MEASUREMENT OF STRESS

The creep experiments presented here are all of the constant lpad type. The means
used to apply loads to the samples are set out in Section 4.4. On page 20 formulas
for calculating the octahedral shear stress from known applied loads are presented.
The actual magnitudes of the loads in the simple shear tests were indicated by accurate
spring balances measuring the tensile stress in the load cables. Alternatively, the known
load mass and mechanical advantage of the compact frames were used to calculate
the applied loads. Several tests were conducted to confirm these values.

The compressive loads of the uniaxial tests were measured directly using a special
compressive spring balance calibrated against standard masses. Control of the loads
in all tests was assumed since the resulting strain rates were sufficiently small] that
the cross-sectional area of the specimens remained constant for all practical purposes.

4.2 MEASUREMENT OF STRAIN RATE

The complete specification of the flow situation for the simplest case of incompressible,
irratational strain requires the measurement of five strain rate components {cf.
equation 2.49), In the field it is seldom necessary or practical to measure [ive
independent components, as certain features regarding flow symmetry are often
sufficient to establish the orientation of the principle deformation axes (Budd, 1968,
1970a).

In the laboratory, on the other hand, the orientation of the principle axes are
precisely determined by the platten constraints of the creep apparatus. Therefore the
required number of independent measurements is reduced to two, For the special
cases of 1sotropic pure shear in two dimensions, simple shear and uniaxial
tension/compression, an additional relationship between the principle rates of strain
(page 29) reduces the reguirement to a single measurement.

4.2.1. Microdisplacement transducers

A wide range of devices are available for the measurement of displacements on the
order of a few microns and less. Mechanical devices such as drum and dial micrometers
are limited to a resolution of about two microns, though levers can be arranged to
extend their resolution by a factor of two or three. The primary disadvantage of drum
micrometers is the necessity of physical access for each measurement; visual access
is sufficient for dial micrometers.

In an excellent review article by Sydenham (1972), a variety of remote reading
microdisplacement transducers were compared and a comprehensive bibliography and

55



list of manufacturers appended. Remote reading distortion strain gauges used in
conjunction with a bridge circuit have proven to be both sensitive and reliable in
experiments on the creep of metals and geological materials. However the loads
involved in the ¢creep testing of ice are extremely small by comparison. As the distortion
strain gauge exerts a varving load proportional to displacement, its utility in the
constant load tests considered here is limited.

Twao types of reactive microdisplacement trasducers (capacitive and inductive) offer
infinite resolution, high sensitivity and excellent long-term stability. The Super Linear
Variable Capacitor (SLVC) transducer is capable of a total linearity and accuracy
of about 1 in 10° (Wolfendale, 1968); while the Linear Variable Differential
Transformers (L. VDT) operated over a limited range can attain a comparible accuracy
(Herceg 1972).

4.2.2, Direct current linear variable diferential transformer

The SLVC and LVDT transducers require external AC excitation sources and
demodulators. Linearity and sensitivity are very sensitive to source stability and to
proper quadrature null of the transducer and connecting cables. This problem has
been eliminated with the introduction of the Direct Current LVDT (DCDT). With
only a slight increase in transducer size, an oscillator and demodulator have been
packaged with the LVDT, thereby eliminating the need for a signal source,
demodulator and calibration or adjustments by the user.

A 2mm full-scale displacement unit (Schaevitz model 050 DCB), exhibiting a scale
factor of 200 volts inch ' (7.9 volts mm’) at an uncalibrated full-scale linearity of
0.0025, is available as a standard product. Over a restricted range of 0.1 mm, its
calibrated linearity 1s better than one part in 10*, The long-term stability of the 050
DCB at constant temperature was tested in association with uniaxial compression
creep apparatus (Scction 4.4.1) and the data logger {Section 4.7). Overall system
stability for a period exceeding 1700 hours proved to be less than 200 nm after
correction for minor (+ 0.2°C) temperature fluctuations. The length of the controt
sample was 150 mm, from which we obtain a strain stability of 1.3 in 10® and an
overall octahedral deformation rate error less than 1.5 x 1075,

4.3 CONTROL AND MEASUREMENT OF TEMPERATURE

Several domestic deep freezers were used in the present study to obtain temperatures
between - 5°C and — 15 °C. In addition, two Werner cold boxes capable of continuous
operation at —70°C were used for tests below —15°C. The thermostats of the
domestic units were replaced by sensitive, rapid-response mercury-in-glass contact
thermometers. The air in the freezer compartments was circulated with tangential
fans to increase the thermal coupling betwen the air and walls of the box and to destroy
temperature gradients. The heat output of the fan motors together with the faster
thermostats reduced both the peak-to-peak variation and maximum rate of variation
in the compartments.

The low temperature Werner boxes were also modified by placing the thermostats
in close contact with the cooling coils. The resulting time-temperature variation then
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showed characteristics similar to that of the domestic units. In both cases, the cycle
time of the units decreased to between five and ten minutes with a corresponding
decrease in sensitivity to ambient room temperature. Before modification, the loosely
coupled, high hysteresis thermostats resulted in cycle times on the order of an hour
or more. Thus, as the ambjent room temperature increased, the rate of temperature
rise in the compartments increased while the rate of fall decreased. This altered the
temperature-time relationship to the extent that a 3 °C change in mean room ambient
temperature was reflected as a change in mean compartment temperature of between
0.3 and 1°C, depending on the particular umit. Peak-to-peak fluctuations were
correspondingly large. Following alteration, the maximum peak-to-peak variation
dropped to about 3°C and the maximum sensitivity to room ambient temperature
to about 0.05°C/°C.

In order to further decrease the variation of specimen temiperature, a specimen
chamber fabricated of 13 mm polystyrene was placed in each freezer compartment.
Each chamber had an integral temperature control system. The freezer compartment
of each unit was regulated to approximately 5°C below the target temperature required
in the specimen chamber. Air within the specimen chamber was continually
recirculated through a heat exchanger coupled to the freezer compartment. Before
entering the exchanger from the specimen chamber, the recirculating air passed across
a heating element. Passing next through a tangential fan, the turbulent airstream was
efficiently coupled to the cooling fins of the exchanger before flowing past a thermistor
sensor and returning to the chamber. With current to the heating element regulated
by the thermistor, the air stream re-entering the chamber was maintained at the target
temperature to within + 0.01°C. The entire volume of air in the chamber was
recirculated in this way every few seconds.

Additional passive regulation, provided by the thermal inertia of the creep frame,
kerosine bath, and specimens reduced the short-term rate of change to less than one
millidegree per hour,

There are two primary considerations in the measurement of temperature
associated with creep tests. The first is the accuracy to which the absolute temperature
must be known; the second is the resolution to which temperature variations must
be detected. It is now well known that the creep of ice is a thermally activated process.
Evidently specification of the temperature to = 0.1°C is sufficient except within about
5°C of pressure melting where the flow dependence on temperature increases due
to a change in activation energy.

Most of the creep tests described in the present text were conducted in sealed
secondary chambers in order to attain a relatively precise limitation to temperature
variations. With visual and mechanical access unavailable for the duration of the
tests, the necessity for remote reading electrical thermometers becomes apparent. A
quartz thermometer with an absolute accuracy of + 0.01°C and a resolution of
0.0001 °C was available as a secondary standard, against which several instruments,
used on a routine basis, were calibrated. On occasions the quartz thermometer also
served for routine measurements, providing an opportunity to confirm the
characteristics of those sensors designed and built expressly for the present tests.

Several levels of temperature monitoring were available. The temperature within
the coldboxes external to the sample chamber was displayed continuously by visual
dial-type liquid expansion thermometers to + 0.5°C. On the low temperature boxes,
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these thermometers also activated over-temperature audible alarms. At the next level,
the thermistor-controlled heating units of the sample chambers included visual
indicators in parallel with the heating elements. Proper control of air temperature
in the sample chamber was indicated by normal cyclic variation of these indicators.
Within the sample chamber, one or more National Semiconductor LX5600
temperature transducers monitored temperature in the kerosine baths and reservoirs.
Calibrated against the guartz thermometer, the transducers were accurate to better
than 0.05°C.

4.4 THE CREEP FRAMES

4.4,1 Uniaxial compression tests

Compression tests were carrjed out in several sturdy cast aluminium frames as
illustrated in Figure 9. Near one end of the frame, a reservoir measuring 200 mm
x 75 mm x 179 mm deep provided sufficient room for five cylindrical specimens
arranged vertically in a single row. To the ends of each specimen were frozen brass
plattens. A conical seat, lapped to receive a spherical platten bearing 7.8 mm in
diameter, was centred on the outer face of each circular platten. The lower platten
bearings were fixed in five equally spaced conjcal depressions in the bottom of the
casling reservoir.

The displacement transducers were rigidly mounted in a single aluminium biock
bolted under the front lip of the reservoir. The rear lip of the reservoir, supported
by three solid ribs, extended 220 mm beyond the rear reservoir wall, providing a
mechanically stable fulcrum for the measurement arms. Near the rear edge, a set of
seats were machined to receive a lareral pair of pin fulcrums for each of the five
measurement arms. Each ‘T" shaped measurement arm extended forward, directly
over its associated specimen and displacement transducer (Figure 9). The third support
point for each arm was the upper platten bearing of its specimen.

At the forward extremity of each arm, the transducer core was attached by a short
length of phosphor-bronze wire to ensure alignment of the core in the teflon bushing
of the transducer tody. Provision for coarse alignment of the core was offered by
a ‘potlock” attaching the forward section of the arm to the main 9.25 mm diameter
tubular section. The axial specimen displacement was thereby transferred to the
transducer core with a multiplication factor (or ‘arm factor’) of approximately 1.35.

Two methods of applying axial loads to the sample were used: one for octahedral
stresses between 0.05 and 0.5 bar; a second for stresses between 0.28 and 2.8 bars.
In the former case, the load was transferred to the specimen through the measurement
arm by application directly over the specimen. To the load arms, pivoted near the
front lip of the reservoir, were attached weights. This load was transferred to the
sample with a variable mechanical advantage as high as five. This considerably reduced
the actual mass necessary ro attain a given octahedral shear stress.

In the latter case, the loads were considered too great to be applied to the
measurement arms due to the possibility of causing flexure. The load arm pivots were
therefore placed in the reservoir, fastened to the rear wall at a height just above the
upper plattens. The upper platten bearing was fixed to the load arm in such a manner
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Figure 9. An example of the sturdy cast aluminium frames used for the uniaxial
compression [ests.

Figure 10, An examplie of the compact frames used in the simple shear 1ests.
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to be sufficiently proud of the load arm surfaces to properly engage the upper platten
seal while presenting the upper bearing surface to the forward support of the
measurement arm. In this way the load was applied directly by the load arm to the
upper platten. The load arm passed over the front lip of the reservoir where calibrated
weights were supported on hangers. An incrementally variable mechanical advantage
up to five was available. In the low stress frames the measurement arms, and in the
high stress frames the load arms, prevented lateral displacement of the top of each
sample by direct fixture to the platten bearings.

4.4.2 Simple shear tests

An example of the simple shear frames 1s shown in Figure 10. Two 6.35 mm thick
aluminium plattens were fitted with linear steel ‘V'-block bearing races parallel to
their lateral sides. The races were machined parallel to the platten faces so that 12.7
mm ball bearings set in the races separated the plattens by 25.4 mm, Two different
methods, described later, were employed to restrict separation of the plattens under
load. The races also acted to disallow relative lateral displacement of the plattens
while leaving them free to shear longitudinally, one over the other.

To the centre of the leading edge of the upper platten was fixed a steel cable.
A hole at the centre of the trailing edge of the lower platien received a pin secured
to the base plate of the frame. With a specimen frozen into place between the plattens
and a load applied to the cable, the lower platten was thus free to pivot on this pin
until the ball races were self-aligned parailel to the applied force. In the original design
for bench mounting in the cold room, the [oad cable passed over a pulley fixed to
the base plate, through a hole in the bench to a spring scale of 100 kg capacity. The
lower hook of the scale was replaced by a turnbuckle secured to the floor beneath
the bench. The turnbuckle, allowed adjustment of the load up to the maximum
capacity of the scale.

A number of ‘compact’ simple shear frames were subsequently built for use in
sets of five in domestic deep freezers. By replacing the original pulley with a load
arm (Figure 10} extending back over the frame, the frame became self-contained,
compact, and suitable for use i a kerosine bath. Adjustment of the loads was simply
affected by sliding lead weights along the load arms. Relative shear displacement of
the upper and lower plattens was monitored with either dial micrometers (original
tests) or displacement transducers mounted in a block on the base plate.

In order to restrict separation of the plattens under load, a ten kilogram lead weight
was placed on the top platten in the original tests; while a compact spring loaded
system was later designed to replace the bulky lead weights.

4.5 PROCEDURE

4.5.1 Uniaxial compression

For the uniaxial compression tests, specimen diameter was standardised at 25.4 mm.
The synthetic samples were prepared to this dimension within very close tolerance

60



{Section 5.6). Natural ice specimens were first rough-cut with a band saw and then
turned on a lathe to this diameter (Figure 11). One end was then trimmed, u-ing the
lathe, to form a flat surface normal to the axis of the sample. A platten was warmed
in the palm of the hand, placed in the tailstock jig (Figure 11) and brought to bear
against the prepared end of the specimen. The high heat capacity of the cold platten
jig resulted in the platten freezing to the specimen within seconds; lateral and tilt
alignment of the platten were thereby assured. With one platten thus bonded, the
specimen was machined to the desired length with an excess of about 0.3 mm and
the second platten similarly bonded. As the precise thickness of the plattens was
known, measurement of the distance between the outer platten surfaces with a
micrometer caliper to + 0.1 mm allowed the initial length of the sample 1o be
calculated to better than = 0.06 per cent for the standard sampie of length 150 mm.

Figure 11.  Preparation of sample prior to bonding the plaiten {upper). Platten is
later piaced in the tailstock jig (lower) which holds it in accurate alignment during
bonding,
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Once prepared, the five specimens were mounted and the reservoir topped up with
pre-cooled kerosine. The loads were blocked to prohibit their immediate application,
and the frame transported from the cold room to a cold box. The box was closed
until thermal equilibrium had been established. Once established, the box was briefly
reopened, the blocks removed, and the box closed and sealed. On several occasions
the above procedure for application of the loads was carried out without actually
applying the loads. The transducer outputs were recorded to establish the duration
of transient effects due to opening the cold box. Significant effects in no case lasted
Ionger than ten hours; in most cases the effects were not noticeable after one or two
hours.

4.5.2 Simple shear

Standard cylindrical specimens 25.4 mm in height and from 60-100 mm in diameter
were used in the shear frames. Synthetic specimens, as removed from the molds, were
95 mm in diameter and required no additional preparation of the cylindrical face.
Natural specimens were rough-cut on a band saw and turned on a lathe to the required
diameter. The ends of the specimen were then machined flat and parallel to obtain
a height of approximately 25.2 mm. With practice, the specimen was easily frozen
to the lower platten leaving a clearance of about 0.1 mm with the upper platten. By
placing a massive lead weight on the upper platten during bonding to the upper platten,
separation of the plattens due to the freezing process was avoided. A matrix of 3
mm holes in the upper platten were filled, one by one, using water from a syringe.
By capillary action, the liguid spread out from each hole a few millimeters along
the specimen-platten interface before freezing. This procedure proved quite effective
in producing excellent bonds while maintaining the desired platten separation as
gauged by the bearings and races. Indeed, on one occasion, while testing the strength
of the bonds, the steel cable snapped with no apparent weakening of the bonds.

Having prepared five frames in the above manner, the frames were transported
to a cold box or other test area and the temperature allowed to reach equilibrium
before loads were applied. The bench mounted frames were loaded remotely, while
the compact frames were blocked before loading as in the case of the compression tests.

4.6 PREPARATION OF SPECIMENS

The large suite of existing data relevant to the establishment of a flow law for isotropic
polycrystalline ice is based, for the most part, on high density specimens exhibiring
tessellate {(Kamb 1972) structure. Nominal grain diameters ranging from about 0.5
mm to 3 mm have been used in various studies, From the author’s experience, grain
diameters less than about 1 mm show a tendency toward instability due to grain
growth. Steinemann (1954) noted a lower limit of about 0.5 mm, which he attribuled
to effects of interface tension,

Al the small total strains (< 1%) expected in the proposed series of uniaxial tests,
it was assumed that buckling would not become a significant problem. The
maximisation of strain resolution through increased length and the maximisation of
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stress homogeneity through increased L/D ratio became the primary considerations
in the choice of specimen length. A practical limitatton on the length of specimens
was imposed by the size of the available cold boxes for the low (< — 15°C) temperature
tests, this limit being approximately 150 mm.

The minimisation of desirable specimen diameter, in order to maximise L/ and
minimise the magnitude of applied forces necessary to obtain a given octahedral shear
stress, then relied on the preparation of fine grained specimens. It was determined
that the smallest stable grain diameter obtainable, using the procedure described below,
was about 1 mm, implying (page 22) a minimum desirable specimen diameter of
approximately 25 mm. For convenience, a mold of internal diameter 25.4 mm was
chosen for the preparation of specimens to be used in the uniaxial tests. L/D ratios
were 5.4 and 5.9 for the high (0.028 to 0.28 MN m™) and low (0.005 to 0.05 MN
m ) octahedral stress ranges, respectively,

In order to maintain a basis for comparison with previous studies, a relatively
simplc method was devised (Jacka and Lile 1984) for the preparation of clear,
finegrained, isometric (1.5 — 2.0 mm diameter), tessellate, high density, randomly
oriented specimens. A notable simplification in procedure and apparatus along with
a possible gain in quality control was achieved in comparison with the most successful
prev:ous techntques (c¢f. Glen 1952).

If the results of laboratory creep tests are to be applicable to the flow rates of
natural ice masses, it is evidently (Budd, 1972) necessary that deforming specimens
cxhibit structures compatible with the magnitude, configuration and orientation of
the applied stresses. This requirement of compatibility may preclude the preparation,
by rapid prestraining, of laboratory specimens possessing both orientational and
textural structures equivalent to those evolved at low stress magnitudes over geological
time scales. The alternative is selection of natural specimens exhibiting natural
structural compatibility.

Deep bore hote cores are available extending through regions of diversified stress
situations and a wide range of temperatures. Structural compatibility is evidently
preserved (Rigsby 1960, Howard 1948 and Seligman 1948) when cores are quenched
and maintained at temperatures below about — 10°C following removal [rom their
field sites. With a knowledge of in situ conditions of stress and temperature (measured
or calculated) these parameters can be reinstated on selected specimens in the
laboratory with some confidence in compatibility between structure, temperature and
stress situation as well as in the tectonic significance of subsequent strain increments.

4.7 DATA LOGGER

Those frames equipped with electrical displacement transducers were interfaced to
a scanning data logger. The scanning rate of the data logger was ten specimens per
hour. During each measurement cycle, the analogue transducer output was digitised,
providing a digital 254 second average. Near the end of the cycle, the digitised
transducer output aleng with various book-keeping data such as a sequential data
tape identification number, sample number and elapsed time, were multiplexed onto
an output data bus to be recorded. A highly stable and accurate power supply
furnished power to the transducers. The + 10 volt analogue output of each transducer
was brought to the input port of a Solartron 3300 analogue scanner by means of
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a guarded cable. The output of the selected transducer passed through the scanner
to a voltage-to-frequency converter. 1ts pulse-train output was gated at the input of
a frequency counter. The digital counter output merged with the book-keeping data
at the multiplex bus. A system controller, receiving time signals from the system clock,
controlled the sequence of events during the measurement cycle. Each measurement
cycle began with a two-second synchronising pulse generated by the controller. This
pulse incremented the scanner’s address generator, placing a new sample ‘on-line’.
Simultaneously, the frequency counter was reset to begin a new count. The two-second
duration of the synchronising pulse offered the voltage-to-frequency converter ample
time to ‘settle in’ to the new transducer voltage before the frequency counter gate
opened, allowing the averaging period to begin. The pulses generated by the voltage-
to-frequency converter were then summed until the counter gate closed at the beginning
of the 256th second of the measurement cycle. The resulting 254-second period during
which the counter gate was open in effect resulted in a hardware conversion of the
analogue transducer output into metric units, with a resolution of one nanometer
per hertz. Two low order decades were discarded due to noise content so that the
output resolution passed on to the recording device was 0.1 micrometers. During
certain low creep rate tests the transducers were operated between + 1.0 volt and
the voltage-to-frequency converter over a similar range, resulting in a 0.01 micrometer
resolution. During the final 8 seconds of the measurement cycle, the multiplexer
address generator and punch command were activated, sequentially placing the
appropriate data on the output bus to be punched on paper tape.

On the front panel of the data logger, digital displays exhibited the current elapsed
time, sample number and displacement. Thumbwheel switches allowed the selection
of a particular sample in manual mode or, in automatic mode, set the number of
samples to be scanned. A second set of thumbwheel switches were used to set the
tape sequence number.

4.8 DATA PROCESSING

Data tapes were removed from the paper tape punch at approximately weekly intervals,
each tape being identified by its unique sequence number. Data processing was
performed on the departmental (University of Melbourne, Department of
Meteorofogy) Interdata 70 computer,

During the first stage of computer processing, the tape was read and echoed on
a line printer, the data edited to confirm proper operation of the logger, a table of
physical parameters associated with the frames and samples currently in use appended,
and a floppy disc file of the week’s data generated.

A second stage of processing began with a pass through an index of tests in
progress. Continuing tests were identified, data files retrieved from disc and the most
recent results concatenated to the files. New files were then opened for newly initiated
tests. The displacement function of each sample (displacement in microns versus
elapsed time in hours) was exhibited on the graphical display unit and photographed.
An independent disc file was thereby kept for each specimen tested. The displacement
data and all physical parameters associated with the test were contained in the sample’s
file. These files were used in the third stage of processing, the calculation of strain
rates.

44



S. Results and conclusions

In this final section, the theoretical, technical and empirical aspects of the present
study are combined to illustrate a feasible approach to the quantitative incorporatio
of crystallographic effects into the flow law for polycrystalline ice.

5.1 EXPERIMENTS ON ISOTROPIC AGGREGATES

In order to augment previous creep studies of isotropic polycrystalline ice, and
particularly to extend such studies to include conditions of temperature and shear
stress relevant to cold ice masses, a systematic laboratory investigation covering the
range from —10°C to —350°C and 0.005 to 0.28 MN m™ octahedral was
undertaken. Figure 12 identifies the conditions imposed on the thirty-four individual
samples tested. Seven group experiments were carried out at fixed temperatures. Each
experimental group comprised five {(with one exception) samples loaded at shear
stresses equally spaced on a logarithmic scale over one order of magnitude. Two ranges
of octahedral shear stress were used: experiments identified by the letter C ranged
from 0.005 MN m to 0.05 MN m *; and the letter D identifies experiments in the
range from 0.028 MN m~ to 0.28 MN m .

In total, the present laboratory study on isotropic aggregates has involved more
than 150 000 sample hours. Experiments C4, C5, C6, D2 and D3 explore a corner
of the flow law diagram (Figure 1) relatively neglected by previous studies, but of
particular importance in establishing a flow law for polar ice masses.

An additional five samples exhibiting mean grain sizes ranging over more than
two orders of magnitude from 1.4 mm? to 160 mm? were tested in simple shear at
—10.3°C and 0.04 MN m~ octahedral to assess the effect of grain size on the creep
rate of an isotropic aggregate. No significant or systematic difference in creep rates
was observed except for one sample which was significantly higher. To assess the
cause of this higher creep rate, the specimens were removed {rom the simple shear
frames, rotated 90° about the platten normal and rebonded. In the subsequent test
a seccond sample showed an anomalously high creep rate. It was concluded that the
anomalous creep rates were due to inadequate platten bonds with no significant effect
attributable to grain size. As a partial consequence of the suspected bonding problem,
the isotropic tests were carried out in uniaxial compression. As the ratio ol grain
size to sample size would appear to be more critical {page 22}, than grain size alone,
the smallest stable grain size attainable using the technique described by Jacka and
Lile {1984) was used.

With the platten bonding problem for simple shear tests now evidently solved (page
21), a new series of tests covering the original range of grain sizes and also a variety
of temperatures and shear stresses is being planned to check and extend the original
results under improved experimental conditions.
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5.1.1 Results

Creep curves of platten displacement versus time are shown in Figures 13 to 19 for
each of the isotropic creep experiments. Secondary creep rates were sought to construct
a flow law based on these data. Even though some of the samples have been under
load for more than 11 000 hours and are continuing, the total strains achieved are
still very small, and the secondary stage of creep has not been reached. Thus secondary
creep rates cannot be obtained directly from these rheologically short-term
experiments. The problem then is how 10 extrapolate the observed data to yield
estimates of the steady-state rates. The relatively unique automatically logged creep
data were, by nature of their high time resolution and computer compatibility, ideally
suited to computerised curve fitting techniques.

Two different analytical functions were examined for their ability to represent
the measured strain versus time relationship. Three terms were included in each
function: a constant term {e.) to account for the elastic response of both the sample
and the creep frame; a linearly time dependent term (Kt), where the coefficient K
is the final or steady-state creep rate; and a transient term which becomes negligibly
small at suitably long times. The two analytical functions differed in the form of
the transient terms. The first form was a McVetty (exponential) function of time

ety = e + Kt + g1 — %) 5.0
and the second
et) = e + Kt + {3ty (5.2)
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Figure 13.  Creep curves of axial displacement versus time. Octahedral shear stress
is indicated in MN m?. Sampile C2.—10°C.
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an Andrade (power) function of time (cf. Rotherham 1951). For each form, a least
squares regression technique was used to minimise the variance simultaneously for
the several fit parameters {e, K, & and ¢) and vield the best fit values.

Differences in the mean residual variance found for each of these classical analytic
creep functions was small compared with sample-to-sample differences. Thus it cannot
be stated with reasonable confidence which form is the more suitable representation
of the observed data. To evaluate the ability of ¢ach form to extrapolate the
observations beyond the duration of the experiments, differences between the observed
and best-fit analytical curves were plotted against time. Systematic deviations appeared
for each form; typically two crossover points were exhibited with the function
diverging from the observed creep curve at the conclusion of the experiments. The
McVetty form gave time constants (3') shorter than the duration of the
experiments, implyving that steady-state rates had been reached within a few per cent
or less by the time the experiments had concluded. When the experiments were
artificially shortened by neglecting various amounts of data and the shortened curves
fitted, 37 decreased in proportion. Some comments concerning the divergence found
using the Andrade law appear in Section 5.1.2.

Because both analytic functions tend to diverge from the observed data toward
the end of the experiments, it must be concluded that neither can adequately
extrapolate rheologically short-term data to secondary creep rates. An alternative
approach is presented in the following section.

5.1.2 Discussion

Some interesting results have emerged from a parallel laboratory investigation by
Jacka (1984) of isotropic samples similar to those used for the present study. His
creep tests in uniaxial compression covered octahedral shear stresses from about 0.05
MN m= to 1.2 MN m? at temperatures of about —5°C to —32°C. Under these
conditions many of Jacka's samples reached minimum creep rate. When plotted in
log v, — log t co-ordinates (Figure 20) his creep data exhibit two systematic features:

(a) Prolonged steady-state creep rates are not observed; instead the secondary stage
of creep degenerates to an equilibrium state characterised by a minimum octahedral
creep rate vyom. The locus of minimum values is revealed as a straight line
corresponding closely with an accrued octahedral shear strain of 0.6 to 0.7 per cent.

(b) Within the range of temperature and shear stress so far examined this locus seems
to be independent of shear stress and temperature over three orders of magnitude
of ¥om. At temperatures below —10°C the observed equilibrium creep rates are
described by a flow law of the form

Yom = A exp {(—Q/RT) 7} (5.3)

with A = 1.87 x 10° sec MN'm®; Q = 18 Kcal mole'; n = 3; R = 1.9 ¢al mole'
°K-'; and T, the temperature in °K. Jacka's observed equilibrium creep rates at
- 10°C and - 17.8°C are shown as open circles in Figure 21. Dashed lines calculated
using equation (5.3) with the values given above are shown for 7, = 0.16 MN m™.

Pending any evidence to the contrary, it can be assumed that the locus of
equilibrium c¢reep rates identified in Figure 20 can be extended to smaller valugs of
Yom. With this assumption, it is possible, in principle at least, to extrapolate
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rheologically short-term creep data to estimate equilibrium creep rates as well as the
time necessary to realise them. Until the form of the log ¥, — log t creep function
is better understood, it is presently possible to determine only the upper and lower
bounds on equilibrium creep rates expected from short-term experiments. The upper
bound is the last observed creep rate; while the lower bound is found from a linear
extrapolation of the observed log ¥, — log t creep curve to the locus of yom values.
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Figure 20. A typical sample of fog v, versus log t creep curves for isotropic
specimens in vhiaxial compression. (After Jacka 1984).
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Smoothed curves of log ¥, versus log t have been computed from the present
data and are displayed in Figures 22 to 28 as solid curves with extrapolations to the
lower bounds being shown as dashed lines. For each sample the value of y,m has
been calcufated as the loparithmic mean of the upper and lower bounds; these values
are shown as solid circles. The errors attributable to extrapolation are indicated as
error bars extending from the upper to the lower bound. The number near each
estimate of <yam pgives the octahedral shear stress applied to the sample. The
calculated values of vom have been transferred to Figure 21 where they are entered
as solid circles. A flow law of the form given by equation (5.3) with A = 1.72 x
10° sec’ MIN'" m*, Q = !8 Kcal mole” and n = 1.7 is found to describe these data
reasonably well. Curves calculated on this basis are shown in Figure 21 as dashed
lines for 7, = 0.16 MN m™. An apparent transition in the value of n from 3 to 1.7
at octahedral shear stresses below about 0.16 MN m™ suggests the possibility of
different rate controlling mechanisms operating above and below this value of shear
stress. However, in the decade of equilibrium creep rates between 10° sec”' and 107"
sec” the time required to actually achieve equilibrium increases from two or three
months to about two years. At creep rates greater than 107 sec' the values entered
in Figure 21 are based on observation; helow 107" sec ' they must so far be based
on extrapolation. When the errors associated with this extrapolation (Figures 22 to
28) are considered, a flow law with n= 3 extending to very small creep rates cannot
be entirely ruled out by the present data.

Returning now to Figures 22 1o 28, it is notable that the log v, — log t creep
curves appear to be linear until they apptoach the locus of equilibrium values. Their
slopes during the dominantly primary stage of creep are evidently independent of
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Figure 22. Smoothed curves of log vy, versus log { with extrapolations (o
equilibrium curve shown as dashed lines. Oclahedral shear stress is indicated in
MN ngri. Sample C2:—10°C.
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shear stress with some indication of a slight dependence on remperature. Also, for
creep rates in the primary stage, <y, remains linearly proportional to 7, when
evaluated at equal times. The linearity between log v, and log t suggests a further
examination of the Andrade law (equation 5.2) in the more general form

Yo = ye + KU+ (80" (5.4)

The octahedral creep rate is

;r'o — K+ m Bm gt (5.5)
Then
dve = m(m — 1) 8™ t77 dt (5.6)

which, when combined with equation (6.5), yields

A . mopmet g
9'19 _ m(m DA™t dt (5.7)
Yo K+ m§agtm™

For short-term creep experiments the transient term dominates the secondary term
s0 that K << m 8" t™' As a result

dllog 7o)
————— =m
d(log t)

_ (3.8)

From the observed slopes, d(log vy.)/d(log t), shown in Figures 22 to 28, it is found
that the value of m varies approximately from 0.6 at —50°Cto0.75at — 10°C. These
values differ significantly from the value of one third found by Andrade and others
1o be relevant to metallurgical materials. By forcing m to be one-third when fitting
the present creep curves tothe classical Andrade law (Section 5.1.1), an exaggerated
vatlue of X must have been generated to compensate for the larger value of m
characteristic of the empirical curves for jce. In this case the best fit Andrade function
with m = 1/3 would be expected to exhibit an artificial curvature, which evidently
contributed to the present failure of the Andrade function as a tool for the
extrapolation of rheologically short-term creep rates to secondary values. The more
general Andrade law (equation 3.4) certainly merits further investigation in this regard.
However, its usefulness may be limited, as very long creep tests will still be required
to yield confident estimates of K. Jacka’s data have shown that a prolonged period
of unaccelerated creep is not a characteristic feature of isotropic creep al temperatures
between —5°C and — 18°C and at shear stresses as low as 0.1 MN m”. If this trend
continues at smaller stresses and lower temperatures, a flow law based on secondary
creep rates could not be directly substantiated by experiment.

Alternately, by prestraining isolropic aggregates to an accrued strain of nearly
one per cent at an elevated stress and/or temperature, the time necessary to reach
small equilibrium creep rates could be shortened considerably. The effects of
prestraining on equilibrium creep rates will need to be determined, e.g. by comparative
tests at creep rates above about 107 sec™. If the effects are found to be small, it
might then be possible to construct a purely empirical flow law for isotropic ice based
on equilibrium creep rates extending to very small values. This possibility is being
considered as a future area of study at the University of Melbourne.
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The present isotropic creep tests have resulted in the construction of the first
comprehensive laboratory extension of the flow law for isotropic aggregates (Figure
21) to —-30°C and 0.005 MN m=, An activation energy of 18 Kcal mole’ is
indicated throughout this region of small creep rates. The present evidence points
to a value of nin the range 1.7 to 3. When compared to previous short term laboratory
studies which suggested a linear flow law at small creep rates (Figure 1), the errors
in predicting creep rates under conditions of shear stress and temperature characteristic
of polar ice masses are thus reduced by more than an order of magnitude. With this
improvement in the flow law for isotropic aggregates, it becomes even more pressing
to consider the empirical effects of anisotropic crystallography on strain rate.

5.2 EXPERIMENTS ON ANISOTROPIC AGGREGATES

Present and past laboratory results indicate that creep rates observed during short-
term creep experiments on isotropic aggregates are described by a linear (n = 1) flow
law. When a constant load is applied to a prestrained anisotropic aggregate after a
prolonged period of relaxation, it will be assumed that the resulting creep rate will
also exhibit a linear dependence on stress during the dominantly primary stage of
creep. By adopting this assumption, it becomes possible to test the linear enhancement
model developed in Section 3 with short-term laboratory creep tests at small creep
rates.

In view of the paucity of suitably documented creep tests on crystallographically
anisotropic aggregates, several experiments were designed specifically to provide
empirical as well as model-derived enhancements in uniaxial compression (A = —1)
and pure shear in two dimensions (A = 0) between equidistant plattens, i.e. simple
shear. Borehole cores obtained from Law Dome Antarctica provided the prestrained,
anisotropic specimens for the tests.

5.2.1 Experimental results

Anisotropic ice cores were obtained from two quite different stress situations at Law
Dome. Specimens cut from these cores were subjected in the [aboratory to stress
configurations simulating both /» sifu and anomalous conditions. Three specimens
were prepared from the 318 m depth core at site SGD, the Dome summit, a region
approximating {McLaren, 1968) uniaxial compression. The symmetric girdle fabric
of the parent core is illustrated in Figure 29a. Two of the specimens (318D1 and 318D2)
were loaded in uniaxial compression as #n situ. A third specimen (318D3) was tilted
90° to the in sifu case with the axis of compression normal to the axis of symmetry
of the girdle fabric. The octahedral shear stress and temperature in each of these
creep tests were 0.005 MN m? and —10.2°C, respectively.

A second set of three specimens was prepared from the 200 m depth core at site
SGF near Cape Folger. The parent core exhibited a strong single pole fabric (Figure
29b), indicative of its history of laminar (simple shear) flow in that region. In order
to reinstate the in situ flow situation, these specimens were mounted between parallel
plattens and a constant shear load applied. The piattens were constrained to remain
equidistant (Section 4.4.2). Specimen 200F 1 was oriented as in sitir (single pole fabric
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Figure 29. Fabrics of (a) a horizontal section of Dome summit core from a depth
of 318 m; (b) Cape Folger core from 200 m depth, sectioned at 45° to the horizontal;
and {c) laboratory prepared isoiropic ice.

axis of symmetry normal to the plattens), while the fabric axes of specimens 200F2
and 200F3 were tilted at 22.5° and 435 ° respectively, into the direction of the applied
shear stress. These tests were conducted at 0.04 MN m= octahedral and —6°C.
With each set, an isotropic polvcrystal of similar grain size (prepared as described
in Section 4.6} was tested under identical conditions. A typical measured orientation
labric for the laboratory-prepared specimens is shown in Figure 29c. The observed
creep curves of platten displacement versus time are shown in Figures 30 and 31.
Empirical component enhancements were computed as the ratios of the slopes of the
creep curves of the anisotropic aggregate to the associated slopes of the curves for
the isotropic control samples. The slopes were calculated (or the final 100 hours of
each test, and represent uniaxial and simple shear creep rates at approximately 0.5
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term uniaxial experimenis on {a) isotropic control specimen; (b) anistropic specimens
31801 and 318D2 loaded as in situ; and (c) anisoiropic specimen 31803 loaded perpen-
dicular to the fobric axis of symmetry,
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Figure 31. Normalised creep curves of platten displacement versus time for short-
term simple shear experiments on f(a) isolropic control specimen, (b) anisotropic
specimen 200F1 loaded as in situ; (c) anisotropic specimen 200F2 loaded with Jabric
axis of symmeiry tilied 22.5° into the direction of shear; and (d) anisotropic specimen
200F3 loaded with fabric axis of symmetry tilted 45° into the direction of shear.
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per cent and 5 per cent respectively, of the time estimated to reach equilibrium isotropic
values. Thus the experiments are rheologically short term, so that the observed
component enhancements can be considered linear. The linear short term component
enhancements measurcd for each of the six anisotropic aggregates arc shown as solid
circles in Figures 32 and 33,

5.2.2 Results from the enhancement model

For each test, the measured orientation fabric of the parent core and the relevant
stress-configuration parameter were presented as inputs to a computer program which
performed the numerical integrations and calculations required to cvaluate the model-
derived component enhancements. The model was run for various angles of tilt (6,)
between the platten normal and the axis of symmetry of the observed fabric. The
results are summarised in the curves of Figures 32 and 33.

Enhancement factor

05

0° 30° 60° 90
O

Figure 32. Model-derived linear enhancement facitors for axial component of creep
rate (L%,) and octahedral shear stress (E.) versus angle of tilt (04 of fabric axis of
symmetry from load axis. Solid circles indicate measured axial enhancement factors
Sor short-term uniaxial tests.
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5.2.3 Discussion

The variety of test conditions that could be examined by the present study was
necessarily limited. However, the conditions selected were sufficiently diverse to
constitute a fair test of the linear enhancement mode] and to provide the first well-
docuniented short-term laboratory results replicating conditions of well developed
anisotropic crystallography in natural ice masses. The strong correlation between
measured and model-derived component enhancements for both natural and
anomalous relationships between stress configuration and crystallography, indicated
in Figure 34, supports the validity of the linear model for short-term laboratory creep
tests at small creep rates.

Current and future work aimed at extending both the laboratory and modelling
aspects of the present study of crystallographic anisotropy to more nearly approximate
conditions of equilibrium in natural ice masses is discussed in Section 5.3.

Enhancement factor

o° 20° 40°

Figure 33. Modei-derived linear enhancement factors for shear componeni of creep
rate (E5,) and octahedral shear stress (E.} versus angle of tilt {8;) of fabric axis of
symmetry away from platten normal into the direction of shear. Solid circles indicate
measured shear enhancement faciors for shori-term simple shear tests.

83



5.3 SUMMARY AND CONCLUDING REMARKS

In retrospect, it is perhaps ironical that the first laboratory study of polycrystalline
ice (McConnell and Kidd 1886) was most successful in indicating that the creep rate
of an anisotropic aggregate is very sensitive to an implied relationship between the
symmetry of its crystal orientation fabric and the configuration of the applied stress
situation. Yet nearly a century later the quantitative roles of crystallography and stress
configuration are not as well understood as those of temperature and shear stress
magnitude (octahedral shear stress). Looking back the reason is clear. If it is assumed
that the flow law for pure, dense polycrystalline ice is independent of the first stress
invariant (Rigsby 1958), grain size and grain geometry, then the flow law will be a
surface in a rheological space of at least seven dimensions. The rheological co-ordinates
are octahedral deformation rate (dependent variable), temperature, the second and
third deviatoric stress invariants, and at teast three co-ordinates describing the crystal
orientation fabric. For the simplest case of a single pole fabric approximating a
spherical normal distribution, its standard deviation and, say, the two Euler angles
of its axis of symmetry are required. Fabrics exhibiting additional axes or planes of
symmetry require correspondingly more co-ordinates for a full description. It was
not until midway through this century that advances in the technology of measurement
and control made it possible to undertake well-controlled Iaboratory creep experiments
{e.g. Glen 1952). With few exceptions, subsequent laboratory studies have
concentrated on isotropic aggregates.

The hypothesis was put forward in Section 3 that if the rate-controlling mechanism
for the creep of polycrystalline ice is basal glhide, the deformation rate might be
proportional to the root-mean-square resolved basal shear stress. [t was then shown
that this hypothesis leads to an isotropic flow law independent of the third deviatoric
stress invariant. The flow law for isotropic polycrystalline ice thus degenerates to
a surface in a three-dimensional rheological space where octahedral deformation rate
is a function only of temperature and octahedral shear stress (cf. Budd 1969). This
conclusion is consistent with past empirical laboratory results.

Since the pioneering field program of the Jungfraujoch Research Party of 1938,
a large body of empirical field data describing the structure (grain size and geometry,
crystallography, density, etc.) of natural ice has been collected. Only recently (Budd
1972) has such data been comprehensively re-examined to determine the large-scale
distribution of crystallography and its development throughout an ice mass. Budd
(1972) presents substantial evidence that the symmetry of a crystal orientation fabric
tends to adopt that of the local stress configuration and that fabric development is
flow induced. Thus the symmetry of the fabric lags that of the stress configuration
and is modified by bulk rotations arising from flow constraints. In regions where
gradients of the stress situation parameters (Section 2) are small, a strong correlation
between the stress configuration parameter (third deviatoric stress invariant) and the
crystal orientation fabric can be expected. In any case, field results from natural ice
masses suggest (Budd 1972) that crystallographic features are systematically distributed
throughout.

This information suggested a means (Section 3) of modelling the effects of
anisotropic crystallography for a wide range of conditions encountered in natural
ice masses. By introducing only one additional rheological co-ordinate, the flow law
for an anisotropic aggregate can be examined in relation to that for an isotropic
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aggregate. The new variable is an enhancement factor which yields the octahedral
deformation rate of an anisotropic polycrystal relative to that of an isotropic
polycrystal under identical conditions of temperature and stress situation. The flow
law for an anisotropic aggregate then becomes

Yo(re, A, T, £, m) = E(f, A, n) A ¢9*7r] (5.9)

where v, is the octahedral deformation rate of an ice aggregate exhibiting a
crystallographic orientation density f; 7, and A are the octahedral shear stress and
stress configuration parameter; T is the temperature; n = 3(ln ¥,)/d(1n 75); Q is the
activation energy for polyecrystalline ice; R = 1.9 cal mole' °K™'; and A is an
empirical constant. The product A %774 is the deformation rate of an isotropic
aggregate found e.g. from the flow law presented in Figure 21. E(f, A, n) is the
enhancement factor, related to stress configuration and crystallography in terms of
a geometric tensor (Lile 1978). This geometric tensor can be viewed as a tensor
coefficient of correlation between the configuration parameter of the focal stress tensor
(specifying the geometrical distribution of shear stress) and the crystal orientation
fabric (specifying the geometrical distribution of basal planes). As a dynamic structural
parameter, the geometric tensor has real meaning only for deforming ice. It is in
essence a mathematical formulation of an empirical correlation found by Budd (1972)
to be systematically distributed throughout an ice mass. It can therefore be specified
(more practically in terms of the enhancement factor) as a structural function of
position and utilised in present ice dynamics models.

The enhancement factor for octahedral deformation rate is defined in terms of
the second invariant of the geometric tensor; enhancement factors for each component
of the strain rate tensor can be defined in terms of the associated component of the
geometric tensor. This generalisation allows the enhancement model to be applied
directly to laboratory creep experiments in which only one strain rate component is
measured. A linearised form of the enhancement factor (n = 1) was applied
successfully to short-term laboratory creep tests replicating a variety of rheological
conditions relevant to polar ice masses (Section 5.1.2).

If the flow law given by equation (5.9) is to be applicable to natural ice masses,
it will be necessary to generalise the enhancement model to determine the functional
dependence of E upon n for n > 1. Work directed toward this goal is now in progress.
While details have vet to be finalised, first results indicate that

E(f, A, n) = [E(f, A, D]="* {(5.10)

The non-linear enhancement estimates provided by equation (5.10) can be
compared with the unpublished field and laboratory results of D. S. Russell-head.
Russell-Head and Budd (1979) found that the crystal orientation fabrics in the Cape
Folger, Antarctica borehole between about 150 m and 325 m exhibit a single pole
cluster with a strength {or verticality) which varies with depth. The standard deviation
(0s) of c-axes about the vertical has been determined, by fabric analyses of the core,
as a function of depth in the hole.

Non-linear enhancement factors were evaluated using equation (5.10), a spherical
normal approximation to the measured fabrics (¢f. Section 3.4), an easy glide situation
in simple shear, a value for n of 1.7 (cf. Figure 21) and the measured vertical
distribution of gs. The model-derived enhancement factor as a function of depth is
shown as a solid curve in Figure 34,
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Figure 34,  Enhancemeni factors versus depth in the 1974 Cape Folger borehole.
{After Russeli-Head and Budd 1979).
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Russell-Head and Budd’s laboratory study included a series of long-term simple
shear creep tests on specimens prepared from the core. These experiments replicated
in situ conditions of temperature and stress situation. Enhancement factors were
calculated for each sample and have been entered as solid circles in Figure 34. The
error bars are based on an expected experimental error of + 20 per cent and an error
of equal size in the measured ¢y values. The general quantitative agreement between
the enhancements predicted by the preliminary non-linear model and rheologically
long-term laboratory results is encouraging,

A 1977 resurvey of the 1974 Cape Folger borehole provides an opportunity to
compare the preliminary model results with field observations. The model-derived
enhancement profile shown in Figure 34 suggests a region of enhanced horizontal
shear rates at about 250 m down the hole. From the resurvey, a maximum in horizontal
shear rate was observed at a depth of about 240 m (Russell-Head and Budd 1979).
The model is in qualitative agreement with this observation.

Russell-Head and Budd (1979) pointed out the following implications concerning
this observed enhancement of horizontal shear rates in the third depth quartile in
the Cape Folger region. The vertical velocity profile differs significantly from that
predicted by an isotropic flow law; thus, from a consideration of observed surface
velocities and the large eontribution of the enhanced quartile to this velocity, it can
be concluded that residual shear rates in the lowest quartile of depth are quite small.
It is generally assumed that octahedral shear stress increases in proportion to depth
(e.g. Budd, 1969). Assuming further that the shear rates at depth are unenhanced
and described by an isotropic flow law, the implied horizontal shear rates will still
significantly overestimate the observed surface velocity. This apparent dilemma can
be resolved by assuming in addition that shear stress decreases in the lowest quartile
of depth in the ice mass.

The implied effect of strong anisotropic crystallography on computed particle paths
and isochrones is obvious. An urgent need to consider the quantitative effects of
crystallography in the flow law for natural anisotropic ice masses is clearly established.
The enhancement model proposed and described in this study promises to provide
a pragmatic and feasible approach to the realisation of this need. It has been successful
in describing the principal qualitative characteristics of the observed velocity profile
in the Cape Folger region. Once the question of stress situation at depth has been
clarified, a quantitative field assessment of the model will be possible. Finally, the
general mathematical basis on whieh the enhancement model has been constructed
provides a receptive framework for new empirical and theoretical evidence.
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