- 1911-14

UNDER THE LEADERSHIP OF SIR DOUGLAS MAWSON, D.Sc., F.R.S.

SCIENTIFIC REPORTS.

SERIES B.

VOL. II.

TERRESTRIAL MAGNETISM AND RELATED OBSERVATIONS.

MAGNETIC DISTURBANCE

PART III.

CAPE DENISON

AT.

BY J. M. STAGG, O.B.E., M.A., D.Sc. METEOROLOGICAL OPFICE: LONDON

WITH FIFTY-ONE TABLES, FOUR TEXT FIGURES AND EIGHT PLATES.

PRICE: FIFTEEN SHILLINGS.

Wholly set up and printed in Australia by THOMAS HENRY TENNANT, GOVERNMENT PRINTER, SYDNEY, NEW SOUTH WALES, AUSTRALIA.

1940.

64550

SERIES A

PRICE. £ s. d. I. CARTOGRAPHY AND PHYSIOGRAPHY. Brief narrative and reference to Physiographical and glaciological features. Geographical discoveries and Cartography. By DOUGLAS MAWSON. II. OCEANOGRAPHY. PART 1.-SEA-FLOOR DEPOSITS FROM SOUNDINGS. By FREDERICK CHAPMAN 0 6 0 •••• 2.-TIDAL OBSERVATIONS. By A. T. Doodson 0 4 0 3.—SOUNDINGS. By J. K. DAVIS ••• ••• •••• 0 2 6 4.-HYDROLOGICAL OBSERVATIONS, MADE ON BOARD S.Y. "AURORA." Reduced, Tabulated and Edited by Douglas Mawson 0 3 0 5.-MARINE BIOLOGICAL PROGRAMME AND OTHER ZOOLOGICAL AND BOTANICAL ACTIVITIES. By DOUGLAS MAWSON III. GEOLOGY. PART 1.-THE METAMORPHIC ROCKS OF ADELIE LAND. By F. L. STILLWELL 20 " 2.-THE METAMORPHIC LIMESTONES OF COMMONWEALTH BAY, ADELIE LAND. By C. E. TILLEY 0 1 6 " 3.-THE DOLERITES OF KING GEORGE LAND AND ADELIE LAND. By W.R. BROWNE 0 1 6 4.--AMPHIBOLITES AND RELATED ROCKS FROM THE MORAINES, CAPE. . . DENISON, ADELIE LAND. By F. L. STILLWELL 0 2 0 5.-MAGNETITE GARNET ROCKS FROM THE MORAINES AT GAPE DENISON, ADELIE LAND, By Arthur L. Coulson 0 2 0 6.--PETROLOGICAL NOTES ON FURTHER ROCK SPECIMENS. By J. O. G. • . GLASTONBURY --- ---0 3 6 IV. GEOLOGY. PART 1.-THE ADELIE LAND METEORITE. By P. G. W. BAYLEY and F. L. STILLWELL. 0 1 6 2.—PETROLOGY OF ROCKS FROM QUEEN MARY LAND. By S. R. NOCKOLDS. 086 ,, 3.--GRANITES OF KING GEORGE LAND AND ADELIE LAND. By H. S. SUMMERS •• and A. B. EDWARDS. Appendix by A. W. KLEEMAN 0 3 9 4.—ACID EFFUSIVE AND HYPABYSSAL ROCKS FROM THE MORAINES. By J. O. G. GLASTONBURY 0 2 6 5.-BASIC IGNEOUS ROCKS AND METAMORPHIC EQUIVALENTS FROM 33 COMMONWEALTH BAY.' By J. O. G. GLASTONBURY 0 5 6 6.-CERTAIN EPIDOTIC ROCKS FROM THE MORAINES, COMMONWEALTH BAY. By J. O. G. GLASTONBURY 0 1 6 ••• ••• 7.-SCHISTS AND GNEISSES FROM THE MORAINES, CAPE DENISON, ADELIE LAND. By A. W. KLEEMAN ••• 0 12 0 ... ••• ...

VOL.

UNDER THE LEADERSHIP OF SIR DOUGLAS MAWSON, D.Sc., F.R.S.

SCIENTIFIC REPORTS.

SERIES B.

VOL. II.

TERRESTRIAL MAGNETISM AND RELATED OBSERVATIONS.

PART III.

MAGNETIC DISTURBANCE

AT

CAPE DENISON

BY J. M. STAGG, O.B.E., M.A. D.Sc. Meteorological Office: London.

WITH FIFTY-ONE TABLES, FOUR TEXT FIGURES AND EIGHT PLATES.

PRICE: FIFTEEN SHILLINGS.

Wholly set up and printed in Australia by Thomas Henry Tennant, Government Printer, Sydney, New South Wales, Australia.

1940.

* 6**4550**—A

ВY

DR. J. M. STAGG.

WITH 51 TABLES, 4 TEXT FIGURES AND 8 PLATES.

CONTENTS.

•										PAGE.
PREFATORY NOTE	•••	•••	•••	•••	•••	•••	••••	• • •	•••	341
INTRODUCTION	•••	•••	•••	• • •		•••	•••	•••	•••	342

CHAPTER I.—SHORT PERIOD DISTURBANCE AT CAPE DENISON. Section.

								-
1	355 disturbances selected	••••	•••	•••		••••	•••	343
2	Types of short period disturbance		•••	•••	•••		•••	348
3	Bay types	•••	•••	•••	•••	•••	•••	34 9
4	Relative intensity of vector components	in var	ious ty	pes of	bày	•••	•••	350
5	Distribution of bays in time-				,			
	(a) Annual variation	•••		•••	•••	•••	•••	351
	(b) Diurnal variation	•••	•••	•••	•••	•••	•••	352
6	Direction of rotation of disturbance vect	ors in	bays	•••	•••	•••		353
7	The 88 short disturbances of Table LXX	V	•••	•••	•••	• • •		354

CHAPTER II.—COMPARISON OF SHORT PERIOD DISTURBANCES AT CAPE DENISON AND CAPE EVANS.

8	General features of magnetic registration at the two stations	•••	•••	355
. 9	Basis of comparison: description of Table LXXIX-			
	(a) Difference of components at the stations	•••	•••	359
~ .	(b) Estimation of times of critical epochs in the disturbances	•••	•••	360
	(c) Directions of vector changes : phase relations	•••	•••	361
10.	Relation of disturbance ranges to regular diurnal variation		•••	362
11	Density of disturbance at the two stations in three subdivision	ns of	${ m the}$	
	Greenwich day	• • •		362
12 .	Analysis of synchronous movements	•••	•••	364
13	Phase relations : rotation of disturbing vectors	•••	•••	366
14 .	Disturbances other than bays	•••	•••	367

CHAPTER III.—DISTURBANCE AT CAPE DENISON RELATED TO DISTURBANCE AT ESKDALEMUIR.

Sectio	DN.	P	AGE.
15	Records available for comparison		368
16	Classification of disturbances	•••	369
17	Direction of corresponding movements in the simpler bay disturbances	•••	375
18	Intensity of the vector components of disturbances in regular movements	•••	377
19	Variations in relative disturbances intensity at Cape Denison and Eskdaleme	uir	
	with time of day	•••	378

CHAPTER IV.-TERM HOURS.

20	General considerations :	co-oper	ating	stations	and	magnet	ic char	acters	of	•
	scheduled hours	•••	•••	•••	•••	•••	•••	•••	• • •	381
21	Term hour ranges at 20 s	tations	•••		•••	•••	•••	• • •	•••	383
22	The disturbed term hour,	April 1	$6, 8^{h}-$	10 ^h	•••	•••	•••	•	•••	390
23	Ordinates at 5-minute in	tervals,	Cape	Denisor	n and	Cape E	vans :	magne	etic	
	activity	•••	•••	•••	•••	•••	•••	•••	•••	391
24	Activity in term hours at	Cape D)enisoı	n and Ca	ape Ev	vans cor	npared	,		398
25	Ranges in term hours : fi	rom 5-m	inute	ordinat	es and	extrem	ie value	es '	••••	400
26	The constant C in the rela	ation r^{1}	$\Sigma \eta^2 =$	CR^2	•••	••••	: •.••	•••	•••	402

CHAPTER V.-LONGER DISTURBANCES.

27	Summary of prominent features—						
	(a) April 5, 18 ^h -April 6, 5 ^h	•••	•••	•••		•••	404
	(b) April 10, $6^{h}-12^{h}$	•••		•••	·	•••	405
	(c) April 15, $1^{h}-14^{h}$	•••	•••	•••	•••	•••	405
·	(d) May 12, $0^{h}-14^{h}$	• • •	•••	•••	•••	÷••	406
	(e) May 12, $21^{h}-24^{h}$	•••	: •i• ·	•••	•••	•••	406
·. ·	(f) May 13, $0^{h}-14^{h}$	••••	···	•••	•••	•••	407
	(g) June 8 (four subdivisions)	•••	••••	•••	•••	•••	409
	(<i>h</i>) June 9, $0^{h}-5^{h}$	•••	•••	•••	•••	•••	· 410
	(i) June 27, $6^{h}-12^{h}$	•••	•••	•••	•••	•••	410
	(j) June 27, 22^{h} –June 28, 2^{h}	• • •	•••	•••	•••	•••	410
	(k) July 31, 14 ^h -August 1, 8 ^h	•••	•••	•••	•••	••••	410
	(l) August 18, 14 ^h -August 19, 6 ^h	. • • •	•••	••• ·	·••• 3	•••	411
	(m) August 19, $9^{h}-10^{h}$	•••	•••	•••	•••	•••	411
	(<i>n</i>) September 17, 11^{h} -23 ^h	•••	•••		•••	••••	411

336

$CHAPTER V.-LONGER DISTURBANCES \cite{tau} continued.$

SECTION.

ECTI	ON.					PAGE.
27	Summary of prominent features—continued.	I.	·	,		
	(o) September 18, $0^{h}-14^{h}$		•••		·	411
	(p) September 24, $0^{h}-14^{h}$	•••	•••	•••	•••	412
	(q) September 24, 14 ^h -September 25, 2 ^h		•••	•••	•••	412
	(r) September 30, 21 ^h –October 1, 8 ^h		• • •	•••	•••	413
	(s) October 12, 20 ^h -October 13, 13 ^h	•••	• •			413
	(t) October 14, 6^{h} -October 15, 6^{h}	•••	•••		•••	413
	(<i>u</i>) October 20, 17^{h} -October 21, 1^{h}	•••	•••		•••	414
28	Extreme ranges in disturbed intervals at Cap	e Den	ison ar	nd Cap	e Evans	415
29	Squares of extreme ranges compared					417

CHAPTER VI.—THE DISTURBANCES OF SEPTEMBER 17, 1912.

30	Description of chief features registered at Cape Denison	•••	•••	•••	419
31	The interval $19^{h} 30^{m}$ to 22^{h} in detail : 5-minute ordinates		•••	•••	42 2
32	Vector changes at Cape Denison compared with Cape	Evans	and	other	;
:	stations	•••	•••	• • • •	423
33	The activity of the disturbance between $19^{h}30^{m}-22^{h}$	•••	•••	•••	424
34	Relation of activity to squares of ranges during the disturb	ance.	•••	•••	425

CHAPTER VII.-DISTURBANCE AT CAPE DENISON AND CAPE EVANS REFERRED TO SIMULTANEOUS DISTURBANCE AT CHRISTCHURCH.

35	Basis and limited scope of the comparison	••	427
36	Some aspects of Table CXVI containing parallel data	••	434
37	Examples of extreme ranges and times of occurrence at the three stations .	••	434
38	Average hourly ranges for each disturbance	••	43 6

CHAPTER VIII.—GENERAL ASPECTS OF ANTARCTIC DISTURBANCE.

39	The inequalities for days grouped according to the international	characte	r
	figure	••• •	. 439
40	The effect of increasing disturbance on the diurnal inequalities		. 445
41	The regular variation on days of least range		. 446
42	Seasonal change in the effect of disturbance on the inequalities	•••	. 447
43	Difference inequalities and vector diagrams	•••	. 447
44	The "Storm-time" variation		. 448

LIST OF TABLES.

بوته

£71.

R

TABLE.	\mathbf{P}	AGE.
LXXIV.	Characteristics of Regular Bays: Cape Denison	344
LXXV.	Disturbances of Short Period Other Than Regular Bays	346
LXXVI.	Mean Ranges of Components of Disturbing Force in Various Bay	
	Types	350
LXXVII.	Frequency of Occurrence of Bays of Various Classes in Parts of	
•	the Day	352
LXXVIII.	Analysis of Direction of Rotation of Phase Relations of Horizontal	
·.	Components of Disturbing Force in Regular Bays	354
LXXIX.	Short Period Disturbances Simultaneously Recovered at Cape	
	Denison and Cape Evans	356
LXXX.	Summary of Average Ranges at Cape Denison and Cape Evans	
·	in Short Period Disturbances	363
LXXXI.	Analysis of Form of Movements in Short Period Disturbances	
-	at Cape Denison and Cape Evans	364
LXXXII.	Short Period Disturbances at Cape Denison and Cape Evans of	
	a Mainly Oscillatory Character	367
LXXXIII.	Characteristics of Simultaneous Disturbance at Eskdalemuir and	
	Cape Denison : Type, NS, EW at Eskdalemuir	370
LXXXIV.	Type NS, WE at Eskdalemuir	37 0
LXXXV.	Type SN, EW at Eskdalemuir	371
LXXXVI.	Type SN, WE at Eskdalemuir	371
LXXXVII.	Type NS and Irregular or Triffing in W or	
	Waves at Eskdalemuir	372
LXXXVIII.	Type SN at Eskdalemuir	372
LXXXIX.	Type EW at Eskdalemuir	372
XC.	Type WE at Eskdalemuir	373
XCI.	Type NS, NS; EW, EW at Eskdalemuir	373
XCII.	Type SN, SN; EW, EW at Eskdalemuir	373
XCIII.	Horizontal Components at Eskdalemuir Irregular including SC's	374
XCIV.	Sharp Oscillations including SC's	374
XCV.	Miscellaneous Disturbances at Eskdalemuir	375
XCVI.	Summary of Simultaneous Force Changes of Direction at Cape	
1	Denison and Eskdalemuir	376
XCVII.	Mean Ranges of Force Components in Simultaneous Disturbance	
	at Cape Denison and Eskdalemuir	377
XCVIII.	Variation of Disturbance Intensity with Time of Greenwich Day	379
XCIX.	Frequency of Precedence of Component Ranges at Cape Denison	
	and Eskdalemuir in Subdivisions of the Greenwich Day	380
С.	Stations Co-operating in the 1912–13 Scheme of Term Hours	381
· CI.	Character Figures for the Selected Term Hours	382
CII.	Ranges during Term Hours at 20 Co-operating Stations	384

LIST	OF	TABLES-	-continued.

À

يلخ

3

<u>,</u>

TABLE.	· · · · · · · · · · · · · · · · · · ·	PAGE.
CIII.	Squares of Extreme Ranges in a Disturbed Term Hour, 1912,	
	April 16, 9 ^h -10 ^h	39 0
CIV.	(a) Differences from Lowest Values during Term Hours at Cape	
	Denison and Cape Evans; $8^{h}-10^{h}$	392
-	(b) Differences from Lowest Values during Term Hours at Cape	
	Denison and Cape Evans; 17 ^h -19 ^h	394
CV.	Estimates of $\frac{1}{12} \Sigma \eta^2$ at Cape Denison and Cape Evans: 8^h-9^h	
•	and $9^{h}-10^{h}$	397
CVI.	Estimates of $\frac{1}{12} \Sigma \eta^2$ at Cape Denison and Cape Evans : $17^{h}-18^{h}$	
	and $18^{h}-19^{h}$	398
CVII.	Mean Diurnal Inequalities from all Complete Days at Cape	
	Denison and Cape Evans, April to October, 1912	399
CVIII.	Ranges from 5-Minute Readings during Term Hours	40 0
CIX.	Extreme Ranges during Term Hours	401
CX.	Mean Values of the Constant C in the Relation $\frac{1}{12} \Sigma \eta^2 = CR^2 \dots$	402
CXI.	Longer Disturbances: Ranges at Cape Denison and Cape Evans	416
CXII.	Longer Disturbances: Squares of Ranges of Horizontal and	
	Total Vectors	417
CXIII.	Field Changes during Succession of Waves at Cape Denison:	
	1912, September 17	421
CXIV.	Departures from the Mean at 5-Minute Intervals, 1912, September	
t	17	422
CXV.	Magnetic Activity, $19^{h}30$ to 22^{h} , September 17, 1912	424
CXVI.	Hourly Ranges at Cape Denison, Cape Evans and Christchurch	
	during Selected Disturbed Periods	428
CXVII.	Typical Extreme Ranges and Times of Extreme in Disturbed	
~	Intervals	435
	Summary of Mean Hourly Ranges and Squares at Cape Denison,	
OVIV	Cape Evans and Christenurch	438
UAIA.	Diurnal inequalities for Days grouped according to international	110
OVV	Diaracter Figure : Lear	440
	Character Figure Winter	441
OVVI	Diumpal Inequalities for Davis grouped according to International	441
UAAI.	Character Figure : Fauinov	440
CYYII	Diurnal Inequalities for Days grouped according to International	442
UAAII.	Character Figure Summer	449
CXXIII	(a) Inequalities for Aujet Days Cane Denison Winter 1019	440
	(b) Difference Inequalities for Year and Seasons	 ///
CXXIV	Mean Hourly Values of Horizontal Force after Commencement of	744
VITIT I I	28 Disturbances	4 44
	= 0 Transmitting if if	***

TEXT FIGURES.

FIGURE.		PAGE.
16.	Average Magnetic Conditions at Cape Denison and Cape Evan relative to the South Magnetic Pole between 7 ^h and 1	ns l ^h
	G.M.T	365
17.	Ditto, between 11^{h} and 15^{h} G.M.T	365
18.	Tracing of Magnetogram for May 13th, 1912	408
19.	Tracing of Magnetogram of September 17th, 1912	420

PLATES.

PLATE.

VII. Diurnal Variations of Corresponding Components at Cape Denison and Cape Evans; April to October, 1912.

- VIII. Change in Magnetic Force at 5-Minute Intervals, 19^h 30 to 22^h; September 17th, 1912.
 - IX. Vector Diagrams, Cape Denison; September 17th, 1912.
 - X. Inequalities for Groups of Days of Increasing International Character Figure.

XI. Difference Vector Diagrams; Cape Denison, Year and Seasons.

- XII. Mean Hourly Values and Departures of H after Commencement of Disturbance.
- XIII. Reproduction of a Disturbed Section of the Magnetogram of August 18th, 1912: Cape Denison.
- XIV. Reproduction of a Disturbed Section of the Magnetogram of September 24th, 1912: Cape Denison.

PREFATORY NOTE.

THIS part of Volume II is concerned with a variety of aspects of magnetic disturbance as registered at Cape Denison, Adelie Land, the Main Base Station of the Australasian Antarctic Expedition, 1911–14. The investigations were originally undertaken by Dr. Charles Chree. Before his death in August, 1928, the collection of the material for some of the chapters was far advanced. Dr. Chree had prepared several of the tables and the manuscript of one chapter was nearly complete. Shortly before his death Dr. Chree gave Sir Douglas Mawson a list of eight chapters, which he proposed to include in the work. These eight chapter headings have been used as a basis for the continuation of the investigations.

The photographic records, together with the manuscripts relating to researches, were forwarded to me in November, 1928. Except for the one chapter, which stands almost as Dr. Chree left it, the following pages represent my effort to complete the work.

Doubtless this final form departs very greatly from that which it was intended it should take. As far as the manuscripts could guide me, however, my endeavour has been to follow as nearly as I could the course Dr. Chree might have taken. Though I realise how feebly that aim has been accomplished, the work is submitted in the hope that it will be interpreted as having gone some way to further the utilisation of the magnetic data so arduously collected during Sir Douglas Mawson's Expedition and to relieve the loss which has befallen the Science of Terrestrial Magnetism through the contribution not coming from Dr. Chree's own hands.

J. M. STAGG.

Eskdalemuir Observatory, Dumfriesshire, Scotland. June, 1929.

INTRODUCTION.

In describing the results of the investigations it will be found that frequent reference is made to records of simultaneous magnetic disturbance from other stations. In particular, special interest attaches to the synchronous course of magnetic events at Cape Evans, the base station of the British Antarctic Expedition, 1910-13. For, as will be explained in the appropriate sections of the text, the variations of the component vectors of the disturbance field at Cape Denison and Cape Evans frequently differed in a pronounced manner. It was accordingly felt that side-by-side reproduction of some typical magnetograms showing simultaneous disturbance at the two stations would greatly help the reader to visualise the sequence of events. But even with the original records from both Antarctic stations available, comparison of simultaneous movements has been no easy matter. For the two sets of magnetographs did not record the same horizontal components; they were of widely different sensitivity and even for pairs of corresponding components (D and W¹, H and N¹) the same direction of movement of the trace up the sheet meant opposing sense of variation of the forces represented. Moreover, the main declination trace at Cape Denison was frequently off the sheet, so that use had to be made of the subsidiary reflected trace provided by the double mirror of the magnetograph moving system. The reduction to a common basis of all these features of difference between corresponding pairs of records was necessary before reproduction of the traces would serve any useful purpose. Unfortunately, however, I have been unable to get access to any instrument which can satisfactorily cater for such a multiplicity of requirements.

It has, therefore, been decided simply to reproduce copies of a selected number of the original magnetograms from the Cape Denison variometers.* By selecting days of disturbance for which reproductions of the Cape Evans magnetograms can be found in the volume of Terrestrial Magnetism of the British Antarctic Expedition, 1910–13, it is hoped that at least a general comparison of magnetic disturbance simultaneously recorded at two stations so uniquely situated may in that way be facilitated.

J. M. STAGG.

Lerwick Observatory, Shetland, September, 1929.

* In order to reduce the cost of publication, only two out of the number of magnetograms selected by Dr. Stagg have been reproduced in this volume. It should be noted that the manuscript of this Report was completed for publication in 1929. [D. MAWSON, Ed.]

 $\mathbf{342}$

CHAPTER I.-SHORT PERIOD DISTURBANCE AT CAPE DENISON.

§1.—Selection of 355 Disturbances.

Disturbance is so persistent a feature of the magnetic registrations at stations in high latitude that even in quiet times classification of the smaller types of movement is difficult. At a station such as Cape Denison, within 600 miles of the locality of the south magnetic pole, the difficulty is much enhanced. Short period transitory oscillations constantly mask the trend in the major movements of a disturbance and, in the worst cases, entirely preclude the assignment of accurate epochs to critical stages in the variations of the main disturbing field and render amplitudes that might be attributed meaningless. Only to the boldest of the movements or those occurring at times when the locally superposed oscillations are least obtrusive can estimates of the main characteristics of the movements be given with any confidence. For measurements made even in the best conditions, a tolerance of 2 or 3 per cent. in individual cases is necessary.

Three hundred and fifty-five disturbances of short period in the records from Cape Denison have been studied, 197 in the nine months March to November of satisfactory registration in 1912, and 158 in the remaining months, January to August, 1913, for which records are available. The mean duration of all the tabulated movements was 50 minutes. One lasted 180 minutes, but that was wholly exceptional; the next longest was 120 minutes. Short, sharp oscillations of the nature of sudden commencements account for the appearance in the table of a few durations of six minutes.

In addition to the general considerations mentioned above, the qualifications for notice on the part of any disturbance were :---

- 1. That it should be fairly conspicuous in all three components, D, H, and Z, if all three traces were available; and
- 2. That is should have some feature which conformed to one of the recognised types of movement—bay, sudden commencement, or oscillation of a simple and characteristic nature.

To aid analysis, two principal lists of the selected disturbances were formed, one containing all those cases, 267, of more or less regular bays and the other comprising the more heterogeneous lot (88) of perturbations described as of wave-form (or doublebay), probable sudden commencements and movements which might be bays but which were partially obscured by superposed oscillations of very short period. Details of each member of the first class are given in Table LXXIV and those of the second in Table LXXV. Under "climax" are supplied the times to the nearest five minutes of the turning points of the chief movement in the disturbance or those of the component in which the movement was most conspicuous. The next column gives the estimate of the duration to the nearest five minutes for disturbances which lasted more than ten minutes, or to the nearest minute in the case of sharp oscillations of shorter duration. The entry is generally an average of the separate durations from the three components. In this table and all others in the chapter the times quoted are Greenwich mean times. The

remaining columns give the extreme range of each element and an indication of the order and directions of change of the disturbing forces (1) transverse to the magnetic meridian, (2) along the meridian directed northwards and (3) vertically downwards. Since declination at Cape Denison was approximately 6.5° west of north, the ranges of the movement tabulated under D therefore refer to a disturbing vector component directed 6.5° south of west. Increase of the vector along the meridian to the north is denoted by + and an increase of the component perpendicular to this by W. An increase of the vertical component Z in the northern hemisphere has a numerical decrease as counterpart in the southern hemisphere. A change of the disturbing vector resulting in a decrease in the dip of the south-seeking pole is therefore denoted in the tables by +. In the actual magnetograms and with the notation adopted here, D increased to the west up the sheet, but movement up the sheet indicated a numerical decrease in H and Z.

TABLE LXXIV.

Cape Denison : Characteristics of Regular Bays.

<u> </u>	Time	Dura		Range	B.] J	irection fovemen	of t.	Rota		Time	Dura	1	Range	5.		irection fovemen	of t.	Rota
Date.	of Climax.	tion.	D	H	z	D	н	z	or Phase.	Date.	of Climax.	tion.	D	н	z	D	н		or Phase.
1912. Mar. 28 ,, 29	h.m. 1715 160	mins. 60 75	γ 77 144	γ 41 117	γ 40 58	WE WE	 :+ +	+ +	C C	1912. June 30	h. m. 10 40 11 40 13 40	mins. 50 55 60	Y 53 56 69	γ 31 23 54	γ 23 64	EW EW EW	+ +	 + +	C C C
April 1 , 5 , 6 , 9 , 12 , 20 , 23 , 24 , 25 , 29	9 45 10 40 12 45 13 10 12 45 13 15 13 15 13 50 9 30 12 45 13 20 15 50 10 15 13 0 13 45 12 20	$\begin{array}{c} 55\\ 60\\ 30\\ 70\\ 30\\ 60\\ 60\\ 35\\ 70\\ 55\\ 55\\ 65\\ 30\\ 55\\ 55\\ 30\\ 55\\ \end{array}$	21 59 36 69 24 13 24 54 26 26 35 26 	21 27 38 95 6 4 18 44 18 54 38 31 101 29 16	 43 160 17 7 29 23 31 63 21 11 229 57 42	EW EW EW EW EW EW EW EW EW EW 	++ + + ++++++ ++++ ++++		P C P C C C P C C C C P C C C P C C C C C P C C C C C P C	" " " " " " " " " " " " " " " " " " "	13 20 13 20 21 50 15 0 16 5 10 45 11 30 16 45 16 15 13 45 16 15 13 45 16 15 13 45 10 30 13 20 14 50 12 50	$\begin{array}{c} 65\\ 45\\ 20\\ 40\\ 60\\ 30\\ 40\\ 70\\ 50\\ 15\\ 45\\ 30\\ 60\\ 55\\ \end{array}$	43 13 26 86 20 68 19 26 26 26 40 28 18 29 22 57	$ \begin{array}{r} 16\\ 16\\ 30\\ 75\\ 18\\ 30\\ 13\\ 20\\ 24\\ 34\\ 27\\ 5\\ 10\\ 19\\ 35 \end{array} $	$\begin{array}{c} 30\\ 14\\ 47\\ 166\\ 15\\ 37\\ 24\\ 26\\ 34\\ 38\\ 20\\ 22\\ 29\\ 33\\ 70\\ \end{array}$	EW WE EW EW EW WE EW WE EW EW EW EW EW E	++++ ++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	D P C C P C C P C C C C C C C C C C P C C C P C C P C C C P C C P C C C P C C C P C C C P C C C P C C C P C C C P C C C P C C C P C C C P C C C C P C
May 4 , 12 , 16 , 17 , 19 , 21 , 26 , 29 , 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 60 70 40 55 50 40 70 70 70 50	$35 \\ 113 \\ 45 \\ 35 \\ 68 \\ 28 \\ 35 \\ 36 \\ 20 \\ 69 \\ 42$	27 67 52 12 62 32 21 29 45 40 16	24 94 69 18 108 40 35 36 42 99 18	EW EW EW EW EW EW EW EW EW	+ + + + + + + + + + + + + + + + +	+	C P C P C P P C P P C P P C	Aug. 1 ,, 2 ,, 3 ,, 6 ,, 7 ,, 8 ,, 10 ,, 11 ,, 11 ,, 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 55\\25\\60\\75\\100\\30\\30\\30\\65\\30\\40\\00\end{array} $	23 31 39 223 99 10 19 18 54 9 9 9	34 67 41 181 30 13 26 12 30 15 12 12	34 77 70 77 13 28 13 61 19 17 39	WE EW EW WE WE WE EW EW			C C C C P P C C C C D P
June 2 ,, 5 ,, 10 ,, 12 ,, 13 ,, 13 ,, 14	$\begin{array}{c} 7 & 20 \\ 14 & 45 \\ 12 & 45 \\ 10 & 45 \\ 12 & 30 \\ 13 & 40 \\ 14 & 20 \\ 15 & 0 \end{array}$	60 40 65 30 30 20 40 60	$ \begin{array}{r} 64\\ 12\\ 30\\ 40\\ 16\\ 13\\ 42\\ 46\\ \end{array} $	95 19 47 16 13 19 26 75	87 31 82 44 14 14 32 119	EW EW EW EW WEW EW	+	+++++++++++++++++++++++++++++++++++++++	AC P P AC P D C C	", 10 ", 19 ", 25 ", 26 ", 28 ", 31	12 40 9 20 12 10 9 40 13 35 4 25 12 45 4 30 15 15	25 40 40 45 75 60 45 55	54 38 58 15 33 33 45 27	62 44 58 27 66 21 60 40	64 70 29 35 77 31 51 52	EW EW EW WE EW WE WE	+ + + + + + + + + + + + + + + + + + + +	- + + + + + + + + + + + + + + + + + + +	C P C P AC C P C
, 15 , 17 , 23 , 24 , 26	15 10 18 0 12 30 12 55 14 0	35 50 90 45 90	17 45 86 35 43	18 32 63 31 20	21 43 91 32 48	WEW WE EW EW EW	+ + + +	+- ++ +- +-	C P C P P	Sept. 1 ,, 2 ,, 2	12 40 13 15 12 0 12 45	30 35 35 45	14 21 22 16	10 15 6 15	25 33 17 30	EW EW EW EW	++	+	P P P AC

344

TABLE LXXIV—continued.

Cape Denison: Characteristics of Regular Bays.

<u> </u>	Time	Dura	. 1	Range	3.	ľ)irection Movemen	of t.	Rota-		Time	Dura		Range	9.)irection fovemen	of t.	Rota-
Date.	of Climax.	tion.	D	н	z	D	н	z	or Phase.	Date.	of Climax.	tion.	D	н	z	D.	н	z	or Phase.
1912. Sept. 2 " 3 " 7 " 7 " 7 " 8 " 9 " 10 " 11 " 12 " 13 " 14 " 16 " 22 " 27 " 28	$ \begin{array}{c} h. m. \\ 14 20 \\ 13 45 \\ 3 0 \\ 11 0 \\ 17 40 \\ 18 40 \\ 6 20 \\ 11 35 \\ 11 45 \\ 19 15 \\ 10 50 \\ 13 15 \\ 5 15 \\ 15 50 \\ 11 5 \\ 12 0 \\ 11 50 \\ 16 30 \\ 13 10 \\ \end{array} $	mins. 45 25 45 75 45 50 50 50 40 25 60 35 40 70 85 35 40 45	Y 16 7 53 82 21 26 42 48 16 23 71 19 35 24 17 61 47 31 10	γ 17 13 67 42 20 28 52 20 13 37 37 34 81 30 40 34 13 13	γ 222 16 71 95 30 30 24 59 16 17 16 17 16 48 34 59 19 36 63 33 29 16	WE EW WE EW EW EW EW EW EW EW EW EW EW E		+++++++++++++++++++++++++++++++++++++++	D D P AC C P C AC D P C P D C P D C P D C P D D C P D D D P C D D P C D D P C C D D P C D D P C D D D D	1913. Feb. 1 "4", 4 5", 7 "7", 10 " "10" "10" "10" "10" "10" "11" "14" "21" "23" "25" "26" "28" "10" "28" "10"	h. m. 9 10 13 50 14 20 12 35 23 45 18 30 20 40 20 50 12 55 14 50 13 45 13 40 14 40 12 0 14 55 12 20 14 55 12 20 12 45 13 15 13 45	, mins. 55 70 75 50 40 25 20 20 20 20 40 75 75 35 75 35 75 30 40 30 55	Y 31 19 28 66 25 13 18 17 13 86 15 18 51 29 10 20 8 17	Y 28 22 30 25 49 24 20 21 20 24 192 20 27 57 57 57 57 57 13 10 25	y 33 26 43 50 61 28 19 26 35 33 211 35 50 85 59 7 20 15 34	EW WE EW EW EW EW EW WE EW WE EW WE EW WE EW WE EW	+ + +	+ + + + + + + + + + + + + + + + + + + +	AC P C AC AC AC AC AC C C C C C C C C C
Oct. 4 , 5 , 6 , 7 , 7 , 9 , 10 , 13 , 15 , 16 , 17 , 19 , 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 90\\ 30\\ 40\\ 50\\ 60\\ 40\\ 70\\ 65\\ 70\\ 65\\ 40\\ 55\\ 105\\ 90\\ 80\\ 50\\ 25\\ 60\\ 40\\ 35\\ 35\\ 50\\ \end{array}$	40 17 23 44 25 25 30 64 54 11 45 91 82 48 82 54 33 42 23	44 22 28 27 42 11 17 17 57 24 19 22 54 54 34 37 28 26 50 18 27	$\begin{array}{c} 75\\ 14\\ 38\\ 48\\ 65\\ 18\\ 28\\ 36\\ 58\\ 24\\ 41\\ 63\\ 170\\ 81\\ 74\\ 52\\ 41\\ 48\\ 30\\ 28\\ 22\end{array}$	EW EW EW EW EW EW EW EW EW EW EW EW EW E	+++++++++++++++++++++++++++++++++++++++	· · · · · · · · · · · · · · · · · · ·	C AC AC P P D D C P D D C C P P C C C P P C C C P P D D D D	Mar. 5 ", 6 ", 8 ", 9 ", 10 ", 18 ", 19 ", 21 ", 22 ", 25 ", 26 ", 28 ", 31 ", "	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 30\\ 40\\ 35\\ 45\\ 35\\ 60\\ 50\\ 60\\ 80\\ 70\\ 75\\ 75\\ 45\\ 20\\ 60\\ 40\\ 90\\ 30\\ 65\\ 55\\ \end{array}$	20 21 78 26 25 25 33 40 17 50 20 12 38 90 43 33 21 63 59	8 23 84 43 23 15 15 44 30 40 25 35 43 20 21 44 69 30 31 22 22 48	20 41 1117 61 34 22 23 87 41 46 61 29 24 34 50 61 29 24 17 34 33 131 82	EW EW EW EW EW EW EW EW EW EW EW EW EW E	- + + + + +	++ +++++++++++ ++++++++++++++++++++++++	PPCCPPCCCCPPCCCCPPCCCCPPCCC
,, 30 ,, 31 ,, 6 ,, 7	3 40 13 20 13 0 13 50 19 20 1 25 19 15	$ \begin{array}{r} 45 \\ 65 \\ 60 \\ 60 \\ 20 \\ 25 \\ \end{array} $	57 53 31 26 31 97 34	117 54 34 40 40 84 31	30 81 55 52 47 130 34	EW EW EW EW EW WE	+ + - + - + + - + + - + - + + - + + - +	+ + - + - + - + - + - + - + - + - +	P P C C P P	April 4 ,, 8 ,, 13 ,, 15 ,, 16 ,,	14 15 16 10 14 30 13 15 9 15 15 0 21 45 23 30	55 45 40 65 70 50 65 25	14 26 13 26 51 43 25 30	29 15 23 29 29 30 31 52	35 27 29 53 17 29 38 82	WE EW EW EW EW WE EW	+++++++++++++++++++++++++++++++++++++++	+ + + - + - + - + - + - + - + -	P AC C C C C AC AC
", 8 ", 17 ", 23 ", 25 ", 26 ", 27	19 45 11 45 20 15 9 0 11 45 12 50 13 40 12 20	40 30 100 60 25 40 25 40	36 17 124 150 11 15 25 26	34 24 134 67 12 28 19 30	85 30 159 13 30 30 34	WE EW EW EW EW EW EW	-+	-+	P P AC P AC P AC AC	,, 17 ,, 24 ,, 25 ,, 26 ,, 27 ,, 27	17 40 21 20 12 15 14 0 13 33 14 30 13 50	50 65 45 20 60 75 30	32 40 40 12 29 38 10	27 25 14 14 40 35 19	39 50 35 16 44 56 22	EW WE EW EW EW EW	-+ + + 	-+ -+	C P D C C C
,, 28 ,, 30 1913. Jan. 17 ,, 27 ,, 28	21 45 13 5 15 45 3 20 16 10	50 50 90 50 25	64 33 42 58 31	81 26 38 89 23	78 44 21 124 45	EW EW WE WE	++	+ + ++	AC C C C P	May 2 ,, 3 ,, 4 ,, 5 ,, 7 ,, 8	11 40 11 15 13 5 7 30 23 55 1 45 .12 20	·50 50 50 45 115 60 70	39 50 64 91 147 121 30	19 53 58 58 115 83 22	37 109 87 46 101 125 33	EW EW EW WE WE EW	+++++++++++++++++++++++++++++++++++++++	+ + + - + - + + - + + - +	P P C P P AC C

11

345

TABLE LXXIV—continued.

Cape	Denison :	Cha	racteristics	of	Regular	Bays.
------	-----------	-----	--------------	----	---------	-------

<u> </u>	Date. Time of Climax.	Durne]	Ranges	J.	I I)irection fovemen	of t.	Rota-		Time	Dura	. 1	Range	3.	. I)irection fovemen	of t.	Rota-
Date.	of Climax.	tion.	D	н	z	D	н	z .	or Phase.	Date.	of Climax.	tion.	D	н	·z	D	н	. z	or Phase
1913. May 8 "13" 15" 16" 22" 24" 22" 24" 25" 26" 27" 29" 30" June 2 "30" June 2 "30" June 2 "30" June 2 "30" June 2 "30" 11" "11" 14" "15" 16" "19" 19" 19" 19" 19" 19" 19" 1	h, m. 13 30 3 40 9 15 5 55 10 55 10 55 13 0 13 30 14 30 12 15 13 40 10 30 14 30 12 15 13 40 14 30 12 15 13 40 14 0 7 15 4 0 20 20 14 45 13 0 9 15 13 0 14 30 14 30 14 10 7 15 13 0 14 0 20 20 10 5 13 0 14 30 14 30 14 30 14 30 14 30 14 15 13 0 14 30 14 30 15 5 13 0 14 30 14 30 14 30 14 30 14 30 15 15 13 0 14 30 14 15 13 0 14 30 14 30 15 15 13 0 14 30 14 15 13 0 14 30 14 15 13 0 14 20 10 30 14 30 14 15 13 0 14 30 14 15 13 0 14 30 14 15 13 0 14 15 13 0 14 15 13 0 14 15 13 0 14 15 13 0 14 15 13 0 14 25 13 0 14 45 13 0 13 0 14 45 13 0 14 45 14 0 12 15 16 20 10 45 10	mins. 55 30 60 40 90 45 110 35 40 50 75 35 35 35 30 45 40 30 30 30 30 35 35 35 35 35 35 35 35 35 35	Y 17 15 20 13 46 438 25 24 12 36 81 74 41 25 32 51 18 20 6 15 29 19 12 21 11	γ 24 27 18 35 11 17 35 12 30 13 36 297 21 23 42 75 36 27 75 36 27 10 24 22 10 24 22 10 24 22 97 21 23 397 21 23 397 21 23 397 21 23 397 24 24 27 27 24 27 27 27 27 27 27 27 27 27 27 27 27 27	γ 46 33 14 16 19 5 26 23 17 33 16 23 17 33 16 87 80 41 28 85 45 33 22 28 10 82 52 28 10 82 52 28 10 87 27 7 37 4	EW WE EW EW EW EW EW EW EW EW EW EW EW E		++++++ ++++++ ++++++ +++++++ +++++++ +++++++ +++++++ +++++++	PAC CCPPCCCPPCCCPPPCCCPPPCCCPPPAC AC	1913. June , 20 , 23 , 24 , 30 , 30 , 5 , 5 , 8 , 11 , 13 , 14 , 17 , 18 , 24 , 26 , 28 , 31 , 31 , 31 , 6	$ \begin{array}{c} h. \ m. \\ 21 \ 25 \\ 13 \ 35 \\ 12 \ 30 \\ 4 \ 5 \\ 10 \ 45 \\ 9 \ 20 \\ 14 \ 0 \\ 13 \ 10 \\ 9 \ 50 \\ 13 \ 10 \\ 15 \ 10 \\ 20 \ 15 \\ 20 \ 15 \\ 20 \ 15 \\ 20 \ 15 \\ 20 \ 15 \\ 20 \ 15 \\ 20 \ 15 \\ 20 \ 15 \\ 20 \ 15 \\ 20 \ 10 \\ 10 \ 25 \ 10 \ 25 \\ 10 \ 25 \ 10 \ 25 \\ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 25 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$	mins. 90 45 100 60 70 60 50 30 30 45 50 40 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 50 40 50 50 40 50 50 40 50 50 40 50 50 50 50 40 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} \gamma \\ 104 \\ 12 \\ 43 \\ 17 \\ 23 \\ 31 \\ 19 \\ 21 \\ 55 \\ 12 \\ 19 \\ 25 \\ 34 \\ 14 \\ 23 \\ 41 \\ 39 \\ 15 \\ 24 \\ 19 \\ 15 \\ 10 \\ 16 \\ 18 \\ 13 \\ 15 \\ 35 \end{array}$	γ 27 10 14 14 18 35 24 33 37 20 11 13 26 15 17 38 23 27 17 35 28 15 13 15 13 15 13 18 15 15 18	Y 80 12 38 56 15 21 48 26 27 18 21 48 21 48 19 7 36 23 11 10 11 16 11	WE EW EW EW EW EW EW EW EW EW EW EW EW E	++++++ +++ +++ ++++ +++++ +++++ ++++	++++++++++++++++++++++++++++++++++++++	PCDCPCD PCCPCD PCCPACCCPDD ACCCCPDD ACCCCPCACC ACCCPPCACCCPPCACCACCCPPC

TABLE LXXV.

		Dura		Range	• •	Dire	ection	a of Mov	ement.	Rota-	
Date.	Climax.	tion.	D	н	z	D	<u> </u>	Ħ	z	tion or Phase.	Notes.
1912. April 9	h.m. 05	mins. 20	γ 102) 122		EW	+		, + ,	P	Oscillation
·, 17	9 45	90	108	103	74	EW, EW	<u> </u>	+ '	- +	C	Z max. 40 mins. before H.
,, 30 May 5	11 50	90	107	45	208	EW EW OSC	+ -	- + -	- + + -	- C	Double bay. H and Z not in phase.
6	16 0	60	440	_		1.11, 050			+		Day in D at least double. Highly oscillatory and irregular in all elements
,, 14	12 15	70	45	84	106	EW, EW	+ -	- + -	- + _.	C	Bay in Z: H and Z largely unlike: central part
,, 31	18 30	25	61	54	51	EW,	+		+	P	A symmetrical bay : in disturbed time.
June 1 ,, 8 ,, 8	11 30 12 45 13 45	35 35 90	135 104	198 47	212 115	EW	+.	, ,	+	P	Irregular oscillatory bay : H and Z partly opposite A symmetrical bay followed by active disturbance Highly oscillatory : irregular : very large.
" 9	12 20	60		-		11/17					Highly oscillatory : irregular.
,, 12 ,, 18	12 15	70	41 35	60 56	93	WEW,	+	++ 		P	Sharp oscillation. Regular bay in H and Z: D oscillatory.
,, 23	19 40	90	35.	5	57	EW	. +-	·	+	AC	Bay.
	1	1				1			1		

TABLE LXXV—continued.

Disturbances of Short Period Other Than Regular Bays.

è

í.

ĩp

		Dura-		Range.		·Dire	ection of Move	ement.	Rota-	N-4
Date.	Climax.	tion.	D	н	z	D	н	z	Phase.	Notes.
1912. July 4 ,, 5 ,, 6 ,, 8 ,, 12 ,, 12 ,, 12 ,, 12 ,, 12 ,, 12 ,, 12 ,, 12 ,, 27	h. m. 13 15 21 30 0 40 12 0 14 10 3 30 3 45 13 30 3 20 16 0	mins. 75 45 30 120 60 15 15 15 35 25 70	$ \begin{array}{r} $	$ \begin{array}{c} \gamma \\ 86 \\ 62 \\ 74 \\ - \\ 146 \\ 47 \\ 40 \\ 26 \\ 28 \\ 48 \\ \end{array} $	$ \begin{array}{c} \gamma \\ 199 \\ 124 \\ 90 \\ \\ 232 \\ 39 \\ 11 \\ 25 \\ 11 \\ 70 \\ \end{array} $	EW WE EW, OSC — EW EW	+ - + + + + + + +	+ - + + + + + + +	C C AC P C P	H irregular : ends indefinite in storm. Bay during larger disturbance. Bay during large disturbance. Irregular, large, oscillatory : some trace lost. Double bay in H, single in Z. D and H oscillatory. Short bay : H and Z in phase. Short bay. Irregular bay : part of larger disturbance : H and Z mainly opposite.
Aug. 2 ,, 3 ,, -22 ,, 23	15 0 0 55 1 10 15 40 14 40	40 15 15 60 60	96 103 91	188 108 111 128 416	109 86 220	OSC WE WE WE	+ + + 0SC	osc + ++ +	P P	 Very oscillatory : D and Z hard to follow. Two sharp oscillations in sequence. Closely in phase. Bay in Z but oscillatory in all elements especially D and Z. Highly oscillatory : ranges large but hard to measure.
Sept. 3 ,, 4 ,, 4 ,, 4 ,, 7 ,, 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 30 60 90 10 18	12 54 99 101 89	94 65 29 34 81 113	59 126 75 46 89 93	EW WE EW EW EW	+ + -+- + + +	+ + + +	$\left. \begin{matrix} D \\ C \\ D \\ C \end{matrix} \right\}$	Suspected S.C. : double oscillation in D. Bay nearly in phase : during disturbed time. Double bay in D and Z. H irregular. Conspicuous oscillation. D too faint : prominent oscillation : H and Z in phase.
,, 17 ,, 17 ,, 17 ,, 18 ,, 23 ,, 30 ,, 30	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	30 55 50 60 8 75 10	42 68 74 117 61 33 40	40 48 60 269 97 21 94	44 53 70 229 74 45 81	WE WE OSC EW EW	+ + OSC + + -+	+ + + + + +	$ \left. \begin{array}{c} P \\ C \\ C \\ D \\ P \\ D \\ P \\ P \end{array} \right\} $	 Three bays in immediate sequence : H and Z remain remarkably alike for some 10 bay-like changes. All very oscillatory near 12h : Z bay-like. Prominent oscillation : disturbed time. Bay slight in H : ends poorly defined. S.C. : second movement the larger in H and Z.
Oct. 14 ,, 14 ,, 14 ,, 14 ,, 14 ,, 15	10 15 11 45 13 10 14 15 5 45	100 60 50 55 6	64 50 78 69 66	27 40 39 50 60	38 62 74 81 47	EW EW EW EW WE	+ + + + - +	+ + + + - +	$\left. \begin{matrix} \mathbf{D} \\ \mathbf{D} \\ \mathbf{P} \\ \mathbf{C} \\ \mathbf{P} \end{matrix} \right\}$	Series of bays superposed on gradual changes, especially in D : ends rather indefinite. Sharp oscillation, especially prominent in D.
,, 16 ,, 18 ,, 20	10 10 10 30 9 55 17 20	20 45 40 10	104 79 13 10	77 47 19 27	117 85 30 19	EW EW EW WE	+ + + - +	+ + +	P D P P	Bay in D and Z rather part of a bay. Bay D and Z part of a bay : H irregular. Small bay. S.C.: first movement the smaller in H and Z but larger in D.
Nov. 8 ,, 11 ,, 25	12 45 20 10 12 15 23 45	100 40 70 7	36 35 76 68	58 31 57 65	67 89 98 74	EW WE EW EW	+ + +	+ + + +	D AC P P	Bay. Bay: D not quite in phase. Bay: ends in D arbitrary. Sharp oscillation: 2nd movement the larger.
1913. Jan. 13 ,, 27 ,, 29	23 50 24 0 23 30	10 10 9	99 55 41	60 32 44	139 76 55	WEW WE EW	+ - + + - +	++	D P P	Three successive swings : second movement largest. Like S.C. : D movement continued 1½ mins. longer. Like S.C. (9-minute range taken in all elements).
Feb. 11	20 20	. 12	19	30	44	EW	+	+	P	Oscillation : D shorter time.
Mar. 10 ,, 14 ,, 20 ,, 23	23 35 23 45 4 30 20 30 16 0	12 12 6 20 85	47 26 39 36 68	30 26 52 35 69	71 49 34 42 126 -	WE WE EW WEW	+ + + + +	+ + + + +	$\left. \begin{array}{c} P \\ P \\ D \\ AC \\ C \end{array} \right\}$	Double oscillation. Oscillation during disturbance. Oscillation. Bay in H and Z: D irregular.
April 1 ,, 10	14 30 10 0	90 55	41 117	44 66	53 109	WE EW	+ + +	+ — + —	D	Bay. Part of larger movements : D irregular. Deep bay in D and Z : H irregular : complex.

TABLE LXXV—continued.

	<u> </u>	Climax Dura- Range.	Range.		Dire	ction of Move	ment.	Rota-			
Dat	te.	Climax.	tion,	D	н	z	D	н	Z	tion or Phase.	Notes.
19 April	13. 16	h. m. 13 0	miņs. 140	ý.	Ý 67	Υ 120	EW	+	+	с	Bay: H irregular: in D only part of larger
,,	29	2 5	6	58	44	82	EW	+ ·	÷	Р	Oscillation like S.C. : H and Z opposite.
May ,,	6	8 50 13 0 16 15	30 45 60	-		-				D D	Oscillatory. Highly oscillatory. Highly oscillatory.
June "	9 14 19	0 0 9 45 13 30	15 30 90	52 15 50	32 14 92	49 111	EWE EW EW, OSC	+ + + +, OSC	·+ + +	Р	Oscillations fairly in phase. Bay D and H in phase but poorly defined. Bay: H and Z not like: large oscillations in D and H
,, ,, ,,	21 25 26 29	15 0 13 40 14 0 10 45	60 60 180 50	34 24 71 31	108 8 91 20	66 22 127 16	OSC EW OSC EW	$\begin{vmatrix} -+\\ -+\\ -+\\ + \end{vmatrix}$ osc	OSC + + - +	D D P	Bay in H: D and Z irregular. Bay in D: H hardly disturbed. Oscillation in D and H: H and Z dissimilar. Bay: Z movement trifling.
July "	3 7 12 13	3 -15 13 50 13 30 13 30	15 50 120 60	54 26 112 82	84 44 110 203	70 52 109	WE EW, EW EW WE	+ + ++	+- + OSC	P D	Sharp oscillation. Irregular movement : H and Z opposite. Bay : Z very faint : H and Z partly unlike. Confused. Active oscillation : slight bay in H and D
,, ,,	15 16	14 40 14 35 15 20	$\left. \right\} 60$	≮ 102 ≮ 74	≮ 199 ≮ 164	≮ 172	WE EW		++		Bay in H but highly oscillatory. Two bays in H, first very short : highly oscil-
"	20	6 30	10	41	27		WE	+-		C	Oscillation like S.C. : D in advance of H.
Aug.	`4 7	22 20 14 15	25 100	38 68	41 62	37 120	EWE EW	+ +	+ - + + -	С	Three movements approximately in phase. Bay in D and Z and fairly in phase : H not in phase.

Disturbances of Short Period Other Than Regular Bays.

§2.—Types of Short Period Disturbance.

Of the numerous generic types to which short period disturbance may conform that characterised as the "special type" in the discussions of the magnetic results from the two British Antarctic Expeditions of 1901–04 and 1910–13 was singularly absent in the records from Cape Denison. In good cases of the special type of disturbance declination (or east force), and horizontal force usually took a bay-like form increasing and decreasing roughly in phase and symmetrical in the to-and-fro movements. At the same time the vertical component vector increased slightly at first, decreased at the same rate as the change in D or H, and then returned to normal by a more prolonged and gradual rise. No distinct case of such a disturbance was detected in the records from Cape Denison (see also Chapter II, §8).

On the other hand, bays were more than usually frequent, as Table LXXIV shows. In marked contrast to the customary poorer definition of the bay movement in the vertical component of the disturbing field at other stations, the Z trace at Cape Denison usually approached most nearly the ideal increase to a maximum and symmetrically executed decrease to the normal undeviated position. Because of their frequency and, in a large percentage of all occurrences, their approach to regularity, a special study has been made of bays using as basis the data from a fresh examination of the magnetograms made in every case of a regular bay.

> 1. Type of bay, direction of changes of the components in the disturbing field to which the bay is attributable.

2. Relative intensity of the vector components in the various bay types.

3. Distribution of occurrence of bays in time.

4. Direction of rotation of the disturbing vector responsible for some bays.

§3.—BAY TYPES.

It will assist in brevity of description if the directions of movements are characterised with the force components always in the same order, D, H, and Z, and without specification of the element on each occasion. For example: EW, + —, + — stands for that type of bay in which the vector component transverse to the meridian has increased first to the east, reached a maximum in that direction and then been reversed to bring the field finally to its normal value; the component in the meridian has been directed northward in the first phase then withdrawn and the component in the vertical direction acting on the north pole of the magnet has increased, then decreased, *i.e.*, the dip at Cape Denison has decreased then returned to normal. Using similar representations for the other varieties of component changes in the disturbances, examination of Table LXXIV shows that :—

- 1. The type of bay EW, + -, + is the commonest type. 54 per cent. of all tabulated bays have their movements so described.
- 2. 89 per cent. of the 267 bays belong to one of the four classes, EW, + -, + -, EW, +, +, WE, + -, + -, WE +, +, that is, with the adopted significance of + and for H and Z changes, the two components in the meridian plane change together in the two phases of the bay movement and, in general, they are fairly in phase.
- 3. No bay of type EW (or WE) + -, + was detected.
- 4. Only six cases of the type EW, +, + —, and one case of WE, +, + —, were sufficiently clear for tabulation.

Hence, combining the results in 3 and 4, out of the 244 (= 267 - 23) most regular bays which are complete in all three components and which have not been described as having a double movement in any component, only seven unquestionably had H and Z simultaneously changing in opposite directions in each of the two phases. The 23 bays which are excluded from this classification are lacking in registration of either D or Z or have a compound movement in one component.

* 64550—B

§4.—Relative Intensity of the Vector Components.

(a) That there are systematic changes in the relative intensity of the components of the disturbance vector from type to type is made clear by Table LXXVI which summarises the results of an analysis of the 267 bay movements of Table LXXIV. The Table gives the mean range in each component for the various classes of bays. Results for 1912 and 1913 are given separately as well as a general mean for all tabulated bays of each class. The number of bays contributing to each set of means is shown separately.

		Class	I.			Class	s II,			Class	111.			Class	IV.	•
	D	н	z	No. of Bays.	D ·	н	z	No. of Bays.	D	н	z	No. of Bays.	D	н	z	No. of Bays.
Direction of Change	EW	+	+		EW	+	-+		WE	+	+ -		WE	-+	-+	
Mean Range 1912 9 1913 Both Years	36 27 33	32 26 30	49 40 45	84 59 143	55 27 38	55 - 26 - 37	$ \begin{array}{r} 36 \\ 19 \\ 25 \end{array} $	11 19 30	39 25 32	34 35 35	33 41 38	15 18 33	38 50 45	37 45 41	46 58 53	14 17 31
			Class	v. '	•				Class VI	[.				•	<u> </u>	<u> </u>
		D	I	a	z ²	No. of Bays.	-	p´	н	z	No. Baj	of ys.	Uncla	ssed.		No. of Bays.
Direction of Change	6 EW	+ 1 W	È -	+ +	-		EW	or WE	+ -	-+	-					
Mean Range 1912 1913		$56 \\ 51$	2		5	4 3					-	-				
Both Years	·	54	3	2 :	39	7					-	-				23

TABLE LXXVI.

Mean Range of Disturbing Force Components in Different Classes of Bay.

In the type EW, + —, + —, the range in Z is 43 per cent. greater than the mean of the ranges in the horizontal components and the excess is conspicuous in both contributing years. By contrast, the range in the vertical component in the type EW, — +, — + is only two-thirds of the mean of the other components, and the deficit is equally marked in both years. In the aggregate, bays in which the transverse vector increased first to W also had the vertical component stronger than either of the horizontal components, this feature being common to the two years separately in the class WE, — +, — +, but shown in 1913 alone, when the direction of change in the first phase was an increase in H and Z. In those cases in which H and Z were in opposite phase, EW (or WE) — +, + —, the noticeable feature is the relative smallness of the component along the meridian.

(b) It has been remarked elsewhere (vide *e.g.*, Chapter IX, Part II, Vol. I) that the decrease in magnetic activity from 1912 to 1913 at Cape Denison, as shown by the range of the inequalities or absolute daily range much exceeded the decrease to be anticipated from the mean Wulf-Wulfer sunspot numbers and, indeed, much exceeded the decrease in the magnetic activity of lower latitudes. This is borne out by the mean ranges for the three vector components derived from the two years separately in bay types EW + -, + -, EW - +, - +, and WE + -, + -, which, together, comprise 206 bays. Taking the average of the three component means as criterion, the mean bay range in these three types for the two years 1912 and 1913 are 39 γ and 31 γ , 49 γ and 24 γ , 35 γ and 34 γ respectively. An inferior development of bays, therefore, accompanied the diminished general activity.

§5.—DISTRIBUTION OF BAYS IN TIME.

(a) Annual Variation in Occurrence Frequency.

In addition to the approximate regularity and definiteness of movement in all components, the absence of large superposed perturbations and approach to coincidence of times of culmination in the components, and the criterion used in selecting the bays for Table LXXIV was the absence of appreciable disturbance in the hours immediately before and after the bay. An ideal bay is produced in an otherwise quiet time and suggests (simply) the approach and withdrawal of a current circuit accompanied, it may be, with a rotation of the current system about a vertical axis or the growth and decay of a current in a fixed or rotating direction. During periods of general disturbance, however, movements frequently developed which, if not produced by a similar mechanism to that of bays superposed on top of the general disturbance of the time, simulated the quiet time bay in its characteristic features. Hence, in order to maintain as impartial a selection as possible, those bay-like constituents of longer period disturbance were tabulated which conformed to the other criteria cited above and had not their symmetry seriously upset by superposed perturbations. In considering the reality of a seasonal or daily period in the frequency of occurrence of bays, it is necessary to know that such a procedure was adopted.

Any final decision as to a seasonal variation in the incidence of the bays of Table LXXIV is hard to come by. Since magnetic registration did not properly begin till April, 1912, March contributed only a few satisfactory traces and during December of the same year and part of January, 1913, the H and Z variometers worked indifferently well. Registration ceased early in August, 1913. There were also isolated occasions of partial failure of the magnetograph system at times when the remaining components indicated that bays were in progress. Therefore, although the largest number of bays are contributed by the months April to July, taking both years together, this apparent winter maximum owed its origin simply to the increased number of available days during the winter season. Judged by the percentage occurrence of bays on available days the increase from September to October and decrease to February suggests that a more complete and satisfactory registration during summer would have revealed a maximum then.

(b) Diurnal Variation.

On the assumption that the restricted definition of regular bays used in the selection did not overweight the contribution from that part of the day in which disturbance at Cape Denison is normally least conspicuous, an analysis of the times of climax of the selected bays of Table LXXIV should show up any tendency to a diurnal variation that may exist. On the ground that the resulting distribution in frequency and relative intensity of the component ranges justified the classification into types, the same mode of classification is also used in the analysis of their distribution in time. But since 237 of the bays belong to the first four types discussed above in which the vector change in H and Z is in the same direction in each of the two phases of the main movement and only seven bays have their changes described by EW (or WE), -+, +--, the second pair of algebraic signs representing the changes in the vertical force will be dispensed with, being merged with those representing the changes in H. Hence EW, + — stands for that class of bay in which the first phase is characterised by an increase of east force and an increase of both H and Z, and in the second phase these changes are reversed. Table LXXVII, in which the class of bay is specified by a Roman numeral and is that adopted in Table LXXVI, provides the results of the analysis.

TABLE LXXVII.

Frequency of Occurrence of Bays of Various Classes in Parts of the Day.

Class of Ba	ay.		Ι			11		,	·III			IV			v			VI	
Day Interval		 h. h. 7–11	h. h. 11-15	h. h. 15–7	h. h. 7–11	h. h. 11–15	h. h. 15–7	h. h. 7–11	h. h. 11–15	h. h. 15-7	h. h. 7–11	h. h. 11–15	h. h. 15–7	h. h. 7–11	h. h. 11–15	h. h. 15–7	h. h. 7–11	h. h. 11–16	h. h. 15-7
Frequency, 1912 1913 Both Years		 3 2 5	72 44 116	9 13 22	10 18 28	1 0 1	0 1 1	0 0 0	4 14 18	11 4 15	0 0 0	0 0 0	14 17 31	1 1 2	3 2 5	0 0 0		_	_

That most of the bays of type EW, + — tended to occur within a limited period centred about 22h. L.M.T. was already obvious during the process of tabulation. The division of the day into the three periods of Table LXXVII was designed to emphasise the tendency to concentration of this and the other types within limited intervals.

One hundred and sixteen out of 143 bays of the type EW, + — reached their climax within two hours of 13h. G.M.T. (22½h. L.M.T.); only 5 developed between 7h. and 11h. G.M.T. Of the remaining 22 occurring in the 16 hours, 15h.-7h. G.M.T., 18 had occurred before 23h. and of these 10 between 20h. and 22h. In contrast to this result, 28 of the 30 tabulated occurrences of bays of the type EW, — + culminated between 7h. and 11h. G.M.T. and only one of the 30 in the interval of four hours during which type EW, + — was especially prominent. Hence these two classes of bays not only differ (1) in the development of their vertical vector components and simultaneous directions of change of the components of force along the meridian and vertically downwards, and (2) their relative frequencies of occurrence, but also (3) in respect of their distributions throughout the day.

Bays of that class in which the initial change of transverse field is directed westward and is accompanied by a decrease of the forces directed along the meridian and vertically downwards are notable for their occurrence in precisely that part of the day when the previous two types are least common, viz., 15h.-7h. Within this period they show a preference for two sub-periods centred at 21h. and 4h. G.M.T.

Eighteen out of the 33 examples of class WE, + — reached a climax between 11h. and 15h. and of the remaining 15 in the interval between 15h. and 7h., 10 had occurred not later than 17h. G.M.T. Hence since the 18 between 11h. and 15h. were really restricted to the two hours preceding 15h. a better division of the day for the class WE, + — would be 13h.-17h. G.M.T., comprising as it does 28 of the 33 cases detected.

A comprehensive deduction is that bays in general show a distinct preference for the three G.M.T. hours centred at 13h. 30m., corresponding with the period of three hours centred at 23h. L.M.T. This preference is strongest for those bays in which the first phase in both H and Z is an increase and though more pronounced when the vector tranverse to the meridian is first directed to E, holds with a lag of $1\frac{1}{2}$ hours for the reverse direction. The mean time of maximum incidence corresponds with the time of most frequent occurrence of bright aurora at Cape Denison.

The two classes in which H and Z first decrease, on the other hand, are totally unrepresented during this period. For a first increase to E in declination the maximum incidence is within the hour ending 10h. G.M.T. $(19\frac{1}{2}h. L.M.T.)$ and for the class in which the increase to west accompanies the decrease in H and Z there is a more diffuse scatter with possible maxima from 2h. to 5h. G.M.T. and 19h. to 22h. G.M.T. This latter interval corresponding with a time centred at 6h. L.M.T. is synchronous with the maximum frequency of zenithal aurorae at Cape Denison.

§6.—DIRECTION OF ROTATION OF DISTURBANCE VECTORS IN BAYS.

At the same time at which the direction of change of the disturbance force components was noted, information was sought as to the simultaneity or otherwise of the turning points in the two horizontal components. From this combined information it could be decided whether the disturbing vector had rotated while producing the bay. For example, on March 28, 1912, centring about 17h. 15m. there was a bay movement in which the vector increased to the west and decreased along the meridian. The change from a decrease to increase in H set in before the reversal of D to the east, so that the disturbing force rotated in a clockwise direction. On the day following and culminating about 16h. another bay developed with the same sequence of change in D but with H first increasing then decreasing because the change from westerly to easterly increase in the transverse vector had taken place while H was yet increasing, the direction of rotation remained clockwise. In this way each of the 267 " regular " bays of Table LXXIV were examined. The letters in the final column of the table indicate whether the

bay is to be ascribed to a disturbing vector rotating clockwise (C) or anti-clockwise (AC); whether the horizontal components are approximately in phase (P) or, through some irregularity about the turning point, whether no decision as to the phase could be reached (D = doubtful). Owing to lack of declination trace three bays in April, 1912, could not be assigned to any class. Table LXXVIII summarises the results of the analysis.

TABLE LXXVIII.

Monthly A	Analysis of I	Direction	of Rotation	or Phase	Relations	of Horizontal
	Componen	ts of Dis	turbing For	ce in Reg	ular Bays.	,

ate training		·		h		Direction of	Rotation.		1: Devi			
•			101		Cloc	kwise.	Anti-Cl	ockwise.				
		ſ	1912.	1913.	1912.	1913.	1912.	1913.	1912.	1913.	1912.	1913.
January February March April May June July August September October November	···· ··· ···	···· ··· ··· ···	6 6 5 6 11 8 6	1 4 8 3 9 10 5 2	2 5 6 7 12 5 9 2	2 8 13 8 9 10 6 1	221355	7 1 3 3 1 6	1 1 2 1 5 4	1 2 2	3	
· Totals		•••	54	42	53.	57,.	18	21	14	5	3	· ,
Both Years	•••	•···	. 9	6	11	0	3	9	1	9	<u> </u>	3

A decision about the phase was reached in 245 out of the 264 possible cases; 19 were doubtful. After making allowance for parallactic errors between the components arising from the arrangement of the magnetographs, 96 of the 245 classified bays had the two horizontal components in phase. Of the remainder only one bay in every four, approximately, could be ascribed to a disturbing force system which rotated in an anti-clockwise direction. There is a slight tendency for the clockwise type of bay to appear most frequently in the Antarctic winter and for the anti-clockwise bays to be more common in the local summer but the material available makes such a deduction hazardous.

§7.—THE EIGHTY-EIGHT SHORT DISTURBANCES OF TABLE LXXV.

Though the 88 short disturbances listed in Table LXXV are necessarily of a much more heteorogeneous character than those in Table LXXIV, they may be roughly grouped as (1) bays, irregular, poorly defined or complex, (2) oscillations of the nature of sudden commencements, or (3) sharp oscillatory movements.

Many of the disturbances of the table might be assigned to any of these classes according to the component given special attention and therefore no attempt has been made to consider possible generic characteristics as in the case of regular bays. The brief descriptive notes against each occurrence sufficiently indicate the uncertainties which would accompany any such attempt.

354

Where the abbreviation "osc" appears in the column "Direction of movement" it may be assumed that no one movement in the rapid succession of oscillations in the element concerned during the interval specified under "duration" has been outstanding. The letters in the column "direction of rotation or phase" have the same significance as in Table LXXIV. In most of the cases where no letter appears the form of the disturbance has been too complex to permit of any decision as to phase differences between the horizontal components.

CHAPTER II.—COMPARISON OF SHORT PERIOD DISTURBANCES AT CAPE DENISON AND CAPE EVANS.

§8.—GENERAL FEATURES OF MAGNETIC REGISTRATION AT THE TWO STATIONS.

Table LXXIX is intended to serve as a basis of comparison for short period disturbances at Cape Denison and Cape Evans, excluding, however, solitary oscillations of a few minutes duration. Some of the disturbances considered occurred during long storms but in all cases there was something distinctive and suggestive of individuality at least at one of the stations. The Cape Denison curves formed the original basis for compiling the list, but the Cape Evans curves were also consulted and in many cases it was really their appearance which suggested the disturbance. In some cases altering the starting or ending time by 10 or 15 minutes would make a considerable difference to the relative disturbance as measured by the ranges at the two stations. The times were carefully chosen in all cases with a view to making the comparison as fair as possible. Still as the Cape Denison curves were the first considered it is not unlikely that more than a due share of occasions have been included in which the Cape Denison disturbance was the larger.

In practically all cases the disturbance was mainly of the "bay" type, in which the element increases continuously to a maximum or decreases to a minimum and then returns approximately to its original value. But in the Antarctic shorter period oscillations were nearly always superposed, and in some of the cases in the table, the shorter period oscillations largely obscured the bay movement in one or more of the elements. This was true more especially of D at Cape Denison but sometimes it was still more true of H. As regards vertical force there was a curious difference between the stations. At Cape Evans Z¹ (to distinguish it from Z at Cape Denison) was seldom in step with the horizontal components. These latter, E¹ and N¹, often showed fairly regular bay movements with turning points simultaneous or nearly so in the two elements, and with the first and return movements approximately equal. But the changes in Z¹ were conspicuously unsymmetrical. Sometimes there was a short small initial fall of Z¹ during the commencing movement in E¹ and N¹, but long before the commencing movement in E¹ and N¹ ended the movement in Z¹ had become a rise. This rise usually continued after the reverse movements in E¹ and N¹ had set in. The final return of Z¹ to its original

value was usually more deliberate than the return movements in E^1 and N^1 and at the time when the bay movements in E^1 and N^1 had terminated Z^1 remained decidedly enhanced. At Cape Denison on the other hand, as indicated in the preceding chapter, Z behaved like the horizontal components. In fact on the whole it showed the closest approach to the ideal form of bay movement. Shorter period perturbations were seldom wholly absent but they were less in evidence than in H. When H gave a close approach to the ideal bay movement, the movements in H and Z were usually closely alike, sometimes extraordinarily alike.

TABLE LXXIX.

Short Period Disturbances at Cape Denison and Cape Evans.

Notation used :	Α	=	like.
	₿	÷	rather like.
	C	=	rather opposite.
	D	=	opposite.
	Е	=	uncertain.

O = Bay with oscillation. p = in phase. c = clockwise.ac = anticlockwise.

	Dete	 Ti	ime.	D	н	z			Z1	D	н	Z	н			Pl	hase	F	ay
	1912.	 From	То	Υ	Ϋ́	Υ	Υ.	Ŷ	Υ	and E ¹	and N ¹	and Z ¹	and Z	D	н	at C.D.	at C.E.	at C.D.	at C.1
April " " " " " " " " " " " " " " " " " " "	1 5 6 7 10 12 15 17 18 20 25 29 30	h. m. 9 300 10 20 15 10 12 40 8 50 9 25 7 35 9 0 10 15 8 30 9 30 12 30 13 10 12 20 13 10 12 20 11 20	h. m. 10 20 11 25 17 0 14 0 9 25 10 35 11 0 12 30 10 30 11 0 13 10 14 30 13 30 13 15 12 40	21 59 105 81 29 106 206 54 166 108 113 27 26 	$\begin{array}{c} 21 \\ 27 \\ 61 \\ 95 \\ 21 \\ 64 \\ 103^{\circ} \\ 44 \\ 100 \\ 109 \\ 126 \\ 18 \\ 54 \\ 106 \\ 16 \\ 44 \end{array}$	$\begin{array}{c}\\ -63\\ 160\\ 22\\ 53\\ 110\\ 23\\ 286\\ 74\\ 114\\ 34\\ 63\\ 231\\ 44\\ 62\\ \end{array}$	$\begin{array}{c} 25\\ 26\\ 82\\ 60\\ 52\\ 109\\ 161\\ 25\\ 110\\ 150\\ 105\\ 20\\ 32\\ 81\\ 23\\ 54 \end{array}$	$\begin{array}{c} 34\\ 55\\ 63\\ 48\\ 41\\ 123\\ 211\\ 61\\ 147\\ 91\\ 144\\ 8\\ 20\\ 65\\ 27\\ 66\end{array}$	$15 \\ 10 \\ 18 \\ 16 \\ 29 \\ 44 \\ 123 \\ 18 \\ 44 \\ 107 \\ 79 \\ 4 \\ 10 \\ 16 \\ 12 \\ 20$	A B D A A A A A A C D D D D	D D B A D D D A D E E E A A D	EEBBAEDBEEEB	A A B E C A E B B A A A A E	EW EW EW EW EW EW EW EW EW EW EW EW EW E	+++ ++++++++++++++++++++++++++++++	e e b b b b b c c b b c c b b c c c c c c c c c c c c c c c c c c c c	p c c p c p c c c c c c c c c c c c c c	R R R R R R R R R R R R R R R R R R R	RRIRRIRRI RRIRRI RRI RR R R R
May , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	4 5 6 7 10 12 12 12 13 13 14 15 16 17 19 21 21 26 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 45\\ 223\\ 115\\ 127\\ 132\\ 31\\ 171\\ 113\\ 163\\ 193\\ 213\\ 48\\ 61\\ 45\\ 74\\ 28\\ 95\\ 35\\ 36\\ 20\\ 15\\ 69\\ 84\\ \end{array}$	$\begin{array}{c} 28\\\\ 274\\ 68\\ 146\\ 9\\ 109\\ 67\\ 86\\ 171\\ 167\\ 84\\ 113\\ 52\\ 28\\ 21\\ 32\\ 28\\ 21\\ 32\\ 28\\ 21\\ 32\\ 45\\ 20\\ 40\\ 47\\ \end{array}$	$\begin{array}{c} 27\\ 306\\ 218\\ 151\\ 215\\ 11\\ 47\\ 194\\ 169\\ 230\\ 245\\ 109\\ 130\\ 69\\ 108\\ 40\\ 60\\ 35\\ 44\\ 28\\ 21\\ 99\\ 127\\ \end{array}$	$\begin{array}{c} 11\\ 258\\ 105\\ 48\\ 56\\ 20\\ 173\\ 84\\ 174\\ 187\\ 217\\ 39\\ 46\\ 47\\ 40\\ 25\\ 53\\ 18\\ 21\\ 50\\ 53\\ 38\\ 78\end{array}$	$\begin{array}{c} 14\\ 396\\ 50\\ 55\\ 90\\ 21\\ 106\\ 95\\ 90\\ 222\\ 147\\ 21\\ 58\\ 31\\ 43\\ 14\\ 61\\ 14\\ 27\\ 49\\ 29\\ 55\\ 34\\ \end{array}$	$\begin{array}{c} 8\\ 250\\ 48\\ 16\\ 40\\ 5\\ 58\\ 22\\ 35\\ 822\\ 36\\ 22\\ 31\\ 16\\ 9\\ 7\\ 30\\ 4\\ 10\\ 37\\ 25\\ 17\\ 38\end{array}$	EE A BE DA DA DA AE BD DD A C DA B A A	E E C E D A A A D E C B A B B B B D A A A	E B C E A E E B D D A D D E A E B E A B C B A	A E E E E E A A A E C C A A A A A A A A	EW EW, O EW, O EW, O EW EW EW EW EW, O EW, O EW, O EW EW EW EW EW EW EW EW EW EW EW EW	+ 0 +++++++,0 ++++++++++++++++++++++++	c p p p p p	c c p c p c c p c c c	I I I I I I I I I I I I I I I I I I I	I I I I R R R I I I R I I I R R R I I I R R R I I I R R R I I I I R R R I I I I R R R I I I R R R I I I R R R I
June "	1 1 2 3	 7 30 10 30 6 50 5 0	10 30 12 30 8 0 8 0	78 145 64 92	65 202 95 156	63 296 87 134	165 120 176 195	78 92 103 79	95 49 150 112	A D B A	E B C A	E E D E	B E A	EW EW, O EW EW	+ -, 0 - + - +	P c	p	I I I I	I I R J

356

TABLE LXXIX—continued.

										L				T					
Data		Ti	me.	D	H	z	E	N	Z ¹	D	н	z	н		.	. Pi	nase -	В	ay
1912.		From	То	Y	Y	Ŷ	Υ	Υ	Ŷ	and E ¹	and N^1	and Z ¹	and Z	D	н	at C.D.	at C.E.	at C.D.	at C.E.
8 8 9 9 10 10 13 13 14 14 15 - 17	· · · · · · · · · · · · · · · · · · ·	h. m. 6 30 12 30 19 0 2 0 11 30 14 30 22 0 6 0 14 0 4 0 4 0 14 40 7 0 17 20	h. m. 8 0 14 30 22 0 3 0 13 0 16 0 18 30 7 0 15 0 6 0 16 0 16 0 18 20 16 0 18 20	$\begin{array}{c} 46\\ 122\\ 169\\ 67\\ 178\\ 142\\ 158\\ 102\\ 17\\ 42\\ 30\\ 53\\ 10\\ 45\\ \end{array}$	$\begin{array}{c} 60\\ 342\\ 80\\ 77\\ 311\\ 206\\ 44\\ 83\\ 16\\ 26\\ 40\\ 75\\ 9\\ 322\\ \end{array}$	54405122943872721941201932341191043	$\begin{array}{c} 162\\ 124\\ 155\\ 97\\ 90\\ 76\\ 145\\ 78\\ 47\\ 17\\ 58\\ 48\\ 26\\ 16\\ 16\end{array}$	$\begin{array}{c} 78\\ 196\\ 60\\ 150\\ 87\\ 72\\ 61\\ 72\\ 19\\ 13\\ 27\\ 31\\ 12\\ 10\\ \end{array}$	$\begin{array}{c} 87.\\ 125\\ 36\\ 138\\ 40\\ 53\\ 22\\ 48\\ 28\\ 28\\ 7\\ 27\\ 12\\ 10\\ 6\end{array}$	A E A A C E A A B A C C E A	C E A A E E B D B A A B B E	B B E D B E E B D C C B B E E	A E A A E E A B A A A A A	EW EW, O WE EW, O EW, O WE WE EW WE EW WE	+0 +,0 ++,0 ++ +-+ +-+ +-+	b b b b	с с с с с с	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R I R R I I R R R I I R R I I R R I I R R I I R R I I R R R I I R R R I R R I I R R R R R R R I R
18	•••	10 10	16 20	35	56	93	32	23	8	E	A	E	A	0		1	с	I	R

. IA

G

June

,, ,, ·,, ,,

Short Period Disturbances at Cape Denison and Cape Evans.

R R I I R I R I R I R I R I R I I I I I	R I I I I I R R R I I I I R I I I I I I	I I I I R I I I I I I R R R R
I I I R I R I I I I I I I I I R	I R I I I R I R I R I R I R I R I R I R	I I I I I I I I I I I I I I I I I I I
с с с с с с с с с с с с с с с с с с с	e c p c c c c c c c c c c c c c c c c c	c c c p p p p p
c p c c	c c c c c c c c c c ac p ac p	с с с с с с с с с с с с с с с с с с с
+ + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +
WE EW WE EW EW EW EW EW EW EW EW	EW WE WE EW, O EW, O EW, O EW WE EW WE WE WE WE WE WE WE WE WE EW EW	WE EW, EW EW WE EW WE WE EW EW EW EW EW EW EW E
LA BAAAAABAAABBAAAAC	B B B A B D E E A A A A D A A B A E A A E	BAEAAEAAABEAEEAAAB
18 D C C B B E E E E C E B B B D E E	E B C E C A E E A B E E E B B B E E E E	BEEEEDEEEEEBEBABB
D B A A B B E A B A A E A C D A D A	A A A C D C E D D E B D B C E A A C A C C C E D C E C E D C E C C C C C C C C	A B E A B E D A E E B B A D E A D D D
A B A C C E A E E C B D C I B B	E D B A A E D C A A B B D E A A A B E D C E A A B B D E A A A B E D E	A B B B B B B A C A B E E A A B A A B A A B A B B A C A B B A E B B A E B B A E B B A E B B A E B B A E B B A E B B A E B B A E B B A E B B A E B B A E B B A C A B B A E B B A C A B B A C A B B A C A B B A C A B B A C A B B A C A B B A C A B B A C A B B A C A B B A C A B B A C A B B B A C A B B B A C A B B B A C A B B B A C A B B B A C A B B B A C A B B B A C A B B B A C A B B B A C A B B B A C A B B B A C A B B B A C A B B B B
$\begin{array}{c} 48\\ 28\\ 7\\ 27\\ 12\\ 10\\ 6\\ 8\\ 13\\ 10\\ 22\\ 32\\ 10\\ 148\\ 18\\ 14\\ 17\\ 25\\ \end{array}$	$\begin{array}{c} 66\\ 9\\ 269\\ 21\\ 28\\ 78\\ 23\\ 13\\ 17\\ 20\\ 25\\ 59\\ 11\\ 33\\ 16\\ 22\\ 34\\ 35\\ 10\\ 8\\ 22\\ \end{array}$	$\begin{array}{c} 257\\ 11\\ 16\\ 19\\ 12\\ 30\\ 30\\ 7\\ 4\\ 15\\ .6\\ 34\\ 16\\ 35\\ 7\\ 29\\ 63\\ 16\\ 52\\ \end{array}$
72 19 13 27 31 10 23 15 55 66 55 25 153 92 89 61 42	$\begin{array}{c} 84\\ 35\\ 101\\ 58\\ 90\\ 127\\ 82\\ 34\\ 14\\ 26\\ 49\\ 43\\ 41\\ 14\\ 20\\ 38\\ 59\\ 56\\ 20\\ 14\\ 59\\ \end{array}$	$\begin{array}{c} 143\\ 29\\ 23\\ 26\\ 32\\ 57\\ 34\\ 35\\ 5\\ 8\\ 19\\ 16\\ 116\\ 87\\ 119\\ 209\\ 100\\ 101\\ 33\\ 55\\ \end{array}$
$\begin{array}{c} 78 \\ 47 \\ 17 \\ 58 \\ 48 \\ 26 \\ 16 \\ 32 \\ 31 \\ 36 \\ 38 \\ 37 \\ 23 \\ 124 \\ 98 \\ 41 \\ 48 \\ 74 \end{array}$	$\begin{array}{c} 88\\ 52\\ 187\\ 120\\ 68\\ 67\\ 99\\ 20\\ 26\\ 39\\ 80\\ 86\\ 22\\ 58\\ 50\\ 63\\ 56\\ 45\\ 19\\ 14\\ 48\end{array}$	$\begin{array}{c} .\ 245\\ 33\\ 32\\ 43\\ 27\\ 71\\ 28\\ 34\\ 14\\ 8\\ 50\\ 25\\ 165\\ 59\\ 63\\ 15\\ 55\\ 86\\ 33\\ 62\\ \end{array}$
$\begin{array}{c} 120\\ 19\\ 32\\ 34\\ 119\\ 10\\ 43\\ 93\\ 10\\ 91\\ 27\\ 55\\ 48\\ 84\\ 119\\ 164\\ 151\\ 72 \end{array}$	$\begin{array}{c} 59\\ 161\\ 91\\ 124\\ 70\\ 288\\ 232\\ 83\\ 14\\ 15\\ 166\\ 40\\ 37\\ 33\\ 54\\ 30\\ 66\\ 111\\ 20\\ 33\\ 51\\ \end{array}$	$170 \\ 34 \\ 35 \\ 56 \\ 83 \\ 176 \\ 32 \\ 92 \\ 28 \\ 13 \\ 61 \\ 39 \\ 275 \\ 173 \\ 113 \\ 42 \\ 125 \\ 64 \\ 25 \\ 25 \\ 173 \\ 25 \\ 25 \\ 100 \\ 10$
$\begin{array}{c} 83\\ 16\\ 26\\ 40\\ 75\\ 9\\ 32\\ 56\\ 16\\ 63\\ 38\\ 49\\ 20\\ 119\\ 88\\ 121\\ 80\\ 39\\ \end{array}$	$\begin{array}{c} 86\\ 54\\ 115\\ 62\\ 82\\ 498\\ 146\\ 39\\ 16\\ 75\\ 34\\ 30\\ 16\\ 75\\ 34\\ 30\\ 24\\ 39\\ 63\\ 50\\ 74\\ 27\\ 19\\ 36\\ \end{array}$	$\begin{array}{c} 203\\ 34\\ 59\\ 37\\ 74\\ 203\\ 36\\ 58\\ 26\\ 12\\ 32\\ 17\\ 108\\ 126\\ 56\\ 14\\ 97\\ 62\\ 19\\ 46\\ \end{array}$
$ \begin{array}{c} 102 \\ 17 \\ 42 \\ 30 \\ 53 \\ 10 \\ 45 \\ 35 \\ 8 \\ 97 \\ 26 \\ 48 \\ 43 \\ - \\ - \\ 55 \\ 56 \\ \end{array} $	$\begin{array}{r} 45\\ 69\\ 73\\ 165\\ 165\\ 165\\ 167\\ 18\\ 48\\ 13\\ 12\\ 86\\ 16\\ 68\\ 20\\ 41\\ 60\\ 52\\ 39\\ 28\\ 22\\ 97\\ \end{array}$	$102 \\ 233 \\ 377 \\ 323 \\ 311 \\ 112 \\ 200 \\ 433 \\ 199 \\ 188 \\ 544 \\ 377 \\ 181 \\ 1377 \\ 168 \\ 599 \\ 141 \\ 554 \\ 21 \\ 31 \\ 31 \\ 100 \\ $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22 0 6 0 14 0 4 0 7 0 17 20 15 10 6 0 11 40 5 10 12 15 13 0 7 0 22 0 0 555 11 30 10 30	$\begin{array}{ccccccc} 4 & 0 \\ 13 & 20 \\ 3 & 30 \\ 21 & 0 \\ 22 & 30 \\ 11 & 0 \\ 13 & 40 \\ 11 & 30 \\ 21 & 30 \\ 8 & 30 \\ 15 & 20 \\ 6 & 30 \\ 15 & 20 \\ 6 & 30 \\ 11 & 10 \\ 6 & 0 \\ 17 & 0 \\ 22 & 20 \\ 15 & 0 \\ 14 & 20 \\ 22 & 0 \\ 14 & 20 \\ 9 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22 22 23 23 23 23 23 23 23 23 23 23 23 2	July ", ", ", ", ", ", ", ", ", ", ", ", ",	August ,, ,, ,, ,, ,, ,, ,, ,, ,, ,

357

TABLE LXXIX—continued.

Short Period Disturbances at Cape Denison and Cape Evans.

c

			Ti	me.	<u>р</u>	н	z	E1	N ¹	Z1	Ь	н	· z	<u>.</u> Н н			Pł	ase .	В	ay
· 1	912.		From	То	Ŷ	Ŷ	Υ	γ	γ	Ŷ	and E ¹	and N ¹	and Z ¹	and Z	D	н	at C.D.	at C.E.	at C.D.	at C.E.
August " " " " " " " " " " " " " " " " " " "	22 23 24 24 25 25 26 26 26 27 27 28 28 28 28 28 29 29 31		h. m. 15 0 14 0 7 0 8 0 13 0 3 50 12 30 4 30 10 0 3 0 4 0 15 30 2 0 3 0 14 30	h. m. 16 30 15 30 23 0 8 0 9 0 10 30 14 0 5 30 13 30 5 30 12 30 4 0 15 0 16 30 3 0 4 0 16 0	$\begin{array}{c} 96\\ 86\\ 103\\ 33\\ 50\\ 78\\ 17\\ 33\\ 32\\ 94\\ 35\\ 55\\ 17\\ 46\\ 51\\ 27\\ 29\\ \end{array}$	$128 \\ 417 \\ 79 \\ 46 \\ 71 \\ 27 \\ 66 \\ 21 \\ 60 \\ 60 \\ 76 \\ 40 \\ 52 \\ 62 \\ 52 \\ 42 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 1$	$\begin{array}{c} 220\\ 442\\ 76\\ 53\\ 18\\ 29\\ 35\\ 77\\ 31\\ 70\\ 86\\ 84\\ 51\\ 54\\ 71\\ 104\\ 60\\ 59\\ \end{array}$	116667097615238401339664121265253930	9568341777732738219916282753352015	$\begin{array}{c} 67\\ 19\\ 36\\ 48\\ 40\\ 24\\ 23\\ 25\\ 3\\ 14\\ 63\\ 13\\ 8\\ 11\\ 23\\ 8\\ 11\\ 23\\ 8\\ 16\\ 7\end{array}$	A B A B A B C C A B B A C E D E A	C B C D D D B A B A C E A B C E	EEEBBECEEBBEBEBEEEE	E B A A B A A B E E A A B C A	WE, O WE, O WE EW EW EW EW EW WE EW WE EW WE EW WE EW	0 0 +++ ++++++++++++++++++++++++++++++	ac ac p p	p p c p	I I I I I I I I I I I I I I I I I I I	
Sept.	$\begin{array}{c}1\\1\\1\\2\\2\\2\\4\\4\\4\\5\\5\\7\\7\\8\\8\\9\\10\\12\\13\\14\\14\\16\\18\\9\\22\\23\\24\\5\\7\\7\\28\\30\end{array}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 14\\ 16\\ 22\\ 9\\ 226\\ 16\\ 87\\ 46\\ 109\\ 53\\ 89\\ 29\\ 28\\ 26\\ 79\\ 53\\ 48\\ 58\\ 78\\ 19\\ 69\\ 52\\ 24\\ 25\\ 17\\ 117\\ 87\\ 26\\ 49\\ 429\\ 114\\ 227\\ 43\\ 38\\ 45\\ \end{array}$	$\begin{array}{c} 10\\ 15\\ 34\\ 21\\ 6\\ 17\\ 17\\ 69\\ 34\\ 46\\ 67\\ 41\\ 47\\ 25\\ 111\\ 44\\ 108\\ 59\\ 20\\ 50\\ 48\\ 34\\ 12\\ 40\\ 269\\ 67\\ 34\\ 34\\ 12\\ 40\\ 269\\ 67\\ 34\\ 34\\ 14\\ 28\\ 58\\ 148\\ 47\\ 16\\ 13\\ 47\\ 21\\ \end{array}$	$\begin{array}{c} 25\\ 33\\ 44\\ 24\\ 17\\ 30\\ 22\\ 148\\ 24\\ 78\\ 71\\ 95\\ 37\\ 21\\ 95\\ 37\\ 21\\ 95\\ 37\\ 21\\ 102\\ 84\\ 166\\ 67\\ 34\\ 102\\ 84\\ 21\\ 10\\ 366\\ 229\\ 96\\ 36\\ 53\\ 31\\ 46\\ 88\\ 130\\ 87\\ 33\\ 29\\ 63\\ 45\\ \end{array}$		$\begin{array}{c} 8\\ 9\\ 14\\ 30\\ 7\\ 6\\ 8\\ 72\\ 20\\ 91\\ 14\\ 32\\ 14\\ 34\\ 20\\ 46\\ 61\\ 39\\ 422\\ 46\\ 61\\ 39\\ 422\\ 46\\ 61\\ 39\\ 422\\ 16\\ 53\\ 61\\ 35\\ 14\\ 48\\ 41\\ 150\\ 26\\ 22\\ 20\\ 26\\ 35\\ \end{array}$	$\begin{array}{c} 4\\ 2\\ 6\\ 14\\ 2\\ 6\\ 4\\ 19\\ 7\\ 36\\ 6\\ 39\\ 6\\ 7\\ 7\\ 9\\ 6\\ 39\\ 6\\ 7\\ 9\\ 6\\ 19\\ 10\\ 87\\ 17\\ 9\\ 21\\ 6\\ 40\\ 67\\ 30\\ 6\\ 16\\ 86\\ 62\\ 6\\ 13\\ 30\\ 10\\ \end{array}$	CCAADCABACBAEA AAEDEDEABBAECABEAAAACDBAE	A A A D E E B A A B B E A D B D E A D E A B B B D B A E E A A B A C E B C B D E	EEEEEEBEBEBEEEBBEEBBEABAEEEEDECBAADBEEB	AAAAEAABBEABABAAAADBAACAAEAEAAABAAEAAABB	EW EW EW EW EW EW EW EW EW EW EW EW EW E	1 +	p p p c p p p ac p p ac p p c p p c p p c c p p c c	c p c c p c p p p c p p c c c c c c c c	RRII IRIIR IIRII III IIII IIII IIII II	I I I R I I I R I R I R I I R I I I I R I R I I R I R I I I I R I R I I I I I R I R I I I I I R I R I
October "" "" "" "" ""	r 3 6 7 7 7 9 11	· · · · · · · · · · · · · · · · · · ·	$\begin{array}{ccccc} 0 & 45 \\ 12 & 0 \\ 12 & 50 \\ 13 & 20 \\ 14 & 35 \\ 20 & 30 \\ 22 & 0 \\ 11 & 0 \\ 13 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 150 \\ 44 \\ 32 \\ 31 \\ 64 \\ 31 \\ 72 \\ 50 \\ 46 \\ \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	86 48 65 36 58 66 93 - 47 41	74 25 65 45 78 105 45 78	78 14 16 54 17 31 47 27 31	$ \begin{array}{c} 24 \\ 4 \\ 6 \\ 31 \\ 21 \\ 51 \\ 52 \\ 12 \\ 57 \\ \end{array} $	A D A A E A D A	A A A E E A A	D E E B B C E B E E E	A A B A B A A A	WE EW EW WE WE EW EW	+ + + + + + + + + + + + + +	p p c p	ac p p c ac	I R I I I R R	I I I I R R

TABLE LXXIX—continued.

Ę,

Short Period Disturbances at Cape Denison and Cape Evans.

	Theta	Ti	me. ·	D	н	Ż	E	N1	Z1	р	н	Z	Н		· · .	Pl	nase	B	ay
	1912.	From	то	Ŷ	Ŷ	Υ.	Ŷ	Ŷ	Υ	and E ¹	and N ¹	and Z ¹	and Z	D	H	at C.D.	, at C.E.	at C.D.	at. C.E.
Oct. " " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 11\\ 11\\ 12\\ 13\\ 13\\ 15\\ 16\\ 16\\ 16\\ 16\\ 17\\ 19\\ 19\\ 20\ 21\\ 21\\ 22\\ 25\\ 25\\ 25\\ 25\\ 26\\ 26\ 27\\ 28\\ 30\\ 30\\ 31\\ 31\\ \end{array}$			$\begin{array}{c} 63\\ 63\\ 90\\ 84\\ 82\\ 132\\ 85\\ 115\\ 81\\ 33\\ 42\\ 134\\ 23\\ 26\\ 28\\ 18\\ 24\\ 134\\ 23\\ 8\\ 101\\ 109\\ 45\\ 57\\ 47\\ 27\\ 26\\ \end{array}$	$\begin{array}{c} 67\\ 46\\ 19\\ 108\\ 54\\ 113\\ 77\\ 22\\ 62\\ 37\\ 26\\ 50\\ 360\\ 18\\ 32\\ 8\\ 13\\ 34\\ 15\\ 65\\ 60\\ 58\\ 117\\ 54\\ 34\\ 38\end{array}$	$\begin{array}{c} 81\\ 80\\ 70\\ 63\\ 68\\ 170\\ 117\\ 30\\ 70\\ 48\\ 30\\ 326\\ 28\\ 24\\ 30\\ 18\\ 57\\ 43\\ 96\\ 60\\ 52\\ 30\\ 18\\ 55\\ 50\\ \end{array}$	$\begin{array}{c} 74\\ 58\\ 12\\ 90\\ 70\\ 90\\ 53\\ 69\\ 14\\ 26\\ 89\\ 34\\ 55\\ 30\\ 19\\ 45\\ 55\\ 30\\ 19\\ 45\\ 51\\ 54\\ 34\\ 59\\ 40\\ 17\\ 42 \end{array}$	$\begin{array}{c} 20\\ 34\\ 16\\ 17\\ 82\\ 77\\ 114\\ 53\\ 44\\ 27\\ 14\\ 14\\ 87\\ 40\\ 48\\ 8\\ 27\\ 34\\ 12\\ 8\\ 43\\ 63\\ 28\\ 43\\ 63\\ 28\\ 29\\ 20\\ 32\\ \end{array}$	$ \begin{array}{c} \mathbf{\hat{17}}\\ 61\\ 9\\ 17\\ 46\\ 24\\ 32\\ 40\\ 55\\ 9\\ 9\\ 5\\ 17\\ 120\\ 15\\ 31\\ 9\\ 6\\ 40\\ 19\\ 13\\ 19\\ 40\\ 16\\ 6\\ 14 \end{array} $	A C E A B A B B E B D B A B D A A E B A A E A C C B	CBEEBAEECEAECBDEBBBBEBAAEB	C B E A B E E B B B E C C B B E A C B B C D B E E E	A A E A B A E C B B A A A A B E A B E A B A A A A A	WE, O WE EW EW EW EW EW EW EW EW EW EW WE WE	++++++++++++++++++++++++++++++++++++++	p p c c ac ac ac p ac ac p p p p p p	c c p p p p p p p ac c	I I R I I I R R I I I I I R R R R R R	
Nov. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	2 3 5 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 10 10 10 11 11 16 17-18	$\begin{array}{c} 3 \ 10 \\ 18 \ 45 \\ 16 \ 0 \\ 0 \ 40 \\ 11 \ 30 \\ 19 \ 15 \\ 19 \ 40 \\ 22 \ 0 \\ 11 \ 30 \\ 12 \ 0 \\ 8 \ 50 \\ 11 \ 15 \\ 14 \ 20 \\ 5 \ 30 \\ 11 \ 30 \\ 21 \ 0 \\ 22 \ 0 \end{array}$	$\begin{array}{c} 4 \ 30 \\ 19 \ 50 \\ 17 \ 20 \\ 2 \ 20 \\ 15 \ 0 \\ 19 \ 40 \\ 20 \ 30 \\ 23 \ 10 \\ 12 \ 0 \\ 13 \ 0 \\ 11 \ 15 \\ 14 \ 20 \\ 15 \ 30 \\ 9 \ 15 \\ 13 \ 35 \\ 23 \ 0 \\ 1 \ 30 \\ 1 \ 30 \\ 1 \ 35 \\ 23 \ 0 \\ 1 \ 30 \\ 1 \ 35 \\ 23 \ 0 \\ 1 \ 35 \\ 1 \ 35 \\ 23 \ 0 \\ 1 \ 35 \ 35 \\ 1 \ 35 \ 1 \ 35 \\ 1 \ 35 \ 1 \ 35 \ 1 \ 35 \ 1 \ 35 \ 1 \ 35 \ 1 \ 35 \ 1 \ 35 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ $	$\begin{array}{c} 50\\ 31\\ 76\\ 59\\ 102\\ 32\\ 49\\ 81\\ 17\\ 32\\ 176\\ 137\\ 52\\ 181\\ 115\\ 118\\ 107\\ \end{array}$	$\begin{array}{c} 66\\ 40\\ 109\\ 79\\ 33\\ 30\\ 40\\ 55\\ 24\\ 48\\ 64\\ 112\\ 28\\ 77\\ 57\\ 89\\ 249\\ \end{array}$	5547133178703392111306661202371069844233	$\begin{array}{c} 70\\ 39\\ 116\\ 68\\ 99\\ 56\\ 100\\ 89\\ 27\\ 36\\ 223\\ 156\\ 73\\ 140\\ 112\\ 181\\ 158 \end{array}$	$\begin{array}{c} 92\\ 44\\ 61\\ 79\\ 76\\ 46\\ 55\\ 72\\ 5\\ 55\\ 78\\ 181\\ 95\\ 194\\ 113\\ 58\\ 61\\ \end{array}$	$\begin{array}{c} 22\\ 33\\ 49\\ 38\\ 82\\ 36\\ 59\\ 59\\ 59\\ 59\\ 52\\ 150\\ 45\\ 74\\ 95\\ 74\\ 95\\ 87\\ 150\end{array}$	CCABBCCBECBBBAEAE	BBA BBE CE BBA BE AE E	BCECBECEBBEEBECED	EAABBAABAABAABAABAABAABAABAABAABAABAAABAABAAABAABAABAABAABAABAABAABAABAABAABAABAABAB	WE EW EW EW EW EW EW EW EW EW EW EW EW E	+ + + + + + + + + + + + + +	c c p p p c	p c p	I I I R R I I I I I I I I I I I I I I I	

§ 9.—BASIS OF COMPARISON : DESCRIPTION OF TABLE LXXIX.

(a) Difference of Components Registered at the Two Stations.

All the times in Table LXXIX are Greenwich times. The range is in all cases the difference between the two extreme positions shown on the trace, but in a few cases the limits of registration were exceeded, and the range in the table is then an underestimate. The D ranges at Cape Denison were converted into their force equivalents. The curves at the two stations were inter-compared with a view to recognizing resemblances or differences. H referred to a meridian approximately $6 \cdot 7^{\circ}$ west of the geographical meridian at Cape Denison, N¹ to a direction approximately $7 \cdot 6^{\circ}$ east of the geographical meridian at Cape Evans. Remembering the difference in longitude of the

two stations, it was apparent that the most natural course was to compare D with E^1 , and H with N^1 . But occasionally the D curve resembled the N^1 curve rather than the E¹ curve. For brevity, the letters A, B, C, D and E are used to express the degree of resemblance or opposition between pairs of curves at the two stations. A implies close, B less close resemblance, D marked, C less marked opposition. Thus in the case of D and E¹, A signifies that declination change to east (or west) was associated with rise (or fall) in E^1 ; while D signifies that declination change to east (or west) was associated with fall (or rise) in E¹. In the case of H and N¹, or of Z and Z¹, A signifies simultaneous increase or simultaneous decrease in the two elements compared. The letter E signifies that the curves compared at the two stations differed so much in type that no decision could be reached as to their resemblance or opposition. This usually means that shorter period perturbations were overwhelmingly in evidence at one of the stations. But it sometimes means that the letter B was suggested by one part of the disturbance and the letter C by the other. The analysis of resemblance on opposition was extended to H and Z at Cape Denison, because the extraordinary resemblance visible at times between the two traces invited special inquiry.

(b) Estimation of Times of Critical Epochs in the Disturbances.

In the ordinary bay the change of magnetic force near the turning point is slow, the curve resembling a semi-circle and not two sides of a triangle. Thus the turning point or climax is difficult to fix with precision. In the Antarctic where shorter period perturbations were prevalent, it was not infrequently one of these which determined the exact time of the turning point (maximum or minimum of force). If we may judge from the phenomena at the two stations, these shorter period oscillations are much more local in their incidence than the bay movements. Occasionally, as in the case of sudden commencements, there were striking short period movements at both stations, which might have been synchronous, but usually there was no recognisable correspondence between the short period movements at Cape Denison and Cape Evans.

There were other reasons for not attempting to determine the precise degree of accordance in time between the turning points at the two stations. At both, judging by the positions of the breaks at the beginning and end of the day, there was usually, if not indeed always, a differential parallactic error between the traces from the different elements. It was thus clear that the hourly lines shown on the sheets required different corrections for the different elements, and the means did not exist of determining exactly what these corrections should be. While time was not known with the accuracy enabling us to say that the turning points for two different elements at the same station were ever absolutely identical, it was clear that on many if not most occasions the turning points were certainly not synchronous. This taken in conjunction with the fact that except in the case of Z the elements recorded at the two stations were different, precluded any really precise comparison of times.

(c) Directions of Vector Changes : Phase Relations.

The letters E and W indicate the directions of the D movements, and + and - show the directions of the H movements at Cape Denison. For example, on April 1, between 9h.30m. and 10h.20m., the movement was first easterly, then westerly, while H first fell, then rose. The letter A in the column headed D and E¹ implies that the corresponding change in E¹ at Cape Evans was a rise followed by a fall; while the letter D in the column headed H and N¹ implies that while H fell and rose at Cape Denison, N¹ rose and fell at Cape Evans. The occurrence of the letter O implies that the short period oscillations usually present were specially conspicuous, as for example in D between 11h. 30m. and 13h. on May 14, and in both D and H between 10h. and 12h. on May 15.

Sometimes the movements in the two horizontal components at one station kept step, the turning points being synchronous or nearly so. This is indicated by the letter p(signifying in phase). In other cases there was a fairly regular lag in the one element as compared with the other. This is indicated by the letters c or a.c., according as the rotation of the disturbing force vector was clockwise or anti-clockwise. Suppose for instance, we have at Cape Denison an EW bay in D, synchronous with a — + bay in H and that the turning point comes first in D. Then the vector is going round in the direction east, south, west, north, i.e. clockwise. The curves were often not regular enough to warrant a decision at one or other or at both stations.

The letters R and I in the last two columns denote that the bay was regular or irregular in outline. But R does not signify perfect regularity. It only means that the to and fro movements both stood out in each of the horizontal components, with no serious uncertainty as to the turning point. In some cases where I is attached, the bay movement in one of the elements would have justified an R.

Assuming disturbance to represent irregularities in the electric currents always flowing overhead, it seems not improbable that a bay movement represents a fairly regular change in progress in a definite volume of space while the irregular shorter perturbations may have a quite different origin or origins. The irregularities may be much less favourable to the existence of a regular bay at one station than at another.

The disturbances in Table LXXIX vary much in duration, and how best to use the data was not obvious. Eventually it was decided to divide the days into two 4-hour intervals 7h.-11h. and 11h.-15h. and a 16-hour interval, containing the rest of the day. The reasons for this choice will appear presently.

§10.—Relation of Disturbance Ranges to Regular Diurnal Variation.

To get an idea of what disturbance amounted to, we have to consider the size of the normal changes. Taking the regular diurnal inequality for the year for all days, and dividing the range within the interval by the number of hours contained, we get the following results :—

			At Cap	e Deni	son.	At Ca	pe Eva	ns. ·
		•	D	\mathbf{H}	\mathbf{Z}	E^{1}	N^1	$\mathbf{Z^{1}}$.
Interval.			ΥY	γ	γ	Ϋ́	. γ	Υ
7h.–11h.	•••		0.4	$3 \cdot 5$	$5 \cdot 5$	$5 \cdot 9$	8.0	4·3
11h.–15h.	•••	••••	4.9	3.5	3.1	6.3	1.5	1.3
15h7h.	•••	•••	3.4	1.8	3.7	4·8	4 ·4	$2 \cdot 6$

From these we see that 7h.-11h. was a time at which the regular changes in the horizontal components, especially D, at Cape Denison were slow as compared with those at Cape Evans, and even the vertical force changes at Cape Denison showed less than their usual excess. On the other hand, 11h.-15h. was a time when the regular changes in N¹ and Z¹ at Cape Evans were exceptionally small. These differences in the average rates of change of the forces governing the regular diurnal variation at the two stations are illustrated by Plate VII based on the inequalities of Table XCVII for all complete days in the seven months of synchronous records, April to October, 1912.

7h.-11h. was normally a quiet time at both stations. 11h.-15h. was also a relatively quiet time in the average day, but it included hours of brightest aurora, when some of the most notable short storms occurred.

§11.—Intensity of Disturbance at the Two Stations in Three Subdivisions of the Greenwich Day.

A good many of the disturbances were not wholly confined to any one of these three intervals. For example, on April 1, a disturbance lasted from 10h. 20m. to 11h. 25m. As 40 minutes of this occurred between 7h. and 11h., as against 25 minutes occurring between 11h. and 15h., it is included in the class "7h.-11h., mainly." Similarly, a disturbance between 10h.15m. and 12h.30m. on April 15 is included in the class "11h.-15h., mainly," and a disturbance covering 14h.30m. to 16h. on June 9 is included in the class "15h.-7h., mainly." Lastly, there were a few disturbances of which half appeared in each of two intervals, as for example the disturbance from

6h. to 8h. on July 23. These were relegated to the group termed "Miscellaneous." The range for each element in the average disturbance of each class is given in Table LXXX. Results are also given for the "wholly" and "mainly" group and combined.

TABLE LXXX.

Shorter Disturbances: Summary of Average Ranges at Cape Denison and at Cape Evans.

					Number	Ca	pe Denis	on.	Ca	pe Evan	9.
						D	н	z	Ē ¹ .	N ¹	Zı
7h.–11h. Wholly Mainly All	· ····	••• <u>•</u> •••	•••• •••	····	24 10 34	γ 59 117 76	Υ 48 77 57	γ 42 91 56	γ 71 140 91	Υ 62 99 73	γ 41 80 52
11h.–15h. Wholly Mainly All	••••	 	···· ···	 	61 15 76	54 80 59	62 84 66	84 123 92	44 54 46	42 68 47	21 28 22
15h 7h. Wholly Mainly All		••••	•••• •••	 	83 9 92	73 64 72	72 84 73	89 97 90	72 68 72	50 48 50	39 40 39
Miscellaneous: All Winter (May to Aug April, September, O	ust) ctober a	 and No	 ovember	 	8 210 107 103	64 67 70 65	66 68 77 57	77 85 98 71	55 65 67 63	51 53 54 51	27 35 37 33

Considering first the mean results from the whole 210 disturbances of which there were complete records at both stations, we see that the ranges in D and H at Cape Denison and in E^1 at Cape Evans are nearly equal, and are sensibly greater than the range in N¹. The ranges of the horizontal components are much in excess of the range in Z¹ at Cape Evans, but are considerably exceeded by the range in Z at Cape Denison. The deficiency in the Z¹ range is greater than might have been expected from a consideration of the daily ranges of Z and Z¹.

As indicated above, 7h.-11h. was the time when the regular changes at Cape Evans were largest relative to those at Cape Denison, and Table LXXX shows that the same was true of the disturbances. In this interval the average E^1 range exceeds the average D range, the average N¹ range exceeds the average H range and the average Z¹ range is only I_Y less than the average Z range. Between 11h. and 15h., on the other hand, disturbance at Cape Evans, relatively considered, appears to be at a minimum; in particular the average range in Z¹ is only about a quarter of the average range in Z.

The last two lines in Table LXXX contrast the results from the winter months with those from the other months, three out of the four being equinoctial months. The daily ranges, whether regular or extreme, are least in winter at both stations; but the ranges of the short period disturbances included in Table LXXIX are slightly greater in the winter season, expecially in the case of H and V at Cape Denison.

TABLE LXXXI.

Short Period Disturbances at Cape Denison and Cape Evans.

Analysis of Form of Movements.

						Li	ke.			Rathe	r Like		Rı	ther (Opposi	te.		Oppo	osite.			Unce	rtain.	
		•		No.	D & E'	H & N'	Z &. Z'	H & Z	D & E'	H & N'	Z & Z'	H & Z	D & E'	H & N'	Z & Z	H & Z	D & E'	H & N'	Z & Z'	H & Z	D & E'	H & N'	Z & Z'	H & Z
7h11h.	Wholly Mainly All		· · · · · · ·	24 10 34	19 5 24	0 0 0	3 3 6	11 4 15	3 4 7	2 3 5	12 1 13.	8 1 9	0 0 0	0 3 3	1 0 1	1 0 1	0 0. 0	18 1 19	1 :1 2	0 0 0	$\begin{array}{c} 2\\ 1\\ 3\end{array}$	4 3 7	7 5 12	4 5 9
11h15h.	Wholly Mainly All	 	 	61 15 76	9 0 9	$25 \\ 5 \\ 30$	2 2 4	43 7 50	6 5 11	14 5 19	16 6 22	5 1 6	15 1 16	2 2 4	3 0 3	1 0 1	19 4 23	4 1 5	$\begin{array}{c}1\\1\\2\end{array}$	2 0 2	12 5 17	16 2 18	39 6 45	10 7 17
15h 7h.	Wholly Mainly All		 	83 9 92	39 3 42	$25 \\ 3 \\ 28$	6 0 6	49 5 54	$\begin{array}{c} 21\\ 3\\ 24 \end{array}$	$\begin{array}{c} 22\\2\\24\end{array}$	$\begin{array}{c} 21 \\ 4 \\ 25 \end{array}$	22 1 23	8 1 9	11 0 11	16 0 16	2 1 3	0 3	4 0 4	9 0 9	0 0 0	$\begin{array}{c}12\\2\\14\end{array}$	21 4 25	31 5 36	10 2 12
Miscellane All	eous 		 	8 210	2 77	2 60	0 16	$1 \\ 120$	3 45	$\begin{array}{c}2\\50\end{array}$	3 63	3 41	0 25	1 19	0 20	$\frac{2}{7}$	$\frac{1}{27}$	$1 \\ 29$	0 13	1 3	2 36	$\begin{array}{c}2\\52\end{array}$	5 98	1 39

§12.—Analysis of Synchronous Movements.

Table LXXXI contains an analysis of the results as to resemblance or otherwise of the changes in the contrasted elements D and E¹, H and N¹, and Z and Z¹ at the two stations also the results as regards H and Z at Cape Denison. The 210 disturbances of which records were complete are grouped, as in Table LXXX, according to the hour of their occurrence. The terms like, rather like, rather opposite, opposite and uncertain are the equivalents of the letters A, B, C, D, and E of Table LXXIX.

Considering first the 210 disturbances combined, we see that the movements in each of the contrasted pairs of elements are more often like than opposite. But Z and Z¹ show a much smaller number of cases of close resemblance than either pair of horizontal components, and a much larger number of cases when difference of type prevented the drawing of any conclusion. This is all the more noteworthy since Z and Z¹ were the only pair of elements which can claim to be strictly analogous. There were in particular many fairly conspicuous bay movements in Z during which there was little if any trace of disturbance in Z^1 .

The relative behaviour of the pairs D and E^1 , H and N¹ is quite different in the different time intervals. Between 7h. and 11h. we have a marked tendency to resemblance between the D and E^1 movements, and an equally marked tendency to opposition between the H and N¹ movements. Whereas between 11h. and 15h. there is a conspicuous tendency to resemblance between the H and N¹ movements and an equally marked tendency to resemblance between the D and E^1 movements. Between 15h. and 7h. the tendency to resemblance prevails in both pairs of elements, but this is the time when Z and Z¹ movements show the greatest tendency to be opposite.

If we had at our disposal strictly synchronous changes of the magnetic elements at a number of stations it would be possible to assign, if not with absolute certainty, at least with considerable probability the position and amplitude of the corresponding disturbing electrical currents. But with data from only two stations success can hardly be hoped for in any attempt to draw general conclusions. Attention may, however, be called to one or two points which can be readily grasped on considering the accompanying Figures 16 and 17.

In both figures P, Q and R represent diagrammatically the position of the south magnetic pole, Cape Denison and Cape Evans. Figure 16 represents the average set of conditions between 7h. and 11h. when the D and E¹ movements are similar, while the H and N¹ movements are opposite. D is supposed somewhat larger than H, and E¹ somewhat larger than N¹ as suggested by Table LXXX. Figure 17 represents the average set of conditions between 11h. and 15h. when the H and N¹ movements are similar, while the D and E¹ movements are opposite. In accordance with Table LXXX H is supposed slightly greater than D while E¹ and N¹ are approximately equal.

365

If we supposed these forces all in one horizontal plane—a considerable departure from realities—the simplest explanation of the forces in Figure 16, would be an isolated magnetic pole to the west of P, it might be at a considerable height; while the simplest explanation of the forces in Figure 2 would be a vertical electrical current situated to the east of P. A magnetic pole might be the equivalent of horizontal electrical currents circling round an area. The direction of the resultant vectors in Figure 16 and the fact that the resultant force according to Table LXXX is rather larger at R than at Q suggest that the area within the horizontal currents is a large one including at least Q and possibly R. Other more plausible explanations than these may suggest themselves, but they will at least indicate the amount of information that would be required to test any explanation adequately.

One of the most remarkable results in Table LXXXI is the large number of cases in which resemblances, often close resemblances, existed between the changes shown by the H and Z traces at Cape Denison. Cases in which the changes in the two elements were decidedly opposite, *i.e.*, bay movements in which H rose while Z fell, or H fell while Z rose were exceedingly rare. This was true of all hours of the day. It should be remembered in this connection that the regular diurnal variations of H and Z at Cape Denison presented very similar features.

§13.—PHASE RELATIONS: ROTATION OF DISTURBING VECTORS.

Conclusions as to the phase were reached on only 104 occasions at Cape Denison and 106 occasions at Cape Evans or roughly in one case of two at each station. At Cape Denison D and H appeared in phase, or approximately so, on 56 occasions; on 39 occasions the force vector showed a clockwise and on 9 occasions an anti-clockwise rotation. At Cape Evans E^1 and N^1 appeared in phase on 37 occasions; on 65 occasions the force vector showed a clockwise and on only 4 occasions an anti-clockwise rotation. Of the 9 occasions of anti-clockwise rotation at Cape Denison 5 occurred between 19h. and 23h.30m.

There was no suggestion of any close relationship between the phase phenomena at the two stations. There were 14 occasions on which the horizontal components were in phase at both stations, and also 14 occasions on which the force vector rotation was clockwise at both stations. There were 20 occasions of clockwise rotation and 3 of anti-clockwise rotation at Cape Evans when the elements at Cape Denison were in phase, and there were 6 occasions of clockwise rotation at Cape Denison when elements at Cape Evans were in phase. There were 3 occasions when rotation was clockwise at Cape Evans while anti-clockwise at Cape Denison but no occasion of the converse. The occasions on which a decision was reached as to the agreement or otherwise of the phase with two pairs of elements at both stations were fewer than the occasions when no decision was reached at either station.

<u> 366</u>

§14.—DISTURBANCES OTHER THAN BAYS.

Table LXXXII contains further particulars of corresponding ranges at Cape Denison and Cape Evans. They refer either to individual oscillations of shorter period than those usually regarded as bay disturbances, or else to intervals when there was a succession of short period perturbations difficult to sift out. In some cases of successive oscillations, including October 2 and November 5, the oscillations appeared distinct units, the correspondence of which at the two stations could hardly be doubted. But whether the movements were exactly synchronous with synchronous turning points, it is impossible to say owing to the time uncertainties already. The great majority of the occasions fall into the third period 15h. to 7h. of Tables LXXX and LXXXI.

TABLE LXXXII.

Short period Disturbances at Cape Denison and Cape Evans of a mainly oscillatory character.

Date.	l	Time.	D	H	·Z	E	N ¹	Z
	•	hm_hm	γ	Ŷ	γ	Υ.	γ.	Y
pril	8-9	23 58 to 0 20	102	122	112	85	50	48
,,	13	$23 \ 0 \ 23 \ 15$	44	58	54	39	35	24
fay	29	Near 4 0	26	54	36	9	14	4
uly	12	30to40		47	45	25	16	8
ugust	3	0 30 1 30	103	111	- 109	50	46	14
-		$23 \ 30 \ 24 \ 0$	38	89	59	32	18	17
,, ,	4	2 20 2 40	59	38	31	32	14	9
,,	8	4 0 22 10	56	61	36	32	41	21
,,	11	4 30 5 30	40	65	51	43	14	15
,,	16	0 0 0 30	41	26	35	- 21	31	17
eptember	6-7	$23 50 0 10^{-1}$	90	81	105	36	41	10
- ,,	10	Near 5 50	34	27	21	32	14	10
		Near 645	51	20	18	39	19	13
••	11	Near 13 [°] 30	6	8	. 7	17	14	7
		Near 14 50	7	9	9	27	34	14
••	- 30	S.C. Near 21 40	40	94	81	96`	55	57
)etober	2	Near 15-50	18	13	18	14	20	5
	3	Near 23 0	62	77	115	72	27	36
· · ·		Near 23 15	82	47	90	71	21	48
		Near 23 45	120	112	141	107	54	55
	7	Near 015	61	47	78	39	14	20
<i>,,</i>		Near 0 30	77	60	83	19	42	13
	8	Near 00	75	124	111	·41	42	17
	13	Near 040	108	42	22	39	61	17
	15	Near 545	66	60	47	28	- 23	n
,,,	16	Near 21 10	38	28	36	43	14	19
"	17	13 25 to 13 50	16	10	<u>`9</u>	46	33	25
<i>"</i> .	19	23 20 23 50	66	50	68	47	42	25
,,	20	040 10	39	57	83	32	27	14
,,		S.C. Near 17 25	12	8	8	28	30	12
			5	27	19	26	48	24
	22	2 30 3 0	58	1 111	100	16	15	6
"	24	Near 7 30	32	10	12	27	13	ğ
,,		Near 8 25	25	14	21	26	18	Ř
	28	0 10 to 0 30	103	51	56	54	44	28
Jovember	5	Near 13 25	10	a a	10	45	20	16
	Š	Near 13 35	14	Š	14	48	10	24
		Near 13 45	19	19	16	85	17	29
	8	Near 5 20	38	42		23	22	64 A
,,	al	22 ft to 99 80	30	. 97	80	116	60	.0 67
"	10		156	208	70	88	55	90
,, 			190					
-								F
As in Table LXXX the mean values of D and H are nearly equal. The mean value of Z though not as in Table LXXX larger than the mean values of D and H, is as large as before relative to the mean value of Z. While the disturbances are on the average considerably larger at Cape Denison than at Cape Evans—a phenomenon due possibly, at least in part, to the mode of selection—there are several cases, as for example the oscillations of September 11 and November 5, when the amplitude at Cape Evans is much the larger. There are even seven cases when the amplitude is greater in Z¹ than in Z.

There were numerous instances of a prominent oscillation of some minutes duration at one of the stations to which there was certainly no corresponding counterpart at all prominent at the other station. More than this it is impossible to say, owing to the almost continuous persistence of small oscillations.

CHAPTER III.—DISTURBANCE AT CAPE DENISON RELATED TO DISTURBANCE AT ESKDALEMUIR.

§15.—Records Available for Comparison.

After considering the relationships between simultaneous disturbances at the two Antarctic Stations interest is naturally stimulated to compare corresponding disturbances recorded at either of these stations and at some remote station. For this purpose Eskdalemuir has been selected chiefly because the actual magnetograms covering an extended period were readily available for first hand examination but also because previous investigations have shown that magnetic changes at Eskdalemuir are thoroughly representative of moderate latitudes. Indeed, Eskdalemuir was more highly disturbed than most stations providing autographic records at that time. It has the further merit of being entirely free from artificially produced disturbance.

Unfortunately the vertical force variometer at Eskdalemuir behaved unsatisfactorily in 1912—the Observatory was officially opened only the previous year—and the early part of 1913. Therefore no Z data are available until the end of March of that year. During April and the first half of June, vertical force records with a high degree of sensitiveness (0.82 γ and 0.91 γ per mm) were obtained, but their practical usefulness was still questionable till July 1. During December 1912 and the first half of January 1913 the H and Z records at Cape Denison were unsatisfactory. For such reasons, therefore, the comparison between disturbances at Cape Denison and Eskdalemuir has been limited to the $6\frac{1}{2}$ months from the middle of January to the end of July, 1913, and even for these months the magnitude of the vertical force changes at Eskdalemuir is specified only for July and on six isolated occasions in the early part of June.

§16.—Classification of Disturbances.

With disturbance, the rule rather than the exception in the Antarctic, the natural procedure to adopt in the comparison, was to compare Cape Denison with Eskdalemuir. All those occasions on which the Eskdalemuir curves showed prominent isolated perturbations with some individuality were therefore listed. Hours of beginning and ending were allotted so as to include only the main part of the movements; ranges, and directions of force change were measured and the essential features shortly described. With the majority of the disturbances of the bay type, but not necessarily of the bay simplicity of form the most frequent durations were one and two hours. In cases of sharp, shorter period oscillations of sudden commencement type the duration was estimated to a minute *quam proxime*. The simultaneous events as registered at Cape Denison were then examined for the time intervals specified for the Eskdalemuir disturbance.

A comprehensive table was prepared summarising the results from the two stations. It contained details of 156 disturbances in 144 of which the force changes were of a slow nature with average duration about $1\frac{1}{2}$ hours. The remaining dozen comprised five sudden commencements, four suspected sudden commencements and three sharp oscillations which were definitely not sudden commencements.

On the basis of the nature of the changes in the horizontal components of the disturbance field at Eskdalemuir each tabulated disturbance was allotted to one of five classes according as the force changes appeared to be :—

- 1. Simple and regular both in N and W.
- 2. Simple and regular either in N or W, the simultaneous perturbations in one of these being irregular, indefinite or small.
- 3. Multiple but regular in one or both of N. or W.
- 4. Of a sharp oscillatory character, including sudden commencements.
- 5. Conformable to no obvious type, miscellaneous.

These separate classes of disturbances are given in Tables LXXXIII to XCV, which, but for the additional descriptive notes on each disturbance, together contain all the information of the parent table. The table heading indicates the class of disturbance referred to; so that Tables LXXXIII to LXXXIV relate to movements which in the horizontal components are, as *e.g.*, in Table LXXXIII, fairly simple and regular and so can be described as NS, EW (implying that the increases in vector components were, in the first place, directed towards the north and towards the east, followed, in the second place, by increases in the reverse directions) or as in Table LXXXIV, NS, WE in which the changes in the meridian vector component were in the same order while those across the meridian were reversed and finally for Tables LXXXV and LXXXVI, SN, EW and SN, WE. The other headings are similarly self-explanatory. All refer to the appearance of the disturbance as recorded at Eskdalemuir. In all the tables LXXXIII to XCV the direction of change in the remaining component(s) at Eskdalemuir not used in specifying the group type is given in the column(s) immediately following the hours of duration of such disturbance; then follows an abbreviated summary of the nature and directions of change of the three components at Cape Denison between the times specified in the second column, and finally, three columns each Eskdalemuir and Cape Denison giving the extreme ranges of the elements in the interval. Changes in declination at Cape Denison are expressed in terms of their equivalent disturbing force.

It is to be noted that in some cases no pronounced movement in one direction has been discernible at one station or the other. The letters $m \equiv \text{mainly}$ and $r \equiv$ rather tabulated against the algebraic signs $+ \equiv \text{rising}$ and $- \equiv \text{falling}$ relate to these doubtfully directed movements. As in previous chapters oscillatory is abbreviated to osc. and the significance of + for vertical force changes at Cape Denison is the same as that for stations in northern latitudes, namely, an increased pull on the north-seeking pole of the magnet, this being equivalent to a *numerical decrease* of the vertical field in the Antarctic.

TABLE LXXXIII.

Characteristics of Simultaneous Disturbance at Eskdalemuir and Cape Denison. (a) Type NS, EW at Eskdalemuir.

			Ho	ur.		Nature of	Changes at Cap	e Denison.		Co	mponent	Ranges.	•	
	Date.	•			Esk. Z			1	E	skdalemu	ir.	Caj	pe Deniso	n.
			From.	To.		D	н	Z	∆N	∆w	ΔZ	∆н	ΔD	∆z
Jan. "	18 19	•••	20 19·5	$23\frac{1}{2}$ $21\frac{1}{2}$		WEm WE	+ +	+ +	71 26 20	125 23		216 93	210	136
,, Feb.	20 25 15	••• •••	20 20 18	24 22 21		WEr EW irreg.	irreg.	-+-	. 63 . 50	40 26 53		214 110 74	240 64 58	143 92 82
" Mar.	26 17 21	•••	20 18 22	21 22 22 24		WE WE	irreg.	+m irreg.	49 43 62 29	40 37 71 62		52 49 78	50 48 .76 61	92 68 139 57
April	1 10 24	···· ···	19 16 20	24 22 18 29	tr. +	WE WE WE	irreg.	+	30 31 67 26	38 49 26	· 4 8 4	37 28 32	63 47 43	41
June July	4 28 14	···· ····	20 21 0	$ \begin{array}{c} 22 \\ 24 \\ 1 \end{array} $	tr.	WE WEm irreg. OSC	— + — + irreg.	-+ -+ irreg.	42 44 44	31 59 28	10	30 53 34	33 85 45	52 52 52 23

TABLE LXXXIV.

(b) Type NS, WE at Eskdalemuir.

	Hor	Ir .		Nature of	Changes at Cape	e Denison.		Con	ponent	Ranges.		
Date.		[Esk. Z.				Es	kdalemui	ir.	Car	e Deniso	n
	From.	To.		D.	H	Z	ΔN	∆w	∆Z	ΔH	ΔD.	Δz
Feb. 25-26 April 10 , 27 June 30 , 30 July 25	 22 0 13 16 20 16	2 4 14 18 22 17	+ + OSC tr. tr. +	EWm irreg. EW irreg. WE irreg.	+	irreg. irreg. + — irreg. - + — + irreg.	56 61 34 19 25 35	40 73 22 12 20 19	28 6	207 69 32 9 20 12	122 107 30 23 45 16	88 98 38 29 21 16

TABLE LXXXV.

_	Ho	ur. _.		Nature of	Changes at Cape	Denison.		С	omponer	nt Ranges	š.	
Date.			Esk. Z.		1		Es	kdalemui	r.	Car	e Deniso	n.
· •	From.	Тө.		Ъ		Z	ΔN	ΔW	Δz	∆н	ΔD	∆z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 15 \\ 18 \\ 12 \\ 16 \\ 1 \\ 22 \\ 21 \\ 14 \\ 22 \\ 21 \\ 14 \\ 22 \\ 3 \\ 20 \\ 16 \\ 19 \\ 20 \\ 0 \\ 2 \\ 61 \\ 20 \\ 0 \\ 2 \\ 13 \\ 17 \\ 19 \\ 16 \\ 18 \\ 4 \\ 5 \\ 7 \\ 4 \end{array} $	18 20 16 20 3 24 1 15 24 5 22 18 21 22 2 4 9 14 15 19 1 3 20 18 20 6 7 9 6	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	WEWE WE WEWE WEWE WE WE EW irreg. WE irreg. WE WE EWE EWE EW EW EW EW EW EW EW EW E	$\begin{array}{c} + - \\ + r \\ + r \\ + - m \\ + - + m \\ - r \\ - + r \\ - r \\ - + \\ - r \\ - r \\ - + \\ rreg. \\ - + \\ rreg. \\ - + \\ rreg. \\ rreg. \\ + - + - \\ - m \\ irreg. \end{array}$	$\begin{array}{c} + - \\ - + r \\ + - m \\ - r \\ - r \\ - r \\ - + \\ \\ - + \\ \\ - + \\ \\ - + \\ \\ - + \\ \\ - + \\ \\ - + \\ \\ \\ - + \\ \\ \\ \\ \\ \\ - \\$	$\begin{array}{c} 30\\ 50\\ 96\\ 77\\ 17\\ 75\\ 50\\ 43\\ 54\\ 42\\ 28\\ 225\\ 29\\ 130\\ 57\\ 34\\ 29\\ 25\\ 33\\ 27\\ 28\\ 50\\ 64\\ 18\\ 34\\ 22\\ \end{array}$	$19\\54\\92\\61\\18\\84\\62\\19\\54\\24\\74\\18\\24\\74\\18\\24\\21\\54\\35\\27\\11\\10\\18\\22\\27\\31\\55\\20\\24\\37\\20$	$ \begin{array}{r} 6\\ 49\\ 38\\ 4\\ 76\\ 13\\ 10\\ 5\\ 3\\ 62\\ 31\\ 9\\ 8\\ 7\\ 5\\ 9\\ 4\\ \end{array} $	$\begin{array}{c} 69\\ 27\\ 236\\ 121\\ 60\\ 44\\ 69\\ 32\\ 115\\ 76\\ 94\\ 14\\ 17\\ 35\\ 116\\ 61\\ 82\\ 10\\ 122\\ 35\\ 15\\ 24\\ 20\\ 18\\ 30\\ 33\\ 27\\ 33\\ \end{array}$	$\begin{array}{r} 49\\74\\163\\168\\54\\84\\137\\42\\116\\36\\112\\12\\40\\37\\61\\55\\8\\68\\43\\46\\45\\34\\45\\34\\45\\34\\33\\29\\31\end{array}$	$\begin{array}{c} 99\\ 82\\ 272\\ 269\\ 46\\ 82\\ 84\\ 27\\ 112\\ 98\\ 117\\ 13\\ 26\\ 44\\ 101\\ 57\\ 26\\ 69\\ 45\\ 37\\ 26\\ 21\\ 18\\ 39\\ 42\\ 16\\ 39\\ \end{array}$

(c) Type SN, EW at Eskdalemuir.

5

TABLE LXXXVI.

(d) Type SN, WE at Eskdalemuir.

		Но	ur.		Nature of	Changes at Cape	e Denison.		Co	mponent	Ranges	•	
Dat	.			Esk.			`	E	skdalemu	ir.	1 •	Cape Den	ison.
		From.	То.	· ·	D	H	Z .	ΔN	_∆w	°∆z '	ΈΔ <u>Η</u>	ΔD	∆z
Mar. 7 ,, 21 ,, 30 April 1 ,, 23 May 5 ,, 13 ,, 21 June 1 July 13	· · · · · · · · · · · · · · · · · · ·	2 4 2 5 2 3 2 20 3	4 6 5 7 4 5 4 22 5	+ + + tr. +	OSC E m WEWE WE m WEW E m irreg. WEWE irreg.	+ - irreg. - + m - + m - + - + irreg. - r irreg.	r irreg. + m + m + irreg. r irreg.	$\begin{array}{c} 26\\ 36\\ 52\\ 24\\ 19\\ 59\\ 18\\ 12\\ 48\\ 18\\ \end{array}$	48 40 34 33 28 78 27 16 66 30	$11 \\ 11 \\ 60 \\ 7 \\ 35 \\ 9$	49 52 197 94 35 127 39 37 68 37	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{c} 78\\ .54\\ 153\\ 125\\ 41\\ 82\\ 46\\ 39\\ 65\\ 48\\ \end{array}\right $

TABLE LXXXVII.

		Но	ս ։ .		Nature of	Changes at Cape	Denison.		C	omponen	t Ranges	3.	
	Date.			Esk. Z				E	skdalemu	lir.	Ca	pe Denis	on.
		From.	То.		D	H	z	ΔN	∆w	ΔZ	∆н	ΔD	Δz
Jan. Feb. Mar. ,, April ,, May ,, July ,,	$18-19 \\ 10 \\ 11-12 \\ 14 \\ 24 \\ 30 \\ 4-5 \\ 14 \\ 28 \\ 9 \\ 12 \\ 29 \\ 12 \\ 29 \\ 12 \\ 14 \\ 20 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$23\frac{1}{2}$ 23 22 20 0 21 23 17 22 22 17 14 12 18 12 14	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ tr. ++ ++ ++ ++	irreg. WE WE r WEW EWEW WE m WE m WE WE WE WE WE WE WE WE WE WE WE WE WE	irreg+ + -+ + + + + + +	irreg. irreg. + -++ tr. irreg. + ++ ++ irreg. ++ ++ irreg. ++ ++ ++ ++ ++ ++-+ ++-+ ++-++ ++-++ ++++-	104 35 30 77 38 54 35 19 28 18 27 48 44 44 37 45	40 11 53 70 27 30 28 16 14 13 11 9 18 19 33 19	13 3 5 16 2 12 13 9 21 21	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	236 28 114 138 95 81 68 23 17 45 10 69 106 9 106 33 33 33	$\begin{array}{c c} & & & \\ & & & \\ 211 \\ & & & \\ 27 \\ 190 \\ & & & \\ 150 \\ & & & \\ 68 \\ & & & \\ 93 \\ & & & \\ 87 \\ & & & \\ 11 \\ & & & \\ 21 \\ & & & \\ 87 \\ & & & \\ 11 \\ & & & \\ 21 \\ & & & \\ 35 \\ & & & \\ 10 \\ & & & \\ 60 \\ & & & \\ 114 \\ & & & \\ 26 \\ & & & \\ 60 \\ & & & \\ 31 \end{array}$
", Mar.	23 14	 1 4	3 8	-+	irreg. irreg.	irreg. irreg.	irreg. irreg.	18 50	33 44	8	21 113	31 120	$\begin{array}{c} 23 \\ 136 \end{array}$

(e) Type NS and irregular or trifling in W or waves at Eskdalemuir.

TABLE LXXXVIII.

(f) Type SN at Eskdalemuir.

	Но	u r.		Natur	e of Changes at-	-			Con	iponent	Range	3.	
Date.			Eskda	lemuir.		Cape Denison.		Es	kdalem	uir.	Caj	e Deni	son.
	From.	To.	w	z	D	н	Z	ΔN	∆w	Δz	ΔH·	ΔD	ΔZ
Jan. 30 Feb. 26 Mar. 8 , 15 April 10 , 12 May 7 , 27 June 26 , 27 July 15	7 9 20 11 9 14 1 13 9 13 17 16	9 12 24 13 11 16 3 15 13 15 13 15 18 8 8 8 8 8 8 8	OSC tr. EWEW irreg. tr. irreg. EWE OSC irreg. tr. tr. irreg.	+ - + -+ + -+ + +	E m EW irreg. EW m EW m WE m EW EW EW EW EW EW W W m	irreg. -+r irreg. +-+ OSC +-+- -+m +-+r -+r irreg. irreg.	irreg. + r irreg. ++- ++ irreg. +	$\begin{array}{c} 74\\ 50\\ 43\\ 56\\ 31\\ 54\\ 69\\ 34\\ 50\\ 35\\ 18\\ 52\\ \end{array}$	$\left \begin{array}{c} 47\\ 28\\ 49\\ 28\\ 17\\ 33\\ 54\\ 26\\ 53\\ 14\\ 8\\ 28\\ \end{array}\right $	5 21 41 9 18 .19	54711131356748836037931323	139 91 101 137 145 97 120 83 39 71 10 51	$\begin{array}{c c} 116\\ 34\\ 126\\ 167\\ 117\\ 60\\ 125\\ 76\\ 46\\ 95\\ 11\\ 43\\ \end{array}$

TABLE LXXXIX.(g) Type EW at Eskdalemuir.

	Но)ur.		Nat	ure of Changes	at—			. C	ompone	ent Ran	ges.	
Date.			Eskda	lemuir.		Cape Denison.		Es	kdalem	uir.	Cap	e Denis	on.
	From.	To.		z	D	н	z	ΔN	ΔW	∆z	∆н	∆D	Δz
Feb. 12-13 Mar. 21 April 12 July 21 ,, 31	$22 \\ 18 \\ 18 \\ 2 \\ \frac{1}{2}$	220 20 4 21	NSNSNS tr. SNS m NSN NSNS	+ +- +	irreg. WE WE WE m irreg.	irreg. + m irreg. irreg. irreg.	irreg. — + — + + irreg.	49 17 58 23 19	$ \begin{array}{r} 35 \\ 46 \\ 89 \\ 34 \\ 24 \end{array} $	14 7 3	167 42 32 38 31	112 48 81 53 31	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

372[°]

TABLE XC.

(h) Type WE at Eskdalemuir.

i	Но	ur.		N	ature of Change	s at—	** * *******		Ċ	ompone	ent Ran	ges.	
Date.			Eskda	alemuir.		Cape Denison.	· · · ·	Esl	dalemu	ir.	Cap	e Denis	 on.
	From.	То.	N	Z	D	н	Z	ΔN	∆w	ΔZ	∆н	ΔD	ΔZ
Feb. 1 April 28 May 7 June 29	0 1 22 3	$\begin{array}{c} 2\\ 4\\ 24\\ 6\end{array}$	SNS tr. irreg. SNS	OSC 	WE WE m irreg. WE	irreg. + m irreg. +	$\begin{array}{c} + - \\ - + m \\ \text{irreg.} \\ - + \end{array}$	28 25 24 35	39 40 43 55	24	47 104 97 88	$102 \\ 82 \\ 91 \\ 27$	78 54 95 83

TABLE XCI.

(i) Type NS, NS; EW, EW at Eskdalemuir.

	1	Но	ur.		Nature o	f Changes at Ca	pe Denison.	1	c	omponer	it Range	s.	
Date.				Esk. Z				Es	kdalemu	ir.	Ca	pe Denis	on.
		From.	То.		D	H H		ΔN	۸W	Δz	Δн	∆D	ΔZ
Mar. 15 ,. 17 April 16	 	19 0 20	$\begin{array}{c} 21\\ 4\\ 23\end{array}$	-	EW m WE m WE m	$\begin{vmatrix} +-m\\ -+m\\ -+m \end{vmatrix}$	$\begin{vmatrix} \cdot + - m \\ - + m \\ - + m \end{vmatrix}$	52 68 52	44 56 54		44 138 32	59 150 40	95 119 44

TABLE XCII.

(j) Type SN, SN; EW, EW at Eskdalemuir.

	ļ	H	our.		Nature of	Changes at Ca	pe Denison.			Compon	ent Rang	ges.	
Date.	ļ			Esk. Z				Es	kdalemu	ir.	Cap	e Deniso	
		From.	То.		D	н	Z	ΔN	ΔW	∆Z	∆н	ΥD	- Δ %
Mar. 23 June 9 ,, 13	 	14 22 20	$\begin{array}{c}16\\24\\22\end{array}$	tr.	WEWE W m irreg.	+ m — m irreg.	$\begin{array}{c} + m \\ -m \\ \text{irreg.} \end{array}$		$53 \\ 29 \\ 12$	3	$69 \\ 45 \\ 25$	68 44 20	$\begin{vmatrix} 133\\41\\25\end{vmatrix}$

TABLE XCIII.

•	Ho	ur.		Nature of	Changes at Cape	Denison.	 	C	omponer	t Range	3	
Date.			Esk. Z		•	9	Es	kdalemui	г.	C	ape Denis	son.
	From.	To.	_	D	• н	z	ΔN	∆w	ΔZ	∆н	ΔD	∆z
Feb. 14 Mar. 14 , 14 , 14 , 21 April 4 , 9 , 9 , 17 , 27 May 4 , 7 , 13 , 18 June 1 , 29 , 29 , 29 , 29 July 1 , 10 , 12 , 15 , 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ + irreg. + + + + tr. + + + + + + + + + + + + + + + + + + +	irreg. irreg. irreg. E m WE WE m WE m WE m EW m irreg. irreg. irreg. irreg. irreg. irreg. irreg. WE wE WE WE WE WE WE WE WE WE WE WE WE WE WE	irreg. irreg. irreg. irreg. + irreg. +-+-+ irreg. ++ irreg. + r irreg. + r irreg. irreg. irreg. irreg. irreg. irreg. + r irreg. + r irreg. + r irreg. + -+-+ + -+- irreg. + -+-+ irreg. + -+-+ irreg. + -+-+ irreg. + -+-+-+ irreg. + -+-+-+ irreg. + -+-+-+ irreg. + -+-+-+ irreg. + -+-+-+ irreg. + -++-+ irreg. + -+++ irreg. + -+++ irreg. +++ irreg. +++ irreg. +++ irreg. +++ irreg. +++ irreg. +++ irreg. ++ irreg. irreg. +++ irreg. ++ irreg. irreg. irreg. irreg. irreg. irreg. irreg. irreg. irreg. irreg. irreg. irreg. irreg. irreg. 	irreg. + - m + - + - irreg. + - + - irreg. + - + - irreg. + - + irreg. + r irreg. irreg. irreg. irreg. irreg. irreg. + - + - + - + - + - + - + - + - + - + -	$\begin{array}{c} 90\\ 49\\ 72\\ 35\\ 37\\ 122\\ 84\\ 43\\ 42\\ 44\\ 45\\ 26\\ 37\\ 22\\ 27\\ 40\\ 46\\ 35\\ 39\end{array}$	$\begin{array}{c} 33\\ 39\\ 72\\ 62\\ 31\\ 28\\ 163\\ 91\\ 54\\ 36\\ 41\\ 35\\ 14\\ 20\\ 55\\ 14\\ 20\\ 55\\ 24\\ 13\\ 16\\ 11\\ 12\\ 18\\ 19\\ 19\\ 19\\ 19\\ 11\\ \end{array}$	8 84 29 7 7 4 13 5 10 13 9 18	$\begin{array}{c} 76\\ 61\\ 335\\ 52\\ 49\\ 28\\ 101\\ 129\\ 37\\ 39\\ 37\\ 44\\ 14\\ 8\\ 41\\ 50\\ 10\\ 14\\ 24\\ 38\\ 18\\ 46\\ 18\\ 46\\ 18\\ 46\\ 18\\ 46\\ 18\\ 46\\ 27\\ \end{array}$	$\begin{array}{r} 87\\77\\133\\57\\59\\153\\97\\63\\79\\48\\37\\9\\10\\43\\54\\17\\25\\33\\24\\21\\98\\36\\42\\28\\36\\42\\26\end{array}$	$ \begin{vmatrix} 126 \\ 75 \\ 371 \\ 119 \\ 85 \\ 41 \\ 278 \\ 125 \\ 60 \\ 25 \\ 41 \\ 8 \\ 11 \\ 27 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 25 \\ 41 \\ 8 \\ 11 \\ 25 \\ 25 \\ 41 \\ 8 \\ 12 \\ 54 \\ 16 \\ 16 \\ 18 \\ 22 \\ 29 \\ 29 \\ 29 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$

Horizontal components at Eskdalemuir; irregular including oscillatory.

TABLE XCIV.

Sharp oscillations including SC, S.

		1	Na	ture of Cl	hanges at	ļ.			Com	ponent	Ranges			
Date.	Time.	E	skdalenu	ur.	Ca	pe Denis	on.	Esk	dalemu	ir.	Caj	pe Deni	son.	Description.
		N	w	z	D	н	Z	ΔN	∆w	Δz	Δн	ΔD	Δz	
an. 29 eb. 14 , 26 [ar. 8 , 11 , 11 , 11 , 11 , 14 , pril 8 lay 23 une 23 uly 20		N N N N N N N N N N N N N N N N N N N	W W WE W W W W W W W W E	+	EW EW EW EW EW EW EW EW EW EW EW EW	+ + + + + + + + + + + + + + + + + + + +		$ \begin{array}{r} 10 \\ 4 \\ 17 \\ 19 \\ 24 \\ 26 \\ 18 \\ 23 \\ 41 \\ 10 \\ 26 \\ 2 \end{array} $	7 9 21 0 18 18 8 26 15 9 9 8	3 1 0	$\begin{array}{c} 44\\ 49\\ 75\\ 71\\ 4\\ 3\\ 6\\ 52\\ 28\\ 13\\ 47\\ 26 \end{array}$	$ \begin{array}{r} 45\\12\\114\\50\\3\\5\\7\\45\\19\\5\\15\\41\end{array}$	$54 \\ 41 \\ 27 \\ 90 \\ 6 \\ 5 \\ 10 \\ 37 \\ 22 \\ 7 \\ 29 \\ 10$	SC. SC. ? SC. ? Oscillation not SC. Oscillation not SC. Sharp oscillation not SC. SC. SC. SC. ? SC. SC. ?

TABLE XCV.

		u.				Nature of c	hanges at	•	•		Coi	mponén	t Range	s at	
D	ate.				Eskdalemuir.		c	ape Denison.		Esk	dalemu	ir.	Cap	e Denis	on.
_		From.	To.	N	w	Z	D	н	z	ΔN	∆w	Δz	∆н	ΔD	Δz
Jan. Feb.	19–20 15	$\begin{smallmatrix} 21\frac{1}{2} \\ 0 \end{smallmatrix}$	0‡ 4	SNS NSNS	irreg. WEW		irreg. OSC	irreg. OSC	irreg. OSC	50 57	33 68		121 243	114 193	$\left \begin{array}{c}105\\299\end{array}\right $
Mar. "	15–16 16 23	$\begin{array}{c} 23\\ 20\\ 0\end{array}$	$2 \\ 24 \\ 2$	SNS irreg. NSN	WEW EWEWm EWEm		irreg. irreg. Em	irreg. irreg.	irreg. irreg.	35 39. 37	54 92 49	·	130 101 -96	198 103 104	129 150 54
,, April May	-0 9 4	$\begin{array}{c}12\\16\end{array}$	$1\overline{6}$ 19	NSNSNS NSNS	WEWE	++++++	irreg. WEWm	irreg. +—	irreg.	94 96	84 60	59 35	317 55	170	343 123
", June	25 - 19	$\frac{2}{18}$	$\frac{4}{20}$	NS SNSNSN	Em	<u></u>	WE Wm	—+ irreg.	—+ —	14 42	31 22	8	39 15	41 19	74 24
July 	12 13	14 16	$\frac{16}{18}$	Nm SNSN	irreg. irreg.	+ `	Wm Wr	+m irreg.	—m —+	87 45	29 22	9 10	84 22	54 59	$\begin{array}{c}101\\60\end{array}$
,, ,, ,,	$\frac{20}{25}$	$\begin{array}{c}10\frac{1}{2}\\10\end{array}$	12 11	S NSN	tr. irreg.	irreg.	EW irreg.	 +m	+r +	44 45	12 18	8 4	41 23	76 40	36 44

Miscellaneous Disturbances at Eskdalemuir.

§17.—Relative Directions of the Corresponding Movements in Simpler Bay Disturbances.

Tables LXXXIII to LXXXVI together give the chief available characteristics of 59 disturbances in which the changes in both horizontal components at Eskdalemuir were fairly regular and for the most part consisted of an increase or decrease followed by a decrease or increase in the normal field strength. They were therefore most purely of the simple bay type. Table LXXXV relating to the most frequently occurring class of bay at Eskdalemuir in which the superposed field during the first phase was directed to decreasing both the north and west components of the normal field, shows that in only a quarter of the cases selected were the changes in H at Cape Denison directed similarly to those at Eskdalemuir in both phases of the movement and another six showed the initial fall only. On four occasions the direction of change of the meridian field at Cape Denison was opposed to that at Eskdalemuir. Again, corresponding with the ' 28 EW movements at Eskdalemuir only six were similarly directed at Cape Denison in both phases; nine of the 28 at Cape Denison were mainly opposite to those at Eskdalemuir in both phases, and another six had either the first movement to W or consisted of a series of movements directed WE, WE. Want of information about the vertical component at Eskdalemuir does not allow comparison of the field changes in that direction.

These features of the class of disturbance SN, EW at Eskdalemuir as given in ¹ Table LXXXV as summarised in the third line of Table XCVI. This latter table presents the results of a similar analysis of the changes at Cape Denison corresponding with the simpler changes in the horizontal components at Eskdalemuir as compiled in Tables LXXXIII to XC. Movements at Cape Denison characterised as triffing (tr.) or very small, or again, as irregular and oscillatory with no specified direction in these

constituent tables are naturally excluded from the analysis. An entry in the column headed NS means that corresponding with the Eskdalemuir changes in the first column, the change of force component along the meridian at Cape Denison has mainly been as an increase to the north and a subsequent decrease. If the corresponding change at Cape Denison was multiple such as NSN but with the first movement directed northwards followed by a relaxation towards the original position, or again, if the changes have been just perceptible though with a net northward trend, or even simply a movement northward without apparent return within the specified interval, the column headed NS (partly) or N has been credited. A similar procedure has been adopted for the other directions.

TABLE XCVI.

Nature of changes at Cape Denison. Changes at Eskdalemuir. No. Along meridian. Across meridian. NS partly SN partly EW partly or E WE partly NW WE NS SN ЕW NS,EW 15 6 10 NS,WE 24 26 6 28 10 18 12 1 9 2 8 1 7 SN.EW ••• 3 6 6 $\begin{array}{c}
 3 \\
 2 \\
 1 \\
 2
 \end{array}$ 3 4 2 SN.WE ••• 1 1 5 1 NS ••• 1 $\frac{5}{2}$ 1 5 4 2 3 ... 5 1 3 ... ••• 2 3

Direction changes of disturbing force at Cape Denison corresponding with changes in selected disturbances at Eskdalemuir.

Summarising the somewhat indefinite results from this secondary analysis it turns out that :---

- 1. In 39 (= 15 + 6 + 18) occurrences of an NS movement at Eskdalemuir, the number of cases of movement wholly or partly NS or simply N at Cape Denison was 5 and in the opposite direction 17.
- 2. In 50 (= 28 + 10 + 12) occurrences of SN at Eskdalemuir there were 23 of SN or simply S at Cape Denison and 11 simultaneously directed NS.
- 3. In 48 cases of EW at Eskdalemuir, 10 were EW wholly or partly or simply E at Cape Denison and 28 in the opposite direction; and
- 4. In 20 cases of WE at Eskdalemuir, 4 were EW wholly or partly or simply E at Cape Denison and 9 were in the opposite direction.

From such results the only justifiable conclusions are :---

- 1. Whether the disturbing vector directed northward at Eskdalemuir tends to a decrease or an increase of the normal quiet field, the tendency at Cape Denison is for the south force to increase; and
- 2. With somewhat greater validity, disturbance in which the component directed eastward is most strongly developed in the first phase at Eskdalemuir tends to be associated with an oppositely directed disturbing field at Cape Denison.

§18.—Intensity of the Disturbance Vector Components in the More Regular Movements.

Mean ranges $\overline{\Delta N}$, $\overline{\Delta W}$ for the horizontal components at Eskdalemuir and $\overline{\Delta H}$, $\overline{\Delta D}$ and $\overline{\Delta Z}$ for the three components at Cape Denison for each of the groups of disturbance are collected in Table XCVII. The table also gives a weighted mean for 131 disturbances assigned to one or other of the specific classes of relatively longer period and a further general mean got by taking in the results the group 'miscellaneous.' The final lines of the table show the ranges from the two groups, first, of twelve sharp oscillations including the possible sudden commencements and, second, these last alone.

TABLE XCVII.

Mean ranges of Components of disturbing force at Eskdalemuir and Cape Denison during simultaneous disturbances.

			Eskdale	muir.		Cap	e Denis	0 n.	$\Delta N^2 + \Delta W^2$.
Type of Change at Eskdalemuir.	No.	ΔN	∆₩	$\Delta N^2 + \Delta W^2.$	ΔĦ	ΔD .	Δz	$\left \Delta \mathbf{H}^{s} + \Delta \mathbf{D}^{s} \right $	$\Delta H^{*} + \Delta D^{*}$ as per- centage.
NS, EW NS, WE SN, WE NS and irregular or very small in EW or WE SN and irregular or very small in EW or WE EW and irregular or very small in NS or SN WE and irregular or very small in NS or SN NSNS, EWEW SNSN, EWEW Irregular and oscillatory Mean of classified (slower) movements Miscellaneous	$ \begin{array}{r} 15 \\ 6 \\ 28 \\ 10 \\ 12 \\ 5 \\ 4 \\ 3 \\ 27 \\ 131 \\ 13 \\ 144 \end{array} $	46 38 44 31 47 33 28 57 35 44 42 52 43	47 31 36 40 27 32 46 44 51 31 37 37 37 - 44	4325 2405 3232 2561 2410 3233 3205 2720 5850 2186 3305 3133 4640 3293	77 58 58 73 71 66 62 84 71 46 52 64 99 67	82 57 62 65 71 90 65 75 83 44 55 67 99 70	77 48 70 73 75 85 73 77 66 66 66 72 73 119 77	12653 6613 7208 9554 10082 12456 8069 12681 11930 4052 5729 8585 19602 9389	$\begin{array}{c} 34\\ 36\\ 45\\ 27\\ 24\\ 26\\ 40\\ 21\\ 49\\ 54\\ 58\\ 36\\ 24\\ 35\\ \end{array}$
Sharp oscillations including S.C.'s Possible S.C.'s alone	12 9	18 17	12 11	468 410	35 45	30 38	28 35	2125 3469	22 12

Although the omission of vertical data for Eskdalemuir detracts from the usefulness of the table, the relative variations of intensity as between the horizontal components at the two stations separately in each of the classes of disturbances and the relative intensities as between the two stations are not without interest.

Over the 144 movements which comprise Tables LXXXIII to XCIII, the average N range at Eskdalemuir is 64% of the H range at Cape Denison and $\overline{\Delta W}$ is 54% of ΔD expressed in force units. But in individual classes the relative intensities of the corresponding components of the disturbing vectors at the two stations may be as high as 85% as in the case of N and H in the class of 27 irregular and oscillatory movements or as low as 33% for the ratio of the same components in the class described as WE at Eskdalemuir.

Variations in the relative intensity of the vector components at each station separately are naturally dependent on the class of disturbance. For example, while the expectation for all short slow period disturbances at Eskdalemuir is to have ΔN 13% greater than ΔW , the excess of ΔN over ΔW is increased to 47% if the choice of the disturbance is that of Table LXXXVIII. On the other hand, ΔW at Eskdalemuir may be 33% greater than ΔN as in the class 'WE with irregularities in N.' In addition to these extreme cases which arise purely from the manner of selection, the intensity of the east-west component of disturbing force relative to that along the meridian departs seriously from the average only in the class of bay SN, WE. In this class ΔW exceeds ΔN by 29%. At Cape Denison the disturbing vector directed along the meridian is normally smaller than that transverse to it but in the class of bay disturbance SN, WE in which the customary relationship at Eskdalemuir is most affected, the relative intensities at Cape Denison are similarly affected.

Considering now the group of 12 sharp oscillations, $\triangle N$ exceeds $\triangle W$ by 50% at Eskdalemuir and $\triangle H$ exceeds $\triangle D$ (always expressed in force units) at Cape Denison by 17%. At the same time $\triangle N$ is only 51% of $\triangle H$ and $\triangle W$ 40% of $\triangle D$. If the possible sudden commencements alone are considered these last percentages are reduced to 38% and 31% respectively.

A better basis of comparison for the activity of the disturbing forces in the horizontal plane at the two stations is afforded by the data of those last three columns of Table XCVII, which give the sums of the squared ranges $\Delta N^2 + \Delta W^2$ and $\Delta H^2 + \Delta D^2$ and the ratios of these sums for each class of disturbance. If the squared ranges are taken as representative measures, the activity at Eskdalemuir for all slower movements is on the average only a little over one third of that at Cape Denison, but may be as high as 58% in irregular and oscillatory movements or as low as 21% when the basis of comparison has been a bay movement at Eskdalemuir with the principal disturbing component in the first phase directed westward. A feature of interest is the value of the ratio for the square of the resultant vector in the horizontal plane at Eskdalemuir to that at Cape Denison. The value, 45%, is higher than for any other of the first eight disturbance types of the table in which the force changes at Eskdalemuir approach regularity in at least one component. At the bottom of the list, the intensities of the forces in the disturbances described as possible sudden commencements at Eskdalemuir are seen to be very diminutive images of their Antarctic counterparts.

§19.—VARIATIONS IN RELATIVE DISTURBANCE INTENSITY AT CAPE DENISON AND ESKDALEMUIR WITH TIME OF DAY.

A further analysis of the parent table from which Tables LXXXIII to XCIV were derived was directed to an examination of the question whether disturbances occurring within particular intervals of the day at Eskdalemuir were more closely associated with corresponding disturbances in the Antarctic than at other times; and, further, what influence the time of occurrence had on the intensity of the components of the disturbing force along the three mutually perpendicular directions. The procedure was to divide the day into six intervals 0h. to 4h., 4h. to 8h., — 20h. to 24h. and form groups of those disturbances in the primary (unpublished) table which occurred wholly within one or other of the subdivisions of the day. Since the fewest disturbances had been noted as occurring in the Greenwich morning and forenoon intervals they were eventually combined into one group covering the period of 8 hours from 4h. to 12h. Even this combined class contained only 17 disturbances. Altogether 116 of the primary list of disturbances were classified, the remainder occurring partly in one, partly in the next interval were omitted. The mean ranges for the two horizontal components at Eskdalemuir and the three components ΔH , ΔD and ΔZ at Cape Denison for each of the five day-divisions are given in Table XCIX. The second column of the table contains the number of disturbances contributing to each set of means.

TABLE XCVIII.

Variation of average components of disturbing force with time of occurrence.

Disturbances			Eskda	lemuir.		Cap	Denisor	ı.	$\Delta N^2 + \Delta W^2$
Wholly Between—	. No.	ΔN	∆W	$\Delta N^2 + \Delta W^2.$	ΔH	ΔD	ΔZ	$\Delta H^2 + \Delta D^2$	$\Delta H^2 + \Delta D^2.$
0h. and 4h	19	42	42	3528	80	78	78	12484	28
4h. and 12h	17	42	31	2725	52	68 64	60	7328	37
16h. and 20h	$\frac{22}{28}$	· 44	30 37	3305	31	- 04 50	90 58	3461	95
20h. and 24h	30	43	45	3874	69	77	74	10690	36
12h. and 16h.‡,	18	40	22	2084	47	50	57	4709	44

‡ Omit	ting four	days of	largest	ΔH
--------	-----------	---------	---------	----

Features in the Eskdalemuir results which attract attention are the comparative constancy of the $\triangle N$ means throughout the day and, by contrast, the variability of $\triangle W$. For disturbances in the last four hours of the day $\triangle W$ is 50% than $\triangle W$ in disturbances occurring within four hours after noon. There is, therefore, a diurnal variation in the ratio of $\triangle N$ to $\triangle W$, $\triangle N$ exceeding $\triangle W$ from 4h. to 20h. especially in the interval 4h. to 16h. but being approximately equalled from 20h. to 4h. Similar features at Cape Denison are not apparent from this analysis. The reversal of the customary excess of $\triangle D$ over $\triangle H$ during the first afternoon interval looks novel. In reality, however, it is explained by the circumstance that of the 22 disturbances contributing to the mean in the group occurring between 12h. and 16h., three had the outstandingly high ranges in H, 236_Y, 335_Y and 317_Y and one of 122_Y. If the disturbances with these components are eliminated from the group the means from the remaining 18 are as follows, the unit as usual being $\gamma :=$

Hence the usual feature of $\triangle D$ exceeding $\triangle H$ at Cape Denison is restored. As was also deducible from Table XCVII, the vertical component of the disturbing vector at Cape Denison is seen to be greater than either of the horizontal components. Table XCVIII now provides the further information that as compared with the horizontal components the prominence of Z in disturbances at Cape Denison is least from 0h. to 4h. and greatest from 12h. to 16h.

By examining the separate constituents of the tables for the five sub-divisions of the day and noting the frequency of occurrence with which $\triangle N$ exceeded $\triangle W$ or the reverse for the Eskdalemuir components and the number of occurrences of highest value of $\triangle H$, $\triangle D$ and $\triangle Z$ in each disturbance for Cape Denison Table XCIX was compiled. A half occurrence was attributed to each of two equal ranges. This analysis confirms in somewhat greater detail the conclusions already drawn from the consideration of the mean ranges of the separate groups.

TABLE XCIX.

Relative frequency of precedence of component ranges in groups of hours.

Inter	val.	No. of	No. of D	ays when-	` No. c	of Days whe	n
From.	То,	Occur- rences.	∆N Greater.	∆W Greater.	∆H Greatest.	∆D Greatest.	ΔZ Greatest.
h. 0 4 12 16 20	h. 4 12 16 20 24	19 17 22 28 30	$ \begin{array}{c} 6\\ 12\\ 21\frac{1}{2}\\ 22\\ 15 \end{array} $	$ \begin{array}{c} 13\\5\\-\frac{1}{2}\\6\\15\end{array} $	6 <u>1</u> 1 3 2 6 <u>1</u>	8½ 9 8 13½ 11½	$ \begin{array}{r} 4 \\ 7 \\ 11 \\ 12 \\ 12 \end{array} $

Using squared ranges as basis, the final column of Table XCVIII shows the variation of activity of the disturbance vectors in the horizontal plane for the five intervals of the day. The period 16h. to 20h. stands out conspicuously as that part of the day when disturbance at Eskdalemuir approaches in intensity simultaneous disturbance at Cape Denison. If, as in the examination above for the group 12h. to 16h., the four days of largest $\triangle H$ at Cape Denison are excluded the values of $\triangle N^2 + \triangle W^2$ and $\triangle H^2 + \triangle D^2$ become 2084_{Y^2} and 4709_{Y^2} respectively with the ratio of Eskdalemuir to Cape Denison 44%. Accepting the value instead of 27% derived from all the 22 days, the conclusion is that, relative to Cape Denison, disturbance intensity at Eskdalemuir increases from 4h. to 20h. and then falls off to a minimum in the first four hours of the day.

At Cape Denison disturbance is a maximum about $11\frac{1}{2}h$. L.M.T. (2h. G.M.T.), falls off to a principal minimum at 18h. L.M.T. ($8\frac{1}{2}h$. G.M.T.), has a rather feeble secondary maximum at 23h. L.M.T. ($13\frac{1}{2}h$. G.M.T.) and, after decreasing slightly at $2\frac{1}{2}h$. L.M.T. (17h. G.M.T.), rises steadily again to the pre-midday maximum. Disturbance at Eskdalemuir, on the other hand, has a principal maximum at 21h. and a minimum at 10h. with no certain secondary developments. Hence the times of maximum and minimum values of the ratio disturbance intensity at Eskdalemuir. Disturbance intensity at Cape Denison using the 18 constituents from the interval 12h. to 16h. are at least partly accounted for by the combination of the two diurnal distributions with the added accidental factor of an unusually low development in disturbance at Cape Denison between 16h. and 20h. during the months examined.

13-1

CHAPTER IV.—TERM HOURS.

§20.—General Considerations: Co-operating Stations and Magnetic Character of Scheduled Hours.

Much interest attaches to a detailed comparison of simultaneous records of disturbance from a number of stations distributed over a wide range of latitude and longitude, especially, if, in the registration, arrangements have been made to ensure an open time scale for the purpose of accurate timing of corresponding movements. Unless special provision can also be made for a temporary increase of sensitivity in the magnetographs at the same time as the increase is made in the rotation period of the recording drum, identification of critical stages even in moderate disturbance is troublesome and estimates of such features as times of occurrence and lengths of ordinate at maximum and minimum values of the field are made uncertain through the flattening of the trace. Nevertheless, results from the 'term hours,' as such pre-arranged intervals are called, during which quick-run records are made, of the British Antarctic Expedition 1902–04 had been of sufficient value to prompt further trials in the British and Australian Expedition covering the years 1910–14.

It was unfortunate that the results of either of these expeditions could not have been examined before the list of term hours for the other were fixed. For though the choice in season was necessarily restricted by the arrangements of the expedition, a greater concentration of hours in those months which have now been seen to be more prolific in short period disturbances in the Antarctic could probably have been arranged. Further, with the knowledge that the diurnal incidence of this type of disturbance varies in a pronounced manner with the locality of the station relative to the magnetic pole, a slightly different distribution of the term hours throughout the day might have increased the expectancy of recording representative short period disturbances at both bases.

TABLE C.

	Stat	on.			φ		λ		Stati	on.		ł	9	P	;	۱.
			 	٥	,	0	,	· · · · · · · · · · · · · · · · · · ·				<u>-</u>	•		•	,
Stonyhurst	•••	•••	 	53	51N	2	28W	Melbourne			•••		37	32S	145	28E
Eskdalemuir	•••	· · · ·	 	55	19N	3	12W	Cape Denison		•••			67	08	140	40E
Pilar			 	31	41S	63	51W	Buitenzorg					6	35S	106	47E
Vieque			 	18	9N	65	26W	Toungoo					18	56N	96	27E
Cheltenham	•••	••••	 	- 38	44N	76	51W	Barrackpore	••••		•••		22	46N	88	22E
Agincourt			 	43	47N	79	16W	Dehra Dun			•••		- 30	19N	78	3E
Tucson		•••	 	32	15N	110	50W	Kodaikanal		•••	•••		10	14N	77	28E
Sitka		•••	 	57	3N	135	20W	Helwan	•••				29	52N	31	21E
Honolulu	•••	•••	 	21	19N	158	4W	De Bilt					52	6N	5	ПE
Cape Evans			 	- 77	38S	166	24E	Val Joyeux	•••	•••	•••		48	49N	2	1 E

Stations co-operating in the 1912-13 scheme of term hours.

* 64550-D

In addition to Cape Evans, the base station of the British Antarctic Expedition, which had already completed its own scheme of hours, 18 stations contributed to the schedule arranged in conjunction with the Australian base station at Cape Denison. Table C gives the list of stations from which data either in the form of quick-run records (copies or originals) copies of ordinary slow-run records or special eye observations were obtained. The next table (Table CI) gives details of the dates and Greenwich times of the selected hours together with the international character figure for each of the days and the character figure for the separate hours for which magnetograms from the Antarctic stations were available. In the expectation of a maximum frequency of short period disturbance in the early evening hours at Cape Denison one of the sets of term hours was fixed at 8h, to 10h. G.M.T., and in the further expectation of at least an average quota of disturbance in the early morning—as well as with a view to comparing the activities at the two periods of the day,—a second set was fixed at 17h. to 19h. G.M.T. Except for the addition of a pair of hours on January 2, 1913, these two sets were arranged, the early evening hours on one day in each month from March, 1912, to January, 1913 and the morning hours on the second day following.

TABLE CI.

to 9h. 9 C.E. C.I	9 to 10th.	Date.	uational Daily	17 to			
C.E. C.I	1 1	11	Character.		18h.	18 to	19h.
	С.D. С.Е.			C.D.	C.E.	C.D.	C.E.
2 2 2 1 2 2 1 2 2 1 0 0 0 0 1 2 1 0 0 0 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1912. March '21 April 18 May 16 June 13 July 18 August 15 September 12 October 10 November 7 December 5 1913. Laurent 2	0.9 0.6 0.1 0.1 0.2 0.4 0.6 0.4 0.1 0.0	1 1 0 0 0 0 1 0 1	1 1 0 0 0 1 1 1 1 1	 2 1 0 1 0 1 0 1 0 1	2 2 1 0 0 0 1 1 2
	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 1 November 7 1 December 5 1 January 2 January 30	0 0 1 November 7 0·1 1 December 5 0·0 1 January 2 1·0 January 30 1·3 1·3	0 0 1 November 7 0·1 0 1 December 5 0·0 1 1 January 2 1·0 2 January 30 1·3 1	0 0 1 November 7 0·1 0 1 1 December 5 0·0 1 1 1 January 2 1·0 2 January 30 1·3 1 1·3 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Character figures for the selected term hours.

The mean international character figure for all the 23 days in the list is 0.45, with the mean for the second set of 12 days containing the 17h. to 19h. periods slightly the higher of the two separate group means. There was no day for which magnetic records at both Antarctic stations are available with an international character figure exceeding 1.0, and the prevalence of 0's and 1's in the hourly characters sufficiently indicates that only slight or very moderate perturbations had characterised the majority of the hours in the Antarctic. In these circumstances the hope of being able to assign times and ranges to corresponding movements at stations distributed widely over the earth is much reduced, for locally developed perturbations, especially in higher latitudes, masks what might be truly general movements.

 $\hat{3}8\dot{2}$

Much consideration has already been given to data furnished by the scheme of term hours arranged in connection with the station at Cape Evans, especially in regard to the estimation of magnetic activity within the hours. There was little likelihood that any considerable adjustments would be necessary to the deductions from that investigation from further information derived from the new material. Rather, since the average intensity of disturbance had rapidly decreased from 1911—the year to which the previous list of hours had been confined—to 1912, the uncertainties attaching to estimation of ordinates and times of singularity in quick-run traces would be exaggerated. For the more level the curve the greater are the probable errors arising from imperfect information about temperature coefficients and also the more troublesome it is to determine at which points the turning values are to be estimated.

§21.—TERM HOUR RANGES AT 20 STATIONS.

Accepting the expressions adapted by Bidlingmaier from the fundamental integral of Maxwell for the energy in a magnetic field for the "activity" of the changing field of the earth's magnetism in quiet or disturbed times, it has been shown that the activity within a limited period can, with a fair degree of precision be expressed as a simple function of the range within the period. If the interval be 60 minutes and the approximate value $\Sigma \eta_n^2/n$ be taken for the true internal activity $\frac{1}{\tau} \int_{\eta=\tau-1}^{t=\tau} then$ $\Sigma \eta_n^2/n = CR^2$ is valid for a wide diversity of recording stations and for the range R encountered in the average hour. The value of the constant C has upper and lower limits 0.25 and 0 respectively but over a large variety of hours the average value approximates to 0.1. If the range is deduced from the values of the ordinates at the instants of maximum and minimum in the curve during the diving, *i.e.*, the extreme range, the constant is smaller than when derived from the relation by the use of the equidistant ordinates which have been used in forming the activity expression. The disparity between the values of the constant obtained in these two ways naturally increases with the intensity of the disturbance within the hour. For the individual hours in Table CI, however, a very fair estimate of the comparative activities would be obtained by squaring the extreme ranges measured within the hour at each of the recording stations. This is the object in providing Table CII.

For each of the 46 hours in the schedule the extreme ranges in the three components at the 20 stations are given when the information furnished was sufficient to allow an estimate to be assigned with confidence. In all stations except Eskdalemuir, Cape Evans and Buitenzorg the range in the column headed D is given both in minutes of arc and its equivalent in force units. At the three stations cited declination as such was not registered and the entry is really the range in the recorded force component oriented most nearly perpendicular to the meridian. It refers to W at Eskdalemuir, E' at Cape Evans and Y (geographical east) at Buitenzorg.

TABLE CII.

Ranges during term hours at 20 Co-operating Stations.

			·			March	19, 1912	2.	_					April 16	3, 1912.			
Station				8h. t	o 9h.		1	9h. to	10h.			Sh. te	o 9h.			9h. to	10h,	
]]	D	н	z	1) . [.]	н	z		D	н	z) <u>.</u>	н	z
·			,	· ~	~	24		~	~~			~	~			~	~	
Stonyhurst			2.0	10	- i 1	I	4.5	23	6	I I	1.6	¹ 8	29	1	1.5	'7	l is	
Eskdalemuir				ĝ	15		10	2	9.		1.0	14	66			16	25	
Pilar			0.6	5	2	. 1	0.3	$\overline{\overline{2}}$	3		0.9	7	21	3	0.3	$\tilde{2}$	11	3
Vieque								-			1.6	14	-8	8	0.6	5	5	3
Cheltenham										·	6.4	37	11	13	$2 \cdot 1$	12	7	11
Agincourt			0.4	2	1		0.3	1	3		17.3	81	26		4.0	19	14	
Tueson											3.8	30	18	3	04	3	-8	1
Sitka											10.6	48	49	103	9.2	41	· 45	70
Honolulu											0.8	7	20	6	0.2	2	8	2
Cape Evans			•••	8	8			8	5			169	172	287	••••	69	60	132
Melbourne										l								
Cape Denison			22	20			. 9	8			>187	>169	115	160	67	61	99	59
Buitenzorg			•••	2	5	4		2	5	1		11	27	12		2	9	6
Toungoo			1.1	13	12	7	0.8	9	· 9	2	1.0	12	23	4	0.7	8	6	3
Barrackpore			1.1	12	9	(1.5	17	9		0.9	10	19	9	0.8	9	9	5
Dehra Dun			0.7	7	4	2	1.6	16	4.	8	1.3	13	26	. 11	0.7	7	9	4
Kodaikanal			1.0	11	30	12	0.6	7	28	10	0.7	8	31	12	0.3	3	5	9
Helwan											1.4	12	21	12	0.5	4	10	3
De Bilt		·	0.3	2	15		$2 \cdot 2$	12	4		3.0	16	41	1	4.8	25	19	
Val Joyeux	•••		0.5	3	18	•••	1.5	8	4		2.6	15	36		2.5	15	14	

Station. Sh. to 9h. 9h. to 10h. Sh. to 9h. 9h. to 10h. D H Z D H Z D H Z D H Z D H Z D H Z D H Z D H Z D H Z D H Z D H Z D H Z D H Z D D D D D D S D D D D D D D D D D D <th colspa<="" th=""><th></th><th></th><th></th><th></th><th></th><th>May 14</th><th>, 1912.</th><th></th><th></th><th></th><th></th><th></th><th></th><th>June 1</th><th>1, 1912</th><th>•</th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th>May 14</th> <th>, 1912.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>June 1</th> <th>1, 1912</th> <th>•</th> <th></th> <th></th>						May 14	, 1912.							June 1	1, 1912	•		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Station.			8h. t	o 9h.			9h. to) 10h.			8h. to	9h.			9h. to	10h.	•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.1	э [.]	. H	z	I	o I	н	z	L L		н	z	τ		н	z	
	Stonyhurst Eskdalemuir Pilar Cheltenham Agincourt Tucson Sitka Honolulu Cape Evans Melbourne Cape Denison Buitenzorg Barrackpore Dehra Dun Kodaikanal Helwan	····	$\begin{array}{c} & & \\ & 1 \cdot 5 \\ & \cdots \\ & 2 \cdot 2 \\ & 5 \cdot 1 \\ & 0 \cdot 5 \\ & \cdots \\ & 2 \cdot 1 \\ & 7 2 \\ & \cdots \\ & 0 \cdot 5 \\ & \cdots \\ & 0 \cdot 5 \\ & \cdots \\ & 0 \cdot 9 \\ & 0 \cdot 2 \\ & 1 \cdot 1 \end{array}$	Y 7 12 2 37 4 116 14 65 4 6 9 2 10	$ \begin{array}{c} \gamma \\ 11 \\ 15 \\ \\ 10 \\ 13 \\ \\ 15 \\ 3 \\ 40 \\ 7 \\ 58 \\ 11 \\ 6 \\ 4 \\ 12 \\ 8 \\ 20 \end{array} $	Y 1 18 2 87 34 2 1 5 16 6	, 1.1 0.5 1.9 2.7 0.2 1.1 25 0.3 0.6 1.0	Υ ⁶ 14 7 9 12 2 48 8 23 9 3 8 7 9	Y 8 10 3 4 5 12 6 32 14 42 7 3 5 3 2 8	γ 9 2 2 31 15 2 0 31 3	, 1.6 0.5 1.0 2.6 3.7 0.3 0.6 2.2 0.4 0.4 0.8 0.9 0.2 1.1	γ 8 8 4 6 12 17 36 4 20 5 5 9 9 9 2 10	Υ ⁵ 10 2 5 8 25 3 16 9 9 9 14 5 14 10	Υ 0 1 6 3 3 1 86 11 2 4 5 1 	3.0 0.6 1.0 2.4 1.0 15 0.3 0.5 1.0 1.0 1.5	$ \begin{array}{c} \tilde{15} \\ 10 \\ 5 \\ 6 \\ 11 \\ $	$ \begin{array}{c} \gamma \\ 5 \\ 4 \\ \vdots \\ 2 \\ 3 \\ 4 \\ \vdots \\ 7 \\ 1 \\ 23 \\ 3 \\ 22 \\ 4 \\ 16 \\ 14 \\ 9 \\ \cdot 24 \\ 7 \\ \end{array} $	Υ 1 1 1 1 2 2 2 94 94 92 2 3 7 5 	

384

TABLE CII—continued.

Ranges during term hours at 20 Co-operating Stations.

					July	16, 1912	2.						August	13, 1912	2.		
Station	l. #.₩		8h. t	0 9h.			9ħ. to	o 10h.			8h. t	o 9h.			9h. to	10 h .	
		1)	н	z [°]	r)	н	z	L.)	н	z	D		н	Z
Stonyhurst Eskdalemuir Pilar Vieque Cheltenham Agincourt Tucson Sitka Honolulu Cape Evans Melbourne Cape Denison Buitenzorg Toungoo Barrackpore Dehra Dun Kodaikanal Helwan	· · · · · · · · · · · · · · · · · · ·	, 0.7 0.9 0.7 1.0 0.9 5.5 0.4 1.7 70 0.9 0.8 0.1 0 0.9	Y 3 12 7 6 6 4 25 3 78 11 64 5 10 9 1 0 8	Y 16 26 10 6 12 14 8 38 21 47 5 6 5 15 15 18 19	Y 1 3 1 38 16 7 6 14 6	, 0.5 0.9 0.8 1.4 4.0 2.2 0.6 1.8 30 0.9 1.3 0.9 1.3 0.9 0.8 0.5	Υ ² 11 7 8 19 10 5 55 12 27 11 10 14 9 9 4	Y 9 3 5 9 12 8 31 15 40 7 4 6 9 18 17	γ 1 3 1 29 1 6 14 10 3	, 0-9 1-3 1-3 0-8 1-5 0-4 0 	Y 5 8 1 6 16 11 2 9 17 4 0 	γ 6 9 3 2 18 13 14 6 7 2 27 	Υ 1 6 5 4 4 11 	, 1·2 0·4 1·8 1·8 0·3 1·0 1·4 0·5 	Y 6 7 3 8 14 10 2 3 11 14 5 	Y 2 6 2 1 15 11 3 6 5 3 21 	Υ 1 5 1 3 19
De Bilt Val Joyeux	 	 $\frac{2 \cdot 2}{1 \cdot 2}$	12 7	20 14	····	$2.5 \\ 1.5$	13 9	7 8	 	$2 \cdot 1 \\ 2 \cdot 1$	11 12	6 7		$2 \cdot 2 \\ 1 \cdot 9$	12 11	3 3	

		<u> </u>		·										····· · ·			
				s	eptemb	er 10, 1	912.						Octobe	r 8, 191	2.		
Station.		<u> </u>	8h.	to 9h.			9h. t	o 10h.			8h. t	o 9h.			9h. t	o 10h.	
÷ •			D	н	z		D	н	z		D	н	z		5	н	z
Stonyhurst Eskdalemuir Pilar Vieque Cheltenham Agincourt Tucson Sitka Honolulu Cape Evans Melbourne	· · · · · · · · · · · · · · · · · · ·	3·8 0·5 0·3 	Y 19 9 4 1 10 	Y 5 9 3 3 7 	Υ 6 4 	3.8 0.4 1.4 	Υ 19 11 3 7 17 	Y 6 10 1 3 10 	Υ 5 6 	1.9 1.3 0.9 3.0 0.1 1.8	Y 10 13 6 7 14 1 29 12	Y 13 13 5 9 3 38 6	γ 0 8 1 9 	2.8 1.3 1.0 5.8 0.1 2.4	Y 14 10 2 6 8 27 1 23 16	$ \begin{array}{c} \gamma \\ 55 \\ 5 \\ \\ 4 \\ 7 \\ 2 \\ 16 \\ 4 \\ 23 \\ 14 \end{array} $	γ . 1 0 13 .1 4
Cape Denison Buitenzorg Toungoo Barrackpore Dehra Dun Kodaikanal Helwan De Bilt Val Joyeux	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{c} 7 \\ 1 \cdot 0 \\ 1 \cdot 2 \\ 1 \cdot 1 \\ 1 \cdot 0 \\ 2 \cdot 5 \\ 1 \cdot 9 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 9 3 6 5 12 7 3	24 5 2 1 4 0 	13 0·7 0·7 1·1 0·1 2·3 3·1	$ \begin{array}{c c} 12 \\ 3 \\ 7 \\ 8 \\ 11 \\ 1 \\ \\ 12 \\ 18 \\ \end{array} $	9 5 7 5 12 9 6	15 4 1 0 1 0 	$ \begin{array}{c} 40 \\ \\ 0.5 \\ 1.0 \\ 0.8 \\ 0.4 \\ 1.5 \\ 1.7 \\ 0.8 \\ 0.8 \end{array} $	$ \begin{array}{r} 36 \\ 6 \\ 11 \\ 8 \\ 4 \\ 13 \\ 9 \\ 5 \\ 5 \end{array} $	23 11 10 10 8 24 10 13 13	33 0 4 5 5 3 	$ \begin{array}{c} 45 \\ \\ 0.4 \\ 0.8 \\ 1.1 \\ 0.3 \\ 1.4 \\ 3.9 \\ 2.5 \\ \end{array} $	$ \begin{array}{c c} 10 \\ 41 \\ 6 \\ 5 \\ 9 \\ 11 \\ \cdot 3 \\ 12 \\ 21 \\ 14 \\ \end{array} $	33 6 8 9 23 4 6 5	54 0 1 10 6

. 385

					N	ovembo	er 5, 19	12.		!			1	Decemb	er 3, 19	12.		
Station	ı .			8h.	to 9h.			9h. t	o 10h.			8h. t	o 9h.	-		9h. to	9 10h.	
	;		1	>	н	z	1	0	н	, z	3	D .	н	z		D (н	z
Stonyhurst			,	r	Ŷ	Υ.	,	Υ	γ	Y	,	γ	Y	γ		γ	γ,	Υ
Eskdalemuir				3	8			5	4			4	7				10	
Pilar								· · · ·			0.2	ī	10	 1	0.4	3	Å	1
Vieque														· · · ·	· · ·		· · ·	
Cheltcnham																		
Agincourt			0.1	1	0		0.3	1	1		0.8	4	6		0.8	4	3	
Tucson										1			l			l		
Sitka	•••																	l
Honolulu	•••																	
Cape Evans				9	12	17		20	13	12							·	
Melbourne																	·*	
Cape Denison			19	17	9	15	8	7	15	13	33	30			44	40		29
Buitenzorg	•••																	
Toungoo	•••																	
Barrackpore	•••	•••																
Dèhra Dun	•••		•••					•••						<i>.</i>				
Kodaikanal	•••	•••	•••								• • • •				•••		••••	
Helwan	•••	•••	•••			·									•••	•••		
De Bilt	•••	•••	0.8	4	8		$2 \cdot 1$	11	3		0.8	4	7		1.1	6	10	
Val Joyeux	•••	•••	· •••	••••					•••			••••						

Ranges during term hours at 20 Co-operating Stations.

					D	ecembe	r 31, 19	12.					J	anuary	28, 191	3.		
Station	•		-	8h.	to 9h.	•	!	9h.	to 10h.	<u> </u>		8h.	to 9h.			9h. to	10h.	
			1)	н	z		D	н	z	. 1)	н	z]	D	н	z
			,	v	Y	Y	,	Ŷ	γ	Y	,	Y	l r	Υ	,	l r	Γ _γ	γ
Stonyhurst				•	•			·	· · ·			1			İ	l	1	
Eskdalemuir				4	7			3	3			4	4			5	8	
Pilor	•••			-	·			Ū				-				Ŭ	ľ	
Ziegung		***			••••			•••										
Vieque	•••	•••					•••	•••		•••		••••			••••			
	•••	•••								•••	1.7			•••	1.9			
Agincourt	•••	•••	0.9	Z	1	••••	0.0	0	4	•••	1.1	•		•••	1.9	0	4	
Lucson	•••	•••	••••		•••			•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••	
Sitka	•••	•••					••••	•••	•••			•••	•••	•••	•••	•••	•••	
Honolulu	•••		••• ;	•••	•••				·	•••			•••	•••				
Cape Evans										•••		•••			•••	•••		
Melbourne															• •••			
Cape Denison											1•7	15	9	18	22	20	17	9
Buitenzorg																		l
Foungoo											·							
Barrackpore																		
Dehre Dun	•••	•••																
Kodajkanal	•••	•••	•••					•••		•••		••••						
Johnan	•••	••••	•••	••••	••••			•••				•••	•••	•••		•••		
	•••	•••			10		1.6			•••	1.0				1.1			
	•••	•••	0.5	1	12	•••	1.0	ð	z	•••	1.0	Э	Э	•••	1.1	0	4	
vai Joyeu x	•••		•••	•••	•••	•••		•••	•••	•••	••••	•••	••••	•••	••••	•••	••••	

.

Ranges during term hours at 20 Co-operating Stations.

·]	March 2	1, 1912					`		April 1	8, 1912	•		
Station.		17h. (to 18h.		. 1	8h. to 1	l9h.			17h. to	o 18h.	Í		18h. te	o 19h.	
	D		н	Z	D	,	н	z	D		н	z	I	>	н	z
Stonyhurst Eskdalemuir Pilar Vieque Cheltenham Agincourt Tucson Sitka Honolulu Cape Evans Melbourne Cape Denison Buitenzorg Barrackpore Dehra Dun Kodaikanal Helwan De Bilt	, 0.8 0.8 1.9 14 0.0 0.2 0.1 0.1 0.4	γ 4 2 6 9 19 13 0 2 1 1 2	Y 4 6 6 111 8 5 6 5 1 3	Y 8 4 0 1 1 1 	, 4.7 0.6 21 0.0 0.1 0.2 0.1 0.2	Υ 24 4 7 3 15 19 0 1 2 1 1 1 	γ 5 4 2 11 18 4 8 4 5 6	Y 7 5 0 2 0 3 	, 0·3 0·7 0·3 0·7 0·9 2·2 1·8 0·8 27 0·0 0·1 0·0 0·4 1·0		Y 3 12 1 1 10 16 2 7 1 25 20 4 5 6 6 7 6	Y 4 0 1 3 4 2 18 41 1 2 2 	, 0.7 0.8 0.2 0.5 0.4 1.9 1.5 0.7 35 0.0 0.0 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Υ ³ 562 32157683 3120 44	Y 5 10 7	Y 9 1 6 6 2 2 4 4 2 31 66 1 1 0 0 1 1 2 2 1

						May 10	6, 1912.							June 1	3, 1912	•		
Station.				17h. t	o 18h.			18h. to	19h.		-	17h.	to 18h.			18h. to	o 19h.	
			I	,	н	z	I	• ´	н	z	1	D C	н	z	1	>	н	Z
Stonyhurst			, 0:7	Y ₃	ĩo	γ	, 0·9	Υ ₅	Υ ₇	Ŷ	; 0·8	Y 4	Y 4	Ŷ	, 1·1	Υ ₆	Υ 8	Ŷ
Eskdalemuir Pilar			1.0	7777	16	7	1.4	8 11	10 4	··· 7	0.8	4 6	$\frac{1}{7}$	 2	 0·7	$5 \\ 5$	$\frac{13}{5}$	 1
Vieque	•••							·							•••			
Agincourt	••••	•••	0.6	3	12		1·3	6	5	•••	2.4	ii	7		1.0	5	14	
Sitka	•••	•••	••••	···· ···		•••									•	••••	••••	
Honolulu Cape Evans	•••	••• •••	•••	 21	23	$12^{}$	•••• •••	21	20	13		17	 8	6		 19	 7	9
Melbourne Cape Denison	•••• •••	 	 19	 18	 13		 20	18		17	 12	iï	iï	 10	21	19	14	8
Buitenzorg Foungoo			0·1	 1	···· 4	 0	 0∙4	$\frac{3}{5}$	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	$\begin{vmatrix} 2\\ 0 \end{vmatrix}$	 0·1	ï	 1	 0	0.1	2 1	42	
Barrackpore Dehra Dun		····	 0·1		6 4	 1	 0·5	 5	3	i i	$\begin{array}{c} 0.2 \\ 0.2 \end{array}$	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	$1 \\ 2$	4 0	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$	1	·4 4	
Kodaikanal Helwan			0.2	2	0	1	0·5	6 	0	1	0·1		2	0	0.1	1	5	0
De Bilt Val Joyeux	•••		1·3 0·5	7 3	10 7	 	1·1 0·7	6 4	7 5	 	0·7 0·8	4 5	6 5		0.8	4 4	12 10	····

						July 1	8, 1912	•						August	15, 191	2.		
Station	ı.			17h. t	o 18h.		.	18h. t	o 19h.			17h. t	o 18h.			18h. t	o 19h.	
			1	D	н	z		D.	н	z	I	>	н	z	I		н	z
tonyhurst			,	Ŷ	۲ 	r		· Y.	Ŷ	Ŷ	, 0·9	۲ ₅	Y 3	Y	, 0∙6	Y 3	Y ₃	Υ
lskdalemuir Filar	•••		 1·4	9	· 9 7			.3	7	 8	0.5	3 4	3 10	 12	 1·7	$\frac{2}{13}$	3 4	 e
⁷ ieque	••••																	
heltenham gincourt	•••		 1·3	 6	 1		1.2	- 5	$\frac{1}{12}$	•••	0.8	 4	 10	····	 1·0	 5	7	
ucson	•••		•••					••••	•••	•••			•••		·	•••	•••	
itka Ionolulu	····		••••						••••	•••		···• ···	•••				•••• •••	
ape Evans	•••		•••	6	7	4		10	5	4		2	3	2		6	8	· :
ape Denison			5	5	7	6	ii	10	4	7	4	3	5	13	7	7	5	1
uitenzorg	•••		0.3			 1	0.5		4 5	5	0.1	 1		$\frac{\cdots}{2}$	0.2	$\begin{array}{c} 0\\2\end{array}$	$\frac{2}{1}$	
arrackpore			0.1	Ĭ	3		0.2	2	3		0.4	4	2	ī	0.1	1	ī	
ehra Dun	•••	•••	0.2	2	1	1	0.2	2	1	1	0.4	4	4	0	• 0•1	1	1	
odaikanal elwan	•••		0.3	3	2	U	0.4	4	1	1	0.0	0	0	0	0.0	0	4	Ι.
e Bilt	••••		1.6	8	. 3		0.4	2	5	· · · ·	0.5	3	3		0.8	4	4	.
al Joyeux	•••		•••	•••		•••					0.8	4	3		. 0.3	2	4	·

Ranges during term hours at 20 Co-operating Stations.

.

ć

				Se	ptembe	r 12, 19	12.					(October	10, 191	2.		
Station			17h. t	o 18h.		、 、	18h. to	» 19h.			17h. t	o 18h,			18h. t	o 19h.	
		I		н.	z	Ľ		н	z	1	D	н	z	1	>	н	z
Stonyhurst Eskdalemuir Pilar Vieque Cheltenham Agincourt Tucson Sitka Honolulu Cape Evans Melbourne Cape Denison Buitenzorg Toungoo Barrackpore Dehra Dun Kodaikanal Helwan	·····	, 1·4 0·3 0·5 0·5 9 0·3 0·1 0·4 0·1 0·4 0·1	Y 7 4 2 20 20 8 3 1 1 4 1 	Υ ₅ 13 3 7 20 4 3 5 5 1	γ 9 10 13 1 0 1 1	, 2.0 0.2 1.2 1.3 0.4 0.3 0.5 0.0	γ 10 2 1 5 38 12 1 5 3 5 0 	Υ ⁵ 10 8 4 10 23 3 2 4 6 5 	γ 20 20 9 22 2 0 0 1 0 	, 3.6 0.8 0.3 1.4 1.1 1.0 1.0 34 0.3 0.2 0.3 0.0 0.2	γ 18 8 6 3 9 5 9 21 31 3 2 3 0 2	Y 5 8 3 5 15 5 5 1 27 48 5 5 5 1 2	Υ 11 4 1 8 2 26 19 1 0 1 0 2	, 1.5 1.1 0.1 0.8 0.9 0.2 0.6 20 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Y 7 3 8 1 4 6 4 2 4 4 4 4 4 4 4 1 8 0 1 2 1 0 1	Y 4 7 2 1 7 3 6 4 3 8 0 19 4 5 5 4 0 3	$\dot{\gamma}$ 13 4 2 1 4 28 16 1 0 1 5 2
De Bilt Val Joyeux	•••	 0·8 0·7	4 4	8 6	·	1.0 0.7	5 4	7 5		1.7 2.0	9			0.8 0.8	4 5	8 7	

		1			N	ovembe	er 7, 191	2.	•					Decemb	er 5, 19	12.		
Station				17h. t	o 18h.			18h. t	o 19h.			17h. te	o 18h.			18h. 1	to 19h.	
			D		н	z		,	н	z	D		н	z	1)	н	z
· · ·			. [· · ·			.				<u>-</u> 		 }			1	<u> </u> -
			· /	Υ	Υ	Ϋ́	´	γ	Υ	ŶΥ	· /	Υ	Υ	Υ		Ŷ	Υ	Υ
onyhurst	•••			•••		•••		••••	•••		•••		•••		•••	•••		••
skdalemuir				1	3	•••		2	3			3	4			3	3	
ilar				•••		•••			• • •		0.8	6	15	10	0.7	5	14	
ieque				•••												• • •		
neltenham]							•••	···· ·]						
gincourt			0.5	2	4		0.5	2	7		0.4	2	7		1.3	5	9	ĺ
ucson																		۰ . .
tka																		
onolulu																		
ane Evans				13	14	12		55	78	31				••••		•••		
albourne	•••			10	1.4	12		00	.0	01	••••			••••	••••	•••		"
no Donison	•••								14	90	20	25		 6	60	55		
the Demson	•••	•••		U	0	'	20	20	14	120	33	55	•••	0	00	00	••••	•••
untenzorg	•••	•••		•••				•••	•••	•••	· • • •		•••	•••		•••	•••	••
Jungoo	•••	•••	•••	•••	•••	•••		•••	•••				•••	•••	•••	•••		••
arrackpore	•••	•••		•••		•••			•••	•••	••••		•••	. •••	•••	•••		
enra Dun	•••	• • •		•••		•••	••••	•••	•••		•••	•••	•••	•••		•••		
odaikanal	•••			•••	•••	•••		•••	•••		••••		•••	•••		•••	•••	
elwan	•••			•••		•••				•••				•••		•••		
e Bilt	•••		0.2	1	1	•••	0.2	1	3		0.8	4	4		0.5	3	3	
al Joyeux	•••					•••			•••							•••		

Ranges during term hours at 20 Co-operating Stations.

January 2, 1913. January 30, 1913. 17h. to 18h. 18h. to 19h. 17h. to 18h. Station. 18h. to 19h. D \mathbf{Z} \mathbf{Z} \mathbf{Z} н \mathbf{D} н D н D н z , Υ... γ γ γ γ γ. Υ γ γ γ γ γ Stonyhurst ... Eskdalemuir ... Pilar Vieque ... Cheltenham 4 4 ••• ••• ••• • • • • • • ... 6 6 ·... 4 5 13 ... 9 . . . • • • ••• $\frac{1}{55}$ 18 30 ... 4 • • • ••• ÷., ••• ... 0.5 ... 3 ... 0·7 $\mathbf{5}$ ••• ••• ••• • • • • • • ••• ••• ••• • • • ••• ... ••• . . . ••• ... ••• ••• ••• ... 10 9 9 20 8 iï 6 $\frac{1}{25}$ $1 \cdot 4$ $1 \cdot 9$ $2 \cdot 1$ $7 \cdot 7$ $0 \cdot 9$ 10 1.8 $\frac{\cdots}{2}$ ••• $\frac{...}{1 \cdot 9}$ ···; 9 • • • ... 0·4 iï Agincourt Tucson Sitka ... Honolulu 20 27 32 8 7 32 10 6 1.9••• ... 4 3 5 4 5 4 ••• ••• 1.1 ·... ••• ••• ••• ••• • • • • • • ••• 4∙4 0∙9 ••• ••• • • • • ... ••• ••• ... ••• ... ···· ••• ••• ••• ••• ••• ••• ••• ••• ••• Cape Evans Melbourne 23 139 • • • ••• ... •• $\frac{1}{15}$ • • • • • • 7 ... 15 $3.4 \\ 153$ 2.3 ••• ••• ... 54 ... 95 $\frac{1}{12}$ ii ii ... 16 $\frac{1}{32}$ $\frac{12}{12}$ 27 Cape Denison ... Buitenzorg ... Toungoo ... Barrackpore ... $\overline{29}$ 81 73 ••• ••• • • • ••• ••• ••• ••• ... ••• ••• ••• • • • ••• ••• ... ••• ••• • • • ••• ••• ••• ••• ••• ••• ••• ••• ••• • • • ••• • • • • • • ••• • • • • ••• ... • • • ••• ••• ••• ••• ••• ••• ••• ••• ••• • • • ... ••• • • • ... • • • Dehra Dun •• ·... ... ••• · · · · ... • • • ... 4 7 Kodaikanal Helwan De Bilt... ••• ... 5 ••• ••• ••• · • • • ••• ••• ... 14 16 ... 18 38 ... 14 45 • • • • ••• ... 6 ... 0.5 $2.0 \\ 7.0$... 6 0.5... 4 • • • ••• ••• ••• ... 3 ... 1·1 ... 6 1.3 ••• ••• ••• ••• ••• Val Joyeux ••• • • • ••• • • • ... • • • • • • ••• •••

§22.—THE DISTURBED TERM HOUR, APRIL 16, 8H. to 10H.

The term hours 8h. to 10h. on April 16, 1912, formed one of the successes of the scheme, for the whole day was one of continuous disturbance in the Antarctic and, with an international character figure of $1\cdot 0$ it could reasonably be assumed that the disturbance was widespread. A fairly regular bay movement culminating about 8h.30m. G.M.T. was the chief feature within the prearranged interval and was most conspicuous in declination or the equivalent force vector across the meridian. Locally superposed perturbations were present in all the curves from moderate and higher latitudes. Data were available from all the co-operating stations except Melbourne, and 14 of the remaining 19 stations supplied curves or readings from which ranges could be estimated for all three components. The high sensitivity of the declination magnetograph at Cape Denison resulted in loss of trace near the culmination of the bay movement. The range quoted for that component and all dependent entries of the table are therefore considerably underestimated.

Using the squares of the range as the index of activity, Table CIII provides a survey of this quantity for the two constituent hours 8h. to 9h. and 9h. to 10h., April 16, 1912, for all the 19 stations. The measures of resultant activity in the horizontal field are given for each station and, when possible, values for the resultant vectors in threedimensions.

TABLE CIII.

•	<u>-</u>			<u> </u>								
						April	16, 1912.	•				•
Station.				8h. to 9h.				9h	. to 10h.	_		8h. to 10h
		D	н	v	म म	T	D	н	z	· Ħ	r	Ħ
		√ ²	×2	{_ √ ²	\sim^2	\sim^2	v ²	γ^2	~ ²		~2	
Stonyhurst		['] 64	641	· ·	¹ 905		49	324		373		1.278
Eskdalemuir		196	4.356		4.552		256	625		881		5,433
Pilar		49	441	9	490	499	4	121	9	125	134	615
Vieque		196	64	64	260	324	25	25	9	50	59	310
Cheltenham		1,369	121	169	1,490	1,659	144	49	121	193	314	1,683
Agincourt		6,561	676		7,237		361	196)	557]	7,794
Tucson		900	324	9	1,224	1,233	9	64	1	73	74	1,297
Sitka		2,304	2,401	10,609	4,705	15,314	1,681	2,025	4,900	3,706	8,606	8,411
Honolulu		49	400	36	449	485	4	64	4	68	72	517
Cape Evans		28,561	29,584	82,369	58,145	140,514	4,761	3,600	17,424	8,361	25,785	66,516
Cape Denison		> 28,561	13,225	25,600	>41,786	>67,386	3,721	9,801	3,481	13,522	17,003	>55,308
Buitenzorg		121	729	144	850	994	4	81	36	85	121	938
Toungoo		144	529	16	673	689	64	36	9	100	109	773
Barrackpore		100	361	81	461	542	81	81	25	162	187 ·	623
Dehra Dun		169	676	121	845	966	49	81	16	130	146	975
Kodaikanal		64	961	144	1,025	1,169	9	25	81	34	115	1,059
Helwan		144	441	144	585	729	16	100	9	116	· 125	701
De Bilt		256	1,681		1,937		625	361		986		2,923
Val Joyeux		225	1296		1,521		225	196		421		1,942

Squares of extreme ranges in a disturbed term hour.

The squared ranges differ enormously from station to station. The Antarctic stations are in a special class with activity of a different order of magnitude from all others. Except at Cape Evans and Cape Denison and the two other stations of moderately high latitude, Sitka and Agincourt, the contribution to the total space activity from the vertical component is small compared with the contributions from the components in the horizontal plane.

As a summary of events in the horizontal plane we may consider the entries under \overline{H} in the final column of Table CIII. They refer to the complete interval of two hours and are obtained by simply adding the entries under \overline{H} for the two separate hours. Excluding the contributions from the Antarctic bases the mean \overline{H} in the column is 2191_{Y}^2 . Of the 17 stations contributing to the mean Sitka, 3.84 times the mean, Agincourt, 3.56 times, and Eskdalemuir, 2.48 times, are in order with the highest values and Vieque, 0.14 times the mean, is the lowest. So that even outside polar latitudes magnetic activity can vary in the ratio 30 to 1 for synchronous disturbance. Relative to the same mean Cape Evans has activity 303.6 times and Cape Denison 252.4 times as great. Were it not for the loss of trace at the latter station these two estimates would be more nearly equal.

§23.—Ordinates at 5-minute Intervals at Cape Denison and Cape Evans : "Magnetic Activity" in Term Hours.

Though the validity of the relation $\Sigma \eta_n^2/n = CR^2$ is unquestionable for stations in moderate and low latitudes the quantity of quick-run material available from previous Antarctic expeditions was insufficient to make it certain that the same relation could be extended to high latitudes. For further insight into this question all the quick-run records at both Cape Evans and Cape Denison have therefore been examined in detail. Ordinates at equidistant 5-minute intervals beginning at the exact hour were tabulated for the three components and, since the examination was to be restricted to activity within the two-hourly intervals, the lowest value of the ordinates in the interval was taken as the standard of reference. Differences from this standard were converted into force units and minutes of arc for D at Cape Denison. The results are supplied by Tables CIV, (a) and (b). Data for declination only can be given for the hours in March, 1912, at Cape Denison because the magnetographs were not properly in operation till later in that month. The absence of entries for H and Z for December 5 and for H alone on December 3, 1912, and January 3, 1913, is due to unsatisfactory records of these components at those times. Magnetic registration at Cape Evans ceased in November, 1912. To be comparable with the positive direction of change of E^1 at Cape Evans, declination changes at Cape Denison have been considered as increasing to the east. The entries under D for this station for the times 8h.25m., 8h.30m. and 8h.35m., April 16, 1912, are underestimates, due, as mentioned earlier, to loss of trace through excessive sensitivity of the variometer.

TABLE CIV.

Term Hours :---Differences from lowest values during two hours at Cape Denison and Cape Evans.

Cape Denison.

		March 1	9, 1912.			April 16	, 1912.			May 14	, 1912.			June 11,	, 1912.	,
	D		Н	z	I)	н.	z	D)	н	z	D		н	Z
h. m. 8 0 8 5 8 10 8 25 8 20 8 25 8 30 8 35 8 40 8 45 8 50 8 45 8 50 9 5 9 10 9 15 9 25 9 30 9 40 9 45 9 55 10 0	$\begin{array}{c} & & & \\$	$\begin{array}{c} \gamma \\ 16 \\ 19 \\ 14 \\ 8 \\ 10 \\ 5 \\ 5 \\ 5 \\ 8 \\ 4 \\ 1 \\ 0 \\ 2 \\ 3 \\ 3 \\ 4 \\ 2 \\ 2 \\ 7 \\ 4 \\ 5 \\ 9 \\ 5 \\ 6 \\ 5 \end{array}$	Y 	Y	, 57 28 93 172 >201 >201 >201 191 149 121 104 66 21 28 19 34 16 19 15 5 0 0 175 5 0 0 175 5 0 175 195 207 195 195 195 207	$\begin{array}{c} \gamma \\ 52 \\ 25 \\ 61 \\ 155 \\ > 182 \\ > 182 \\ 172 \\ 134 \\ 109 \\ 94 \\ 60 \\ 19 \\ 25 \\ 17 \\ 31 \\ 14 \\ 17 \\ 14 \\ 5 \\ 0 \\ 15 \\ 18 \\ 19 \end{array}$	Y 114 101 87 68 73 53 33 9 0 22 24 25 38 45 68 65 77 94 102 104 110 124 110 124 135 131 130	Y 233 6 5 0 46 85 112 128 157 140 128 117 104 128 117 104 81 61 76 81 85 84 85 84 86 97 113	80 53 37 26 51 59 70 40 35 20 12 8 0 2 0 11 8 3 4 7 8 8 15 23	γ 72 48 34 21 24 46 53 63 57 32 18 11 8 0 2 0 10 7 2 3 6 7 8 14 21	γ 0 1 9 200 28 40 41 355 30 32 33 43 53 59 63 76 81 78 81 89 89 89 89 92 95	Y 4 0 4 3 7 26 28 28 28 28 28 28 7 5 8 9 11 10 9 15 19 21 15 19 16 13 11 15 24	$\begin{array}{c} & & \\ & 9 \\ 20 \\ & 8 \\ 9 \\ 15 \\ 12 \\ & 9 \\ 2 \\ 17 \\ 17 \\ 13 \\ 14 \\ & 8 \\ 6 \\ 2 \\ 12 \\ 12 \\ 4 \\ 7 \\ 0 \\ 6 \\ 12 \\ 12 \\ 10 \\ 11 \\ 13 \end{array}$	Y 8 18 7 8 14 11 9 2 15 12 12 12 12 12 12 7 6 2 11 3 6 0 5 11 11 9 0 12	$\begin{array}{c} \gamma \\ 8 \\ 5 \\ 4 \\ 12 \\ 10 \\ 5 \\ 3 \\ 0 \\ 5 \\ 3 \\ 0 \\ 8 \\ 10 \\ 13 \\ 10 \\ 14 \\ 7 \\ 5 \\ 15 \\ 18 \\ 23 \\ 19 \\ 16 \\ 12 \\ 14 \end{array}$	$\begin{array}{c} & \gamma \\ & 2 \\ & 6 \\ & 0 \\ 209 \\ 255 \\ 233 \\ 155 \\ 599 \\ 544 \\ 377 \\ 577 \\ 822 \\ 755 \\ 600 \\ 722 \\ 488 \\ 622 \\ 800 \\ 855 \\ 117 \\ 977 \\ 911 \\ 747 \\ 87 \end{array}$

Cape Denison.

	n					August	13, 1912.		Se	ptember	10, 1912	•	(October 8	, 1912.	
			н	z	I)	н	z	D		н	z			H	z
h. m. 8 0 8 5 8 10 8 25 8 30 8 25 8 30 8 35 8 40 8 45 8 55 9 0 9 15 9 20 9 15 9 20 9 25 9 35 9 40 9 45 9 55	, 69 61 64 62 38 24 19 12 0 211 38 433 355 255 18 19 225 29 39 36 40	γ *62 55 58 58 57 34 22 17 11 0 19 35 39 36 32 23 16 17 24 22 26 35 32 36	Y 16 11 11 17 0 1 7 19 27 36 40 44 45 52 57 61 69 77 75 81 81 81 83 81	γ 17 16 17 7 3 0 7 10 11 17 28 28 25 24 20 222 28 23 25 28 25 25 25 25 25 25 25 25 25 25	, 6 12 12 13 7 10 16 11 10 11 8 6 8 11 9 10 8 9 8 7 7 3 0 2	$\begin{array}{c} 7\\ 5\\ 11\\ 11\\ 11\\ 11\\ 7\\ 9\\ 15\\ 10\\ 9\\ 10\\ 7\\ 5\\ 8\\ 10\\ 7\\ 5\\ 8\\ 10\\ 8\\ 9\\ 7\\ 6\\ 3\\ 0\\ 2\end{array}$	Y 13 3 9 8 2 4 8 6 9 10 8 4 7 7 9 7 10 15 12	Υ 		Y 0 2 2 2 0 0 0 2 3 2 4 1 1 1 4 7 8 11 7 8 2 0 1 1 4	γ_{6} 8 6 10 6 4 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 9 9 9 10 9 6 1 0 3 3 5	γ 15 24 23 16 4 0 1 8 14 15 16 20 23 22 22 22 22 16 11 6 8 9 10 10 10 10 10 10 10 10 10 10	21 9 6 2 0 8 13 7 2 13 8 27 32 58 52 45 69 65 49 33 42 42 42 47 35		γ 3 0 7 17 17 19 15 12 11 9 7 1 3 7 14 27 28 26 18 15 13 13 13	$\begin{array}{c} Y \\ 6 \\ 0 \\ 0 \\ 1 \\ 20 \\ 23 \\ 30 \\ 24 \\ 20 \\ 24 \\ 27 \\ 26 \\ 24 \\ 27 \\ 26 \\ 24 \\ 37 \\ 38 \\ 44 \\ 64 \\ 70 \\ 60 \\ 40 \\ 43 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47$

392

TABLE CIV—continued.

Term Hours :---Differences from lowest values during two hours at Cape Denison and Cape Evans. Cape Denison.

	N	lovembe	r 5, 1912		1	ecember	r 3, 1912			January 2	28, 1913.	
.	I		н	Z	I)	н	z	. D		н	Z
h. m. 8 0 8 5 8 10	, 15 17 16) 13 16 15	γ 8 15 15	γ 0 8 10	0 26 21	Y 0 23 19	Υ 	γ 54 53 45	20 20 19	ř 18 18 17	Υ 3 0 0	Υ 6 10 6
8 15 8 20 8 25 8 30	19 18 14 10	17 16 13 9	9 9 8	9 10 12 13	24 17 24 23	22 16 22 21	···· ···· ···	41 40 30 23	12 14 14 15	11 12 12 13	2 5 6 3	3 3 0
8 35 8 40 8 45 8 50	6 2 1 1	5 2 1 0	9 15 14 14	16 16 15 13	20 41 38 20	18 37 35 18	···· ···· ···	9 0 4 21	$20 \\ 21 \\ 25 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27$	18 19 22 25	4 2 0 2	5 5 5 12
8 55 9 0 9 5 9 10	4 5 2 0	4 5 2 0	14 14 13 8	11- 5 1 0	31 41 25 19	29 37 23 17	···· ···	$35 \\ 34 \\ 30 \\ 25$	25 24 20 16	$22 \\ 21 \\ 18 \\ 15 \\ 15 \\ 1$	5 8 12 18	$17 \\ 20 \\ 20 \\ 21$
9 15 9 20 9 25 9 30	4 5 3 6	4 4 3 6	4 3 2 2	1 8 8 8	$\begin{array}{c}12\\11\\6\\4\end{array}$	11 10 5 4	····	38 38 27 30	$\begin{array}{c}17\\11\\3\\0\end{array}$	16 10 2 0	18 18 20 18	24 24 27 28
9 35 9 40 9 45 9 50	2 4 2 6	$ \begin{array}{c} 2 \\ 3 \\ 2 \\ 5 \end{array} $	$\begin{array}{c} 0\\1\\1\\1\\1\end{array}$	7 12 10 7	0 1 6 7	0 0 6 6	···· ···	26 24 20 21	1 13 13 11	$1 \\ 12 \\ 12 \\ 12 \\ 10$	19 20 19 21	24 26 27 28
9 55 0 0	6 3	5 3	$\frac{3}{2}$	8 4	9 9	- 8 - 8		16 16	12 10	11 9	22 27	25 30

Cape Evans.

	Ma	rch 19, 1	912.	AI	oril 16, 19	912.	M	ay 14, 19	912.	Ju	ine 11, 19	912.	J1	ıly 16, 19	912.
	Eı	Nı	Z	Eı	N1	z	Eı	N1	z	E	N ¹	z	E1	N ¹	z
h. m.	Y.	Υ	γ	γ	γ	Υ	Υ	r	Y	Υ	Y	Υ	Ιr	l Y	γ.
80	13	0		76	31	4	116	. 39	108	25	0	0	92	31	17
85	12	0		57	19	16	83	22	110	26	3	2	101	26	18
8 10	13	0	•••	66	38	6	71	0	95	30	1	2	92	15.	25
8 15	13	1	•••	115	85	0	54	10	74	25	10	7	103	21	25
8 20	- 12	3		132	121	10	57	- 12	63	28	10	12	100	25	32
8 25	12	6		161	177	9	65	23	53	37	11	10	89	9	45
8 30	10	6		145	173	48	75	29	43	16	10	25	67	0	. 52
8 35	11	10	••••	165	164	76	71	20	44	17	14	26	54	4	52
8 40	· 10	8	•••	167	125	126	47	9	48	45	15	18	38	2	51
8 45	10	8		72	53	230	37	20	42	21	5	29	28	3	44
8 50	7	7		59	54	228	14	16	42	25	14	21	37	20	36
8 55	5	6		89	· 76	196	8	29	32	19	2	22	48	33	28
9 0	5	· 8		60	57	190	0	36	26	9	6	18	49	37	28
9 5	3		••••	59	34	166	3	44	18	10	3	14	48	35	25
· 9 10	3	10	•••	59	25	154	.7	51	13	5	7	13	34	40	25
9 15	3	10		34	10	140	9	57	10	6	20	11	18	39	24
9 20	1	9		34	18	109	15	63	5	14	24		10	41	19
9 25	0	10		17		102	23	61	2	22	. 24	10	0	44	20
9 30	5	12		5	3	93	23	61	· 2	0	20	17	9	52	10
9 35	6	12		14	16	78	33	63	2		25		13	55	8
9 40	3	10		0	22	76	20	56	5	13	18	13	12	55	7
9 45	5	10	•••		23		25	60		9	22	12	26	61	
9 50	3	11	•••	10	24	67	43	53	3	7	14	14	. 29	59	
9 55	8	12		17		63	28	50		9	12	14	28	62	
10 0	5	10		25	33	59	24	50	0	8	8	12	35	64	0

TABLE CIV—continued.

Term Hours :--Differences from lowest values during two hours at Cape Denison and Cape Evans.

Cape Evans.

	Aug	ust 13, 19	012.	Septer	nber 10, .	1912.	Octo	ber 8, 1	912.	Noven	nber 5, 1	912.
•	E1	N1	Z	Eı	N1	Z	E1	Nı	z	Eı	N1	Z
. h. m.	Υ	Ϋ́	Ϋ́	Y_	۲_	Ϋ́	Υ _α	Ŷ	Ϋ́	Υ.	Υ	Ŷ
80	9	10	0	5	D	3	20	0	0	10	12	0
8 5		- 17	0	4	<u> </u>	2	20	<u> </u>	3 0	20	11	1
8 10	19	23	Z N	3	8		4	10	0	21	8	4
8 15	22	18	2	4	8	2	16	18	3	19	3	0
8 20	17	14	4	3	11	3	10	20	2	18	8	0 7
8 20	10	14	0	0	0 6	3	1		- { }	10		6
8 30	10	14	4	1	0	0	10	20		11		
8 30 8 40	· 10 e	12	4 6	3	2	2	10	49	5	14	1	11
8 40	10	, 10		4	4	2	10	24	o c	10		11
8 40	12	12	3	1	9 5	9	10	21 99	5	10		10
8 55	10	9	4 6	1		ວ ຈ	10	94	6	17		10
0 0	10	11	6	3	16	1	12	90	7.	10	· .	17
90	10	10	0	9	10		10		6	19	19	
9 9	10	14	7	0	8	1	9	52	12	10	14	95
9 10	. 13	14	· 16	19	6	9	0 0	50	10	10	14	20
9 10	19		0	14	5	5	2	55	19	å	14	20
0.25	10	9	10	17	 		0	57	14	Å	10	91
0 20	8	7	10	10		5	5	59	11	6	8	21
9 30	. 5	8	10	14		ñ	~ 5	46	12	5	10	25
9 35	5		10	6	2	6		40	10	9	19	20
0.45	3		10	3	5	6	10	44	11	2	8	25
0 50		0	- 10 0	5	6	6	12	45	11	ก็ไ	15	20
9 55	5	3	, s	5	5	6	17	40	13	ă l	17	25
10 0	ี ก็ไ	2	7	5	6	6	18	52	13	4	15	20
10 0		5		U U	Ů	U I	10		19	Ŭ	10	

Cape Denison.

		March 2	1, 1912.			April 18	8, 1912.			May 16	3, 1912.			June 13	3, 1912.	
	I		н	z	· D		н	Z .	I)	. н	. Z]]	D	н	z
h. m. 17 0 17 5 17 10 17 25 17 20 17 25 17 30 17 25 17 30 17 35 17 40 17 55 18 0 18 15 18 10 18 25 18 30 18 35 18 40 18 55	, 3 5 5 7 6 3 2 3 13 13 7 3 5 1 0 6 6 9 13 19 10 2 1	Y 3 5 4 6 5 2 2 3 12 12 7 3 5 1 0 5 8 12 12 7 3 5 12 12 7 3 5 12 12 7 3 5 12 12 7 3 5 12 12 12 7 3 5 12 12 12 7 3 5 12 12 12 12 12 12 12 12 12 12	Υ 	Υ 	, 12 18 7 2 7 8 0 1 8 0 1 8 13 20 19 19 19 19 6 5 19 11 15 9 11 17 11 27 12 18 13 20 19 19 19 19 19 19 19 19 19 19	Y 10 17 6 2 6 7 0 1 7 7 12 18 17 17 5 4 4 17 10 13 8 8 10 15 10 19 25	Y 18 17 14 8 8 0 1 1 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8	γ 30 34 34 41 40 24 17 8 2 0 4 20 29 38 38 29 23 20 31 42 47 39 63 86	2 4 2 5 9 8 9 9 6 2 0 13 18 17 14 12 16 19 15 7 1 3 3	$\begin{array}{c} \gamma \\ 2 \\ 3 \\ 2 \\ 4 \\ 8 \\ 7 \\ 9 \\ 8 \\ 5 \\ 2 \\ 0 \\ 12 \\ 17 \\ 16 \\ 13 \\ 11 \\ 15 \\ 18 \\ 17 \\ 13 \\ 7 \\ 1 \\ 2 \\ 2 \end{array}$	Y 7 8 7 8 7 8 7 8 8 7 7 8 8 8 5 3 0 11 11 9 6 11 13 7 5 10	Y 4 777777777777777777777777777777777777	, 10 11 9 5 9 8 3 6 9 9 14 15 9 7 11 9 5 0 14 5 13 18 17	γ 9 10 8 5 8 8 3 5 8 13 13 8 7 10 8 5 0 1 4 5 12 16 16 16	Y 8 9 5 5 4 9 12 14 8 7 9 11 8 9 5 5 4 5 5 4 9 12 14 8 7 9 12 5 5 5 5 5 5 5 5 5 5 5 5 5	7 7 5 1 0 0 0 5 8 6 8 8 7 3 8 5 3 3 7 8 5 2 3 5 5

394

TABLE CIV—continued.

Term Hours :---Differences from lowest values during two hours at Cape Denison and Cape Evans.

Cape Denison.

		July 18,	1912.			August	15, 1912.		se	eptember	12, 1912	•	0	october 1	0, 1912.	
	D)	н	z	I)	н	z	1	D	н	z	1)	н	Z
h. m. 17 0 17 5 17 10 17 15 17 25 17 30 17 25 17 30 17 35 17 40 17 55 18 0 18 5 18 10 18 15 18 20 18 35 18 40 18 45 18 55	, 9 11 11 10 10 12 13 11 10 10 9 8 9 9 9 11 11 10 9 9 9 11 11 11 0 9 9 6 4 4 0 3 3 4	Y 8 10 9 9 11 12 10 9 9 5 8 8 8 8 8 8 8 8 8 8 10 10 9 9 9 5 5 4 0 3 4	Y 0 0 4 3 3 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} \mathbf{Y} \\ 0 \\ 2 \\ 6 \\ 4 \\ 0 \\ 2 \\ 3 \\ 2 \\ 1 \\ 2 \\ 2 \\ 4 \\ 5 \\ 3 \\ 5 \\ 5 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 7 \\ 4 \\ 3 \\ 0 \\ 0 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 4 \\ 4 \\ 7 \\ 5 \\ 5 \\ 5 \\ 5 \\ 4 \\ 4 \\ 7 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 4 \\ 5 \\ $	2 5 3 4 5 5 6 6 5 7 6 4 3 2 2 5 4 4 3 3 1 0 1	Y 25 3 4 45 55 56 66 4 32 1 2 4 4 4 3 3 1 0 1	Y 3 5 3 0 3 3 5 5 5 5 6 5 3 3 3 4 5 6 5 3 3 3 2 3	$\begin{array}{c} & \gamma \\ & 3 \\ & 6 \\ 12 \\ & 3 \\ & 0 \\ 1 \\ & 12 \\ & 3 \\ 0 \\ 1 \\ & 12 \\ 13 \\ & 15 \\ & 13 \\ & 15 \\ & 13 \\ & 15 \\ & 13 \\ & 15 \\ & 13 \\ & 15 \\ & 13 \\ & 12 \\ & 9 \\ & 9 \\ & 12 \end{array}$	$ \begin{array}{c} 8\\ 9\\ 7\\ 7\\ 7\\ 5\\ 8\\ 8\\ 2\\ 5\\ 9\\ 6\\ 5\\ 0\\ 9\\ 12\\ 9\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	Y 7 8 7 6 5 7 7 6 5 7 7 2 5 9 6 5 5 0 8 8 11 9 9 9 9 9 9 9 9 7 1	Y 3 3 3 3 3 3 3 3 3 3 3 3 5 5 16 18 20 23 19 16 16 13 11	$ \begin{vmatrix} & & \\ & 10 \\ & 10 \\ & 12 \\ & 13 \\ & 11 \\ & 10 \\ & 7 \\ & 6 \\ & 1 \\ & 2 \\ & 10 \\ & 12 \\ & 10 \\ & 12 \\ & 10 \\ & 12 \\ & $	0 3 19 27 32 26 26 26 26 27 32 30 32 31 36 34 29 35 21 21 23 23 33	Y 0 2 17 24 29 29 29 29 29 29 29 29 29 29 29 29 29	$\begin{array}{c} & \gamma \\ 50 \\ 56 \\ 47 \\ 40 \\ 38 \\ 23 \\ 22 \\ 21 \\ 17 \\ 12 \\ 9 \\ 13 \\ 13 \\ 10 \\ 9 \\ 2 \\ 0 \\ 2 \\ 2 \\ 10 \\ 10 \\ 9 \\ 2 \\ 10 \\ 10 \\ 10 \\ 9 \\ 2 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	$\begin{array}{c} & \gamma \\ & \gamma \\ & 19 \\ & 16 \\ & 18 \\ & 216 \\ & 10 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 10 \\ & 10 \\ & 10 \\ & 9 \\ & 10 \\ & 9 \\ & 10 \\ & 9 \\ & 10 \\ & 6 \\ & 1 \\ & 2 \\ & 0 \\ & 4 \\ & 8 \end{array}$
19 0	3	3	7	4	7	· 6	5	12	10	9	10	25	40	37	14	12

Cape Denison.

1]	Novembe	r 7, 1912	.		Decembe	er 5, 1912	2	•	January	2, 1913.			January :	80, 1913.	
	Ľ)	н	Z	I)	н	Z	I)	н	z	1)	н	z
h. m. 17 0 17 5 17 10 17 15 17 20 17 25 17 30 17 35 17 35 17 40 17 45 17 55 18 0 18 5 18 10 18 25 18 30 18 35 18 40 18 50	$\begin{array}{c} & 0 \\ & 4 \\ & 3 \\ & 2 \\ & 3 \\ & 4 \\ & 6 \\ & 2 \\ & 0 \\ & 1 \\ & 3 \\ & 4 \\ & 7 \\ & 9 \\ & 11 \\ & 12 \\ & 15 \\ & 11 \\ & 12 \\ & 15 \\ & 11 \\ & 13 \end{array}$	Y 0 3 2 2 4 5 6 2 2 0 1 3 2 2 4 6 8 8 10 11 13 10 60 12	Y 0 1 3 3 0 2 3 2 1 0 1 2 1 3 3 1 3 3 2 1 3 3 2 1 3 7	Y 1 7 4 0 1 2 4 3 4 4 4 4 2 0 2 3 4 4 5 5 12 9 7 5 16	, 38 40 35 24 32 36 44 42 37 52 58 63 59 52 48 45 59 52 48 45 37 35 30 17 19 16	Y 355 36 32 29 33 40 38 34 47 52 57 44 47 44 41 39 33 31 27 16 17 14	Υ ····	Y 	$\begin{array}{c} & & \\ & 52 \\ & 44 \\ & 48 \\ & 39 \\ & 46 \\ & 40 \\ & 32 \\ & 62 \\ & 42 \\ & 53 \\ & 67 \\ & 108 \\ & 102 \\ & 127 \\ & 108 \\ & 102 \\ & 127 \\ & 119 \\ & 58 \\ & 29 \\ & 111 \\ & 7 \\ & 3 \\ & 0 \\ & 21 \\ & 20 \end{array}$	Y 477 400 433 355 422 366 299 566 388 488 61 982 115 108 533 277 10 7 2 0 91 18	Υ Υ ····	$ \begin{vmatrix} 2 \\ 7 \\ 16 \\ 13 \\ 13 \\ 14 \\ 21 \\ 9 \\ 22 \\ 30 \\ 53 \\ 53 \\ 53 \\ 47 \\ 73 \\ 99 \\ 54 \\ 43 \\ 55 \\ 50 \\ 38 \\ 26 \\ 16 \end{vmatrix} $	23 18 18 16 14 14 13 12 18 21 13 21 13 24 23 23 30 23 30 21 1 1 2 0 12 8 17	Y 21 17 16 14 13 12 12 11 16 19 12 19 19 19 21 21 21 21 21 21 21 21 21 21 21 10 2 2 10 2 11 13 13 13 13 13 13 13 13 13 14 14 14 13 13 13 14 14 14 15 16 16 14 14 15 17 17 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	Y 116 7 5 4 3 5 5 5 8 2 9 2 8 5 8 3 0 0 0 5 0 5	2 7 200 200 166 12 100 6 9 3 3 5 8 8 8 6 16 15 200 200 10 6 9 3 3 5 5 8 8 8 6 16 15 20 10 6 9 3 3 5 5 8 8 8 8 16 15 20 10 6 9 3 5 5 8 8 8 8 8 16 15 20 10 10 10 10 10 10 10 10 10 1
18 55 19 .0	24 24	22 22	13 10	29 38	9 0	8 0			22 7	20 7		13 1	23 15	21 14	9 8	15 27

395

TABLE CIV—continued.

Term Hours :--Differences from lowest values during two hours at Cape Denison and Cape Evans.

. Cape Evans.

	Mar	ch 21, 19	12.	Ap	ril 18, 191	12.	Ма	y 16, 191	2.	Ju	ne 13, 19	12.	յս	ly 18, 19	12.
	E	N ¹	Z	Eı	N ¹	z	E	N ¹	Z,	E,	N1	Z	Eı	N1	Z
h. m. 17 0 17 5 17 10 17 15 17 20 17 25 17 30 17 35 17 40 17 45 17 40 17 45 18 5 18 10 18 15 18 25 18 30 18 35 18 40 18 55	Y 0 2 8 12 17 18 12 17 18 12 17 18 12 18 9 14 15 14 13 14 15 17 14 15 17 14 16 17 18 19 20 20 20 20 20 20 20 20 20 20	Y 3 3 3 7 8 6 3 7 8 6 3 7 8 6 3 0 0 1 1 1 3 0 0 2 5 15 16 10 3 6 6	$\begin{array}{c} \gamma \\ 12 \\ 12 \\ 10 \\ 8 \\ 6 \\ 5 \\ 8 \\ 8 \\ 5 \\ 4 \\ 4 \\ 4 \\ 3 \\ 3 \\ 3 \\ 0 \\ 4 \\ 4 \\ 4 \\ 3 \\ 2 \\ \end{array}$	$\begin{array}{c} \gamma \\ 32 \\ 28 \\ 30 \\ 34 \\ 37 \\ 54 \\ 62 \\ 40 \\ 41 \\ 43 \\ 39 \\ 37 \\ 41 \\ 43 \\ 39 \\ 37 \\ 41 \\ 44 \\ 39 \\ 52 \\ 42 \\ 42 \\ 42 \\ 42 \\ 36 \\ 19 \\ 39 \\ 13 \\ 0 \end{array}$	$\begin{array}{c} \gamma \\ 29 \\ 20 \\ 20 \\ 20 \\ 21 \\ 19 \\ 24 \\ 13 \\ 20 \\ 9 \\ 12 \\ 14 \\ 6 \\ 5 \\ 12 \\ 13 \\ 18 \\ 17 \\ 14 \\ 6 \\ 12 \\ 29 \\ 27 \\ 0 \\ 0 \\ 26 \end{array}$	$\begin{array}{c} \gamma \\ 21 \\ 24 \\ 22 \\ 17 \\ 14 \\ 9 \\ 5 \\ 13 \\ 13 \\ 13 \\ 13 \\ 12 \\ 10 \\ 8 \\ 8 \\ 0 \\ 3 \\ 5 \\ 5 \\ 8 \\ 11 \\ 5 \\ 13 \\ 4 \end{array}$	Y 16 16 19 17 17 17 16 21 21 12 17 15 18 6 7 13 17 11 21 9 0 10	γ 8 10 9 8 8 4 8 8 7 0 1 24 20 17 12 5 18 19 13 10 6 4 17 12 12 13 10 12 13 10 12 13 10 10 13 10 12 10 10 10 12 12 13 10 10 12 12 12 12 12 12 12 12 12 12	$ \begin{array}{c} $	Y 17 17 17 17 17 17 8 8 3 4 5 1 1 4 8 0 5 5 11 13 15 17 17 17 17 17 17 17 17 17 17	Y 6 14 17 14 8 13 11 11 17 14 13 11 17 14 13 11 8 4 4 4 5 3 3 0 3 4 1 3	Y 11 9 9 10 7 6 9 5 5 7 6 7 6 7 6 3 3 2 2 1 0	Y 11 11 10 8 12 10 10 10 10 10 10 10 10 10 10	Y 77 25 55 55 15 55 4 4 1 55 4 4 15 53 25 33 	$\begin{array}{c} Y \\ \cdots \\ 2 \\ 0 \\ 2 \\ 2 \\ 1 \\ 2 \\ 0 \\ 2 \\ 2 \\ 1 \\ 2 \\ 0 \\ 2 \\ 2 \\ 1 \\ 2 \\ 0 \\ 2 \\ 2 \\ 1 \\ 2 \\ 0 \\ 2 \\ 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$
19 0	17	6	5	1	26	2	13	9	3	17	3	0			•••

Cape Evans.

Q

 λ_{0}

		Aug	ust 15, 1	912.	Septer	mber 12,	1912.	Octo	ber 10, 1	912.	Nover	nber 7, 1	912.
		Eı	N1	Z	E	N1	z	· Eı	N ¹	Z	E1	N ¹	Z
h. m	.	r	Y	Y	Y	γ	γ	r	γ	γ	Y	Y	γ
17 (3	3	1	31	0	iı				51	23	18
17 8	;	3	2	2	36	11	8				47	23	17
17 10		2	2	2	42	8	4	19	- 33	26	51	24	13
17 18	5	3	2	1	42	5	4	19	33	30	53	25	12
17 20		3	3	2	35	1	7	19	37	30	53	-24	13
17 25	5 [3	4	2	41	1	4	25	37	34	50	23	15
17 30		1	1	2	42	2	4	22	36	34	44	24	16
17 3	5	2	1	2	41	3	3	20	28	41	48	23	0
17 4()	1	3	2	37	1	3	28	27	33	48	17	9
17 45	5	2	2	2	41	7	2	25	· 16	32	47	17	7
17 50		2	1	1	45	10	0	25	23	24	44	17	7
17 58	5	2	2	1	26	15	6	23	20	26	44	11	6
18 (2	1	2	28	17	5	30	16	21	44	10	4
18 t	5	1	3	1	26	- 22	7	28	27	13	44	10	4
18 10) .	1	2	2	30	21	6	8	25	23	50	10	2
18 18	5	1	5	2	13	20	10	19	24	23	45	10	5
18 20		0	5	1	8	20	7	16	17	26	46	7	2
18 28	5	0	1	0	14	11	4	14	16	10	48	10	1
18 30		5	0	1	6	17	3	32	13	6	54	11	0
18 33	5	3	4	2	0	17	6	45	0	12	50	3	4
18 40		1	3	2	12	19	5	41	· 3	5	37	0	6
18 48	5	0	1	2	13	14	7	34	10	0	41	14	4
18 50		3	3	1	14	16	9	38	2	7	28	34	13
18 50	5	3	1	2	14	18	8	30	. 12	12	25	75	13
10 (n	•		1	101	10		· ^	0.5	110			91

<u>396</u>

The values of the difference-ordinates in Tables CIV (a) and CIV (b) would allow reconstruction of the variation of the components at the two Antarctic bases to be made but their primary use in this investigation is to determine values of the magnetic activity for all the separate hourly intervals. For this purpose further differences $\eta_0 \eta_1 \eta_2 - \eta_{12}$ from the means of the 13 difference-ordinates in each 60-minute interval of the tables were squared. In this way the quantities $\frac{1}{12}\left\{\frac{1}{2}(\eta_0^2 + \eta_{12}^2) + \eta_1^2 + \dots \eta_{11}^2\right\}$ were formed. They will be written shortly as $\frac{1}{12}\Sigma\eta^2$. Tables CV and CVI contain the values of this quantity for the two pairs of separate hours both for the three components at each station separately and for the combination H, for the horizontal plane, and T for the total field. The 7-day means in the first of these tables (CV) relating to the hours 8h. to 9h. and 9h. to 10h. refer to the days April 16, May 14, June 11, July 16, September 10, October 8, and November 5 for which complete registrations in all three components were provided by both stations. Likewise the 8-day means in Table CVI for the other pair of hours omit the days in March, December and January for which data are incomplete. Each set of means therefore answers to precisely corresponding events at the two Antarctic base stations.

TABLE CV.

Hour			c	ape Denisor	ı.				Cape Evans	•	
, ,	Date.	D	н	· v	Ĥ	T	Eı	N'	v	Ħ	т
8h. to 9h.	1912. March 19 April 16 May 14 June 11 July 16 August 13 Sept. 10 October 8 Nov. 5 Dec. 3 1913. January January 28 7-Day Mean 10	Υ 30·3 2864·0 303·4 17·9 405·5 6·9 1·8 61·7 38·8 54·8 18·4 527·6	Υ 1121-8 207-6 13-3 238-6 11-9 5-8 41-0 7-8 - 5-1 233-7	Υ 3088-5 95-3 484-4 59-7 	$ \frac{\gamma}{3985 \cdot 8} \\ 511 \cdot 0 \\ 31 \cdot 2 \\ 644 \cdot 1 \\ 18 \cdot 8 \\ 7 \cdot 6 \\ 102 \cdot 7 \\ 46 \cdot 6 \\ - \\ 23 \cdot 5 \\ 761 \cdot 3 $	$ \frac{\Upsilon}{7074\cdot3} \frac{606\cdot3}{515\cdot6} \frac{515\cdot6}{703\cdot8} \frac{-}{63\cdot8} \frac{202\cdot1}{60\cdot7} \frac{-}{50\cdot9} 1318\cdot1 $	Y 6·8 1801-7 785·0 75·3 739·5 18·8 3·0 .34·3 4·0 491·8	Y 11.4 2903.0 97.7 24.6 138.3 20.2 3.6 121.9 13.4 471.8	$ \frac{\Upsilon}{7942\cdot 2} 652\cdot 3 88\cdot 7 145\cdot 1 2\cdot 9 0\cdot 5 6\cdot 6 27\cdot 3 1266\cdot 1 1 $	Y 18·2 4704-7 882-7 99-9 877-8 39·0 6·6 156·2 17·4 — 963·6	Υ 12646-9 1535-0 188-6 1022-9 41-9 7-1 162-8 44-7 2229-7
9h. to 10h.	1912. March 19 April 16 May 14 June 11 July 16 August 13 Sept. 10 October 8 Nov. 5 Dec. 3 1913. January January 28 7-Day Mean	4·4 132·3 23·8 14·2 58·3 9·0 11·7 102·3 2·8 73·3 32·3 32·3	898.6 140.0 23.3 166.5 15.2 11.6 63.7 16.8 13.4 188.6	267·3 17·3 307·3 6·3 	$ \begin{array}{c} $	1298-2 181-1 344-8 231-1 	4·4 429·9 134·8 27·1 197·0 18·7 31·4 24·5 25·0 — 124·2	2·1 160·0 49·1 52·7 95·4 15·5 6·3 25·9 11·2 —	1508·3 44·7 7·2 97·5 2·3 5·7 3·5 7·4 	6.5 589.9 183.9 79.8 292.4 34.2 37.7 50.4 36.2 	2098·2 228·6 87·0 389·9 36·5 43·4 53·9 43·6 — 420·7

 $r_{\pi}^{1}\Sigma\eta^{2}$ within hours 8h. to 9h. and 9h. to 10h. at Cape Denison and Cape Evans.

* 64550-E

TABLE CVI.

			, Ca	pe Denison	•			C	ape Evans.		
Hour.	Date.	D	н.	v	Ħ	T	E	N ¹	v	Ħ	т
· · ·	1912.				•						
17b. to 18h.	March 21 April 18 May 16 June 13 July 18 August 15 Sept. 12 October 10 Nov. 7 Dec. 5 1913. January 2 January 30	11.2 39.3 17.1 8.2 1.6 1.3 3.0 72.5 2.9 99.0 380.9 9.8	$ \begin{array}{c} - \\ 36 \cdot 1 \\ 8 \cdot 1 \\ 7 \cdot 9 \\ 2 \cdot 3 \\ 2 \cdot 5 \\ 1 \cdot 2 \\ 197 \cdot 6 \\ 1 \cdot 4 \\ - \\ 5 \cdot 6 \end{array} $	204.8 6.0 9.8 3.0 23.1 16.3 23.5 3.6 192.8 28.7	$ \begin{array}{c} - \\ 75 \cdot 4 \\ 25 \cdot 2 \\ 16 \cdot 1 \\ 3 \cdot 9 \\ 3 \cdot 8 \\ 4 \cdot 2 \\ 270 \cdot 1 \\ 4 \cdot 3 \\ - \\ 15 \cdot 4 \end{array} $	$ \begin{array}{c} - \\ 280 \cdot 2 \\ 31 \cdot 2 \\ 25 \cdot 9 \\ 6 \cdot 9 \\ 26 \cdot 9 \\ 20 \cdot 5 \\ 293 \cdot 6 \\ 7 \cdot 9 \\ - \\ 34 \cdot 1 \end{array} $	24.1 85.2 5.4 26.9 2.4 0.6 29.7 11.2 10.5	7.2 39.1 38.6 9.1 4.0 0.8 25.6 57.0 21.9	7.5 26.7 8.3 3.3 0.8 0.3 6.3 26.2 16.4	$\begin{array}{c} 31 \cdot 3 \\ 124 \cdot 3 \\ 44 \cdot 0 \\ 36 \cdot 0 \\ 6 \cdot 4 \\ 1 \cdot 4 \\ 55 \cdot 3 \\ 68 \cdot 2 \\ 32 \cdot 4 \end{array}$	38.8 151.0 52.3 39.3 7.2 1.7 61.6 94.4 48.8
İ	8-Day Mean	18.2	32.1	36.3	50.4	86.6	21.5	24.5	11.0	46 •0	57 ·0
18h. to 19h.	1912. March 21 April 18 May 16 June 13 July 18 August 15 Sept. 12 October 10 Nov. 7 Dec. 5 '1913. January 2 January 30	$\begin{array}{c} 24 \cdot 8 \\ 34 \cdot 9 \\ 39 \cdot 0 \\ 30 \cdot 3 \\ 9 \cdot 9 \\ 2 \cdot 5 \\ 7 \cdot 8 \\ 26 \cdot 7 \\ 27 \cdot 8 \\ 210 \cdot 8 \\ 1551 \cdot 8 \\ 65 \cdot 9 \end{array}$	192.0 7.8 6.8 2.7 1.6 28.8 24.8 11.8 - 		226-9 46-8 37-1 12-6 4-1 36-6 51-5 39-6 - - 77-2	$ \begin{array}{c} - \\ 608.7 \\ 67.7 \\ 42.7 \\ 16.4 \\ 6.7 \\ 84.7 \\ 64.4 \\ 129.4 \\ - \\ 125.5 \end{array} $	14.4254.532.029.69.32.567.8150.7143.0	25.3 67.0 27.2 2.8 2.0 2.8 10.2 92.3 422.7	$1.5 \\ 12.8 \\ 7.3 \\ 5.9 \\ 0.7 \\ 0.7 \\ 3.9 \\ 60.8 \\ 43.3 $	39.7 321.5 59.2 32.4 11.3 5.3 78.0 243.0 565.7	41.2 334.3 66.5 38.3 12.0 6.0 81.9 303.8 609.0
	8-Day Mean	22.4	34.5	70.7	56·9 `	127.6	86-2	78.4	16-9	164.5	181.5

$\frac{1}{12}\Sigma\eta^2$ within hours 17h. to 18h., and 18h. to 19h. at Cape Denison and Cape Evans.

§24.—" ACTIVITY " AT CAPE DENISON AND CAPE EVANS IN TERM HOURS COMPARED.

As the comparisons in Chapters V and VII show, Cape Denison on the average was more highly disturbed than Cape Evans. But judged by the mean values of activity in the column T of Tables CV and CVII for the four term hours, Cape Evans would appear to be the more magnetically active station. Only in the interval 17h. to 18h. which was the least disturbed of the four hours separately, does the mean value T of the activity for total field at Cape Denison exceed that at Cape Evans. Further, though a casual inspection of several magnetograms for the two stations would suffice to leave the impression that the vertical component of the vector in the average disturbance was more subject to large fluctuations at Cape Denison than at Cape Evans, the tables for the two pairs of term hours show that only in the averages of the hours 17h. to 18h. and 18h. to 19h. for which corresponding data existed, were the values of vertical component activity at Cape Denison in excess of those for Cape Evans.

In the main this result is probably an accident of the selection of hours for comparison. Occasions in which the vertical component was more active at Cape Evans than at Cape Denison were noticed and there may have been an unrepresentative number of such occasions in the list of selected hours. In addition the difference of local time at the two stations was a not insignificant factor in introducing differences into the activity as at present measured on the average day. For though Cape Evans was only 1 hour 43 minutes ahead of Cape Denison it happened that the two sets of term hours were chosen at times when this difference in local time made itself most conspicuous in the ordinary diurnal variation. For partial information on this point reference may be made to Table CVII which gives the diurnal inequalities at the two stations for three pairs of approximately corresponding components, the inequalities being derived from all days of complete record in the months April to October, 1912, over which interval simultaneous registration was in progress. Plate VII is intended to represent the inequalities of Table CVII (or their nearest force equivalents). From these it will be seen that both in the earlier and later intervals of the day covered by the term hours, the rates of change in all components, but especially in the horizontal components at Cape Evans, were decidedly larger than the corresponding rates at Cape Denison. Since comparative quiet rather than disturbed conditions characterised the majority of the hours in the scheme, this difference between the two stations would make its maximum contribution to the difference in the values of the activities. That even on those days when $\frac{1}{12} \Sigma_{\eta^2}$ is large, the values for Cape Evans mainly exceed those for Cape Denison is to be explained, first, on the circumstances of the choice of hours as indicated above; secondly, on the basis of the increase in amplitude of the regular diurnal variation on disturbed days, thus increasing the rate of change of field in the specified hours at one station (Cape Evans) more than at the other; and thirdly, to the known differences in the diurnal variation of disturbance at the two stations.

TABLE CVII.

Mean diurnal inequalities from all complete days April to October, 1912, at Cape Denison and Cape Evans.

		1h.	2h.	3h.	4h.	5h.	6h.	7h.	8h.	9h.	10h.	11h.	12h.
Cape Denison	D	$\left \begin{array}{c} & & \\ + & 25 \cdot 3 \\ & & \end{array} \right $	+20.1	$\begin{vmatrix} \cdot & \cdot & \cdot \\ + & 9 \cdot 5 \\ \gamma & \cdot & \cdot \\ \gamma $	$-\frac{2\cdot 5}{\gamma}$		$-\frac{1}{21\cdot3}$	$-\frac{24.6}{2}$	-24.5	- 25.7	- 26.4	$-\frac{26 \cdot 8}{2}$	-25.3
	H Z	- 8·7 - 18·1	-12.9 -30.0	-15.8 -37.5	20·4 36·1	-20.3 -32.2	-18.0 -20.9	-16.2 -10.3	-16.5 -5.7	- 9.2 + 1.3	-4.9 + 4.9	+ 0.6 + 12.5	+ 5.5 + 18.0
Cape Evans	E N Z	-13.5 -21.5 -15.5	4.8 25.8 14.2	+ 5.0 - 26.5 - 12.0	+ 14.8 - 25.5 - 7.7	+ 20.9 - 21.1 - 2.7	+25.2 -13.5 +0.9	$\frac{+27\cdot9}{-6\cdot7}$ $+4\cdot9$	+27.3 + 1.9 + 8.3	+ 24.0 + 8.7 + 12.1	+ 18.6 + 14.9 + 13.7	+ 12.2 + 18.1 + 13.7	+ 6.2 + 19.4 + 14.2
.		1	1	1		1		1		•	1	1	1
		13h.	14h.	15h.	16h.	17h.	18h.	19h.	20h.	21h.	22h.	23h.	24h.
		13h.	14h.	15h.	16h.	17h.	18h.	19h.	20h.	21h.	22h.	23h.	24h.
Cape Denison	D	13h.	14h.	15h.	+ 1.9	$\begin{vmatrix} 17h. \\ \prime \\ + 5\cdot 1 \\ \gamma \\ \gamma \\ \gamma \\ \gamma \\ \gamma \\ \gamma \\ \gamma \\ \gamma \\ \gamma \\$	18h. + 9·8	$ 19h. + 11\cdot3$	20h. + 17·9	21h. + 25.5	22h.	$\begin{vmatrix} 23h. \\ \cdot \\ + 31 \cdot 4 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot$	$\frac{24h}{+32.9}$
Cape Denison	D H Z	$ \begin{array}{c c} & 13h. \\ & , \\ & -16.6 \\ & \gamma \\ & +11.7 \\ & +18.0 \\ \end{array} $	$ \begin{array}{c c} 14h. \\ , \\ -10.3 \\ \gamma \\ + 12.6 \\ + 18.1 \end{array} $	$ \begin{array}{c} 15h. \\ , \\ - 2.5 \\ \gamma \\ + 14.3 \\ + 17.3 \end{array} $	$ \begin{array}{c} 16h. \\ $	$\begin{array}{ c c c } & 17h. \\ & , \\ + & 5 \cdot 1 \\ & \gamma \\ + & 13 \cdot 7 \\ + & 13 \cdot 7 \end{array}$	18h. + 9.8 γ + 13.5 + 14.2	$ \begin{array}{c c} 19h. \\ + 11 \cdot 3 \\ \hline \gamma \\ + 14 \cdot 0 \\ + 17 \cdot 7 \end{array} $	20h. + 17.9 γ + 12.7 + 15.8	21h. + 25.5 + 11.5 + 15.7	22h. + 29·1 + $9\cdot0$ + 11·9	$\begin{vmatrix} 23h. \\ + 31\cdot 4 \\ \gamma \\ + 5\cdot 3 \\ + 2\cdot 4 \end{vmatrix}$	$ \begin{array}{c c} 24h. \\ , \\ + 32.9 \\ \gamma \\ - 0.5 \\ - 8.7 \end{array} $

§25.—Ranges in Term Hours: From 5-minute and Extreme Ordinates.

With the measurements of ordinates at 5-minute intervals now available, it was an immediate step to deduce the ranges within each hour based on these 5-minute readings. These ranges R_5 are given in Table CVIII. Then by measuring the ordinates afresh at the instants of maximum and minimum value in each hour, the extreme ranges Re supplied by Table CIX were obtained.

TABLE CVIII.

• .			8h. 1	o 9h					9h. t	o 10h.		
	c	ape Denis	o n.		Cape Evan	s.	C	ape Denis	on.	0	ape Evan	s.
	D	н	z	E1	N1	Ż	D	н	z	E	N1	z
1912. March 19 April 16 May 14 June 11 July 16 August 13 September 10 October 8 November 5 December 3 1913. January January 28 7-day mean	Y 19 157 64 16 62 10 4 29 17 21 14 50	$\begin{vmatrix} \frac{\gamma}{114} \\ 53 \\ 12 \\ 45 \\ 13 \\ 7 \\ 21 \\ 7 \\ - \\ 8 \\ 37 \end{vmatrix}$	$ \frac{\gamma}{157} \frac{157}{28} \frac{28}{82} \frac{24}{30} \frac{30}{16} \frac{16}{54} 20 52 $	Y 8 110 116 36 75 16 6 25 7 	γ 10 158 39 15 37 18 6 38 12 	$ \frac{Y}{230} \frac{82}{82} 299 355 6 2 7 17 57 57 $	Y 60 21 12 25 10 11 34 6 37 21 24	Υ 97 42 18 18 12 10 27 14 19 35	$\begin{array}{c} & \gamma \\ & 56 \\ 15 \\ 69 \\ 8 \\ \hline 17 \\ 46 \\ 12 \\ 22 \\ 10 \\ 32 \end{array}$	Y 8 60 43 22 49 13 18 18 18 19 33	Y 5 57 27 29 14 10 19 13 25	$ \begin{array}{c c} $

Term Hours: Ránges from 5-minute Readings.

	[17h. t	o 18h.					. 18h. ta) 19h.		
		Ca	ape Deniso	m.	c	ape Evan	3.	; c	ape Deniso	m.		ape Evan	s
		D	н	z	E۱	N ¹	z	D	н	z	E1	Nı	Z
······													
1912.		γ	Υ	Υ	Υ	Υ	γ	Υ	Y	Υ	Υ	Ϋ́	
March 21		10			. 18	8	8	17	<u></u>	<u> </u>	14	16	5
April 18		18	18	41	34	24	19	21	46	66	52	29	13
May 16		17	11	7	9	24	12	17	8	- 15	21	16	10
June 13		10	10	8	16		6	16	11	8	17	8	7
July 18		4	5	6	6	7	$\begin{vmatrix} 2 \\ - \end{vmatrix}$	10	4	7	10	4	2
August 15		4	6	15	2	_3		6	4	6	5	5	2
September 12		7	3	13	19 .	17	11	11	20	25	30	11	7
October 10		29	47	17	11	21	20	18	14	12	45	35	26
November .7	•••	6	3	7	9	15	14	20	12	38	54	75	31
December 5		35	-			—	_	54	`	—			-
1913.											•		
January 2		69	_	· 53	—		_	115	<u> </u>	98	_	_	_
January 30		10	9	17			—	27	9	27	—	· —	. —
8-day mean		12	13	14	16	15	10	15	15	22	29	23	12
							<u> </u>	Ι.					

TABLE CIX.

Term	Hours:	Extreme	Hourly	Ranges.
------	--------	---------	--------	---------

				8 b .	to 9h.					9h. to	10h.		
		c	ape Denise	on.	0	Cape Evan	s.	Ca	pe Deniso	חמ.	c	ape Evan	s. ·
		D	н	z	Eı	N1	z	D	н	z	Eı	N³	z
1912.March19April16May14June11July16August13September10October8November5December31913.JanuaryJanuary28	···· ···· ···· ····	Y 20 169 65 20 64 11 6 36 17 30 15	$ \begin{array}{c c} Y \\ 115 \\ 58 \\ 16 \\ 47 \\ 13 \\ 9 \\ 23 \\ 9 \\ - \\ $	$ \begin{array}{c} Y \\ 160 \\ 34 \\ 86 \\ 31 \\ -24 \\ 33 \\ 16 \\ \\ 20 \\ 20 $	Y 8 169 116 36 78 16 10 29 9 —	Y 10 172 40 25 38 18 7 38 12 —	$ \frac{Y}{287} \frac{7}{87} \frac{311}{38} \frac{6}{4} \frac{4}{9} \frac{17}{$	Y 8 61 23 14 27 10 12 41 7 40 21	Y 99 42 22 40 12 10 33 15 	$ \frac{Y}{59} \\ \frac{59}{15} \\ \frac{94}{8} \\ \frac{17}{54} \\ \frac{13}{29} \\ 10 $	Y 8 69 48 28 55 14 18 23 20 	Y 5 60 32 23 31 15 10 23 13 	Y 132 31 14 29 5 6 7 12
7-day mean		54	40	55	64	47	68	26	37	37	37	27	33
				17h.	to 18h.					18h. to	19h.		
		Ca	pe Deniso	n.	c	ape Evan	3.	Ca	pe Deniso	n.	C	ape Evans	i.
		D	н	z	D	н	Z	D	н	z	D	н	Z
1912. March 21 April 18 May 16 June 13 July 18 August 15 September 12 October 10 November 7 December 5 1913. January 2 January 30 8 day mean		γ 13 24 18 11 5 3 8 31 6 35 73 11	$ \frac{\Upsilon}{20} \\ 13 \\ 11 \\ 7 \\ 6 \\ 4 \\ 48 \\ 5 \\ - \\ 11 \\ 14 $	Υ 41 9 10 6 15 13 19 7 6 54 17	Υ 19 36 21 17 6 2 20 21 13 17	$\gamma_{8}^{25}_{24}_{24}_{11}_{7}_{3}_{20}_{27}_{15}_{}_{}_{}_{}_{16}$	$ \begin{array}{c} \gamma \\ 8 \\ 19 \\ 12 \\ 6 \\ 4 \\ 2 \\ 11 \\ 26 \\ 14 \\ \hline \end{array} $ 12	Y 19 31 18 19 10 7 12 18 20 55 55 139 29	$ \frac{\gamma}{48} \\ 9 \\ 14 \\ 4 \\ 5 \\ 23 \\ 19 \\ 14 \\ - \\ 12 \\ 17 $	Υ 66 17 8 7 8 25 16 38 	Y 15 83 21 19 10 6 38 45 55 	γ 18 38 20 8 5 8 11 38 78 26	Y 5 31 13 9 4 28 31
o-tay moun			**										

Comparison of the two sets of ranges after conversion to force units showed some discrepancies in the sense that on a few occasions the directly measured extreme range Re was less than that derived from the 5-minute ordinates. The difference which seldom exceeded $2_{\rm Y}$, and was more usually $1_{\rm Y}$, was due to the difficulty of determining the real maximum and minimum ordinates on a trace run at an increased rate but with the usual sensitivity. For with a sensitivity of $8_{\rm Y}$ /mm. the setting of the scale at an instant when the ordinate differed from the true maximum or minimum ordinate by 0.25 mm. sufficed to underestimate the range by $2_{\rm Y}$. Except with a laborious routine of trial and error, 0.2 mm. on a long slow curve is readily overlooked. All necessary adjustments were made so that in no case is the tabulated Re now less than the corresponding R_5 . In both sets of tables of ranges a similar significance attaches to the 7-day and 8-day means as in the tables supplying the values of $\frac{1}{12}\Sigma\eta^2$.

.

It is obvious from a comparison of the means for Re and R_5 that the true (extreme) range at an Antarctic station may be very decidedly larger than the range derived from the ordinates even at the comparatively short interval of five minutes. In a particular hour the difference Re-R₅ may amount to 54% of R₅ as in the component E¹ at Cape Evans during the hour 8h.-9h. on April 16, 1912, when a short quick movement almost entirely between 8h.45m. and 8h.50m. was completely missed by the equidistant five-minute ordinates at these times. With a predominance of sharp oscillations so typical of Antarctic curves during really disturbed intervals such a difference between Re and R₅ might well be doubled.

§26.—The Constant C in the Relation $\frac{1}{12}\Sigma\eta^2 = CR^2$.

With the information of Tables CV-CVI and CVIII-CIX now available we are in a position to compute values of the constant C in the relation connecting activity and squared ranges on the basis of the two types of range, considering the diversity of magnitude of the constituents in the relation from hour to hour, it was not practicable to use averages even for the same groups of hours. Each of the hours and each component was, therefore, worked separately and then means derived for the four separate term hours and for the three components. These final means of the constants Ce and C_5 obtained respectively by using the extreme and 5-minute ranges are given in Table CX. All available pairs of estimates of activity and range have been utilised in forming the table, so that the number of individual values of the constants which have contributed to the separate entries for each hour and component are not the same for Cape Evans as for Cape Denison. Rejection of activities and ranges other than those for the seven common and complete days for the hours 8h. to 10h. and the eight days for the hours 17h. to 19h. would, however, leave the tabulated values of the constants practically unchanged.

TABLE CX.

Mean Values of C in the Relation $\frac{1}{12}\Sigma\eta^2 = CR^2$.

(Ce refers to extreme range : C_5 refers to range from 5-min. ordinates.)

Ce.		Cape Denison.				Cape Evans.			
		D	H.	v .	Mean three com- ponents.	E1	N1	v	Mean three com- ponents.
8h to 9h		·0748	·0761	·0804	· .0771 ·	·0679	0802	·0829	.0770
9h to 10h	•••	-0645	•0795	·0748	0729	·0687	·0692	0824	•0734
17h to 18h		0749	0648	·0880	0759	·0685	-0808	·0711	0735
190 10 190		•0745	.0788	·0084	.0739	.0052	·0642	.0643	•0646
Means	·	$\cdot 0722$	·0748	·0779	·0 7 50	•0676	·0736	$\cdot 0752$	•0721
C5.		Cape Denison.			Cape Evans.				
8h to 9h		·0975	·0990	·0908	.0952	·0896	·0938	1132	-0989
9h to 10h		.0775	.0882	-0870	.0842	.0835	.0781	·0966	0861
17h to 18h		·0869	.0962	$\cdot 1002$	·0944	.0935	·0898	·1157	.0997
18h to 19h		·0903	·1064	$\cdot 0775$	0914	.0816	.0889	-0993	·0899
Means		·0876	·09 7 5	-0889	·0913	·0871	·0876	·1062	·09 36

402

Results that emerge from an examination of Table CX are :---

- 1. The comprehensive mean Ce for all hours and all three components is only 80% of the mean value for C₅ taking both stations together.
- 2. These mean values of the constants in the activity-range relation are substantially higher than the values derived from the quick-run records at Cape Evans during 1911. Compared with the values $\cdot 072$ for Ce and $\cdot 094$ for C₅ in Table CX, the corresponding values in 1911 were $\cdot 059$ and $\cdot 077$. Since it is unlikely that the evaluation of the ratio $\frac{1}{13}\Sigma\eta^2/R^2$ from all the stations co-operating in the schedule of hours for 1912–13 would result in a value appreciably greater than that derived for the previous year, $\cdot 094$, the result suggests that the apparent fall in the value of the ratio with increasing latitude shown by the earlier data was fortuitous. Results from a more extensive series of term hours would probably confirm that a single value of the ratio $\frac{1}{13}\Sigma\eta^2/R^2_5$ is universally valid provided magnetographs of comparable sensitivity are used in the registration.
- 3. With the exception of the decrease in the value of C_5 from H to Z at Cape Denison, the means for all four hours for both types of constant are related CD < CH < CZ or the equivalent $CE^1 < CN^1 < CZ$ at Cape Evans.
- 4. The means for all three components both for Ce and C_5 are highest for the individual hour 8h. to 9h. at Cape Denison. At Cape Evans the hour 17h. to 18h. is greatest for C_5 .
CHAPTER V.—LONGER DISTURBANCES.

§27.—Summary of Prominent Features.

Some 24 disturbances of longer duration than those discussed in Chapter I have been selected from the Adelie Land records for description of the major features of interest and comparison with the simultaneous records of the disturbances at Cape Evans. For the latter purpose the selection was necessarily confined to the seven months, April to October, 1912. Dates and, when the disturbance did not continue over the entire day, times for each disturbance are provided by the first section of Table CXI. Other details relating to the extreme range within the disturbance and the times of occurrence of highest and lowest value of each component are furnished by the same table. The average duration of the disturbances was about $10\frac{1}{2}$ hours.

The following sections contain brief résumés of the chief movements in each of the listed intervals.

(a) APRIL 5, 18h., TO APRIL 6, 5h.

Irregular movements in the earlier hours of April 5 had left the azimuth of the horizontal field west of the normal orientation (6°5′ west of north) for that epoch, and though large fluctuations were superposed on the general trend from time to time, that direction of the field persisted throughout the disturbance. The largest deflection from the mean position occurred between 18h.40m. and 20h.45m. when the disturbing vector produced a westward rotation exceeding 6° of the whole field. During the same interval and in contrast to the activity in the E–W direction the component vectors in the meridian and vertically downward remained practically steady. In both these components the striking features were long period increases and decreases of field strength roughly in phase, the longest with maxima at 21h.10m. and 3h.12m. and with an intervening minimum at 0h. being synchronous with a similar variation in N' (the component directed 7°36' east of true north) at Cape Evans.

As opposed to the parallelism between the H and Z vector changes at Cape Denison, the Z trace at Cape Evans showed no characteristic oscillations similar to those in the prime meridian plane on the other side of the south magnetic pole. A comparatively featureless slow rise of field strength to $21\frac{1}{2}h$. and a subsequent slow fall to 4h. on April 6 has no parallel in the vertical component changes at Cape Denison.

(b) APRIL 10, 6h. TO 12h.

This disturbance chiefly affected the field transverse to the meridian. Though an underestimate due to loss of trace in a major fluctuation, the extreme range in D was 264 minutes of arc equivalent to 238 force units, while the range in the meridian vector was only 106_Y. After an interval of highly oscillatory movements near the opening of the disturbance, the charges in D were such as resulted from an eastward directed disturbing vector, increasing then relaxing with constant superposed fluctuations. The average resultant azimuth in the horizontal plane was well to the east of the normal magnetic meridian.

The variation in Z had points of resemblance to those in D as well as H. A badly formed bay movement from 9h. to 10h.5m. was approximately simultaneous with the epoch of extreme easterly elongation in D.

(c) APRIL 15, 1h. TO 14h.

Except for minor perturbations of moderate amplitude from 18h. to midnight on April 14, conditions prior to the outbreak of this disturbance had been fairly quiet. From 0h. to 4h.46m. on April 15 the field strength in the meridian decreased with the usual superposed fluctuations; followed a period of increase to a maximum at 11h.16m. after which time it fell steadily to normal at 14h.

In declination the cause of the disturbance was more irregular. From the outset the tendency was for the vector to rotate in a westerly direction, reaching a maximum in that direction at 2h.23m. and returning approximately to the original orientation at 8h.10m. The easterly trend of this last phase of the movement continued to 11h.10m., 4 minutes before the maximum value of the meridian disturbance vector was attained. A final return swing to west occupied the remainder of the line of the disturbance. During the entire interval, the declination trace was so highly oscillatory that identification of turning points was made with difficulty.

Not only did many of the shorter period perturbations in the vertical field closely resemble simultaneous changes in H, but the slower movements in the general trend of the two fields was similar. Only from 3h.30m. to 6h. when, indeed the parallelism in the minor changes was most close, was there any noticeable tendency to opposition in the major variations. While H continued to decrease till 5h., Z had already reached a well defined minimum at 3h.36m.

The main changes in the horizontal field components at Cape Denison compared closely with the synchronous changes at Cape Evans. But the slow decrease in Z at this latter station from beginning to end of the disturbance with no distinctive oscillations superposed is entirely different from the vertical field changes at Cape Denison. There is only a feeble analogue in the Cape Evans traces for the succession of three well marked oscillations in Z and H between 5h. and 6h. at Cape Denison.

High sensitivity in the declination variometer as well as the persistence of short period oscillations throughout the disturbance make a detailed intercomparison between the movements in D at Cape Denison and E^1 at Cape Evans difficult, but a general sympathy of movement seems to be the prominent feature.

(d) MAY 12, 0h. TO 14h.

As on April 15, the disturbance beginning about midnight on May 11 was preceded by an interval of comparative quiet. The vector along the meridian in the horizontal plane was at first directed northward and continued increasing in this direction till 3h.40m. when a gradual decrease lasting for $7\frac{1}{2}$ hours set in. Between 11h.10m. and 11h.20m. there was an accelerated decrease of H amounting to $120_{\rm Y}$ in that interval followed by a rise, partly sudden, to an approximately normal value at the time of completion of the disturbance. Except during the almost stationary period in H preparatory to the sudden decrease at 11h.10m., when the meridian disturbing vector simply fell away gradually, the vertical field changes showed a remarkable parallelism to those in H. Even of the smaller fluctuation in the latter very few were not clearly mirrored in the Z trace.

Soon after the opening of the disturbance (1h.33m.) the disturbing field across the meridian and directed westward reached its maximum and thereafter the direction was mainly east of the normal meridian. During the latter interval there were two large oscillatory excursions of almost equal amplitude to the east, the extreme positions being attained at 7h.35m. and 11h.17m. The latter was approximately synchronous with the sudden changes answering to increasing field strength in the prime meridian components. The changes in the movement are summarised thus :---

	Comp	onent.		Time.	Magnitude.	Direction.
D		•••		11h.5m. to 11h.17m.	$123'\cdot 8\equiv 112$ y	Eastward.
\mathbf{H}	•••	•••	•••	11h.7m. to 11h.19m.	. 123 ү	Increase.
Z	•••		•••	11h.8m. to 18h.18m.	97 y	Increase.

(e) MAY 12, 21h. TO 24h.

This disturbance was one of the shorter among the twenty-four selected for description and consisted essentially of a double oscillation regularly described by all three components superposed on a slow uniform change of field along the three orthogonal directions. The oscillation was best developed in the vertical field component. Though the duration (1h.12m.) of the first half of the oscillation there exceeded the second (55m.) and the amplitude of the second $(35 \cdot 4_{\gamma})$ exceeded that of the first (19 \cdot 3_{\gamma}) the mean trend of the Z trace at the end of the oscillation was in continuation with that at the beginning, implying a progressively decreasing main field during the operation of the deflecting vector. In D and H the first of the movements answering to increasing west declination and decreasing meridian field strength had the longer duration and greater amplitude; the second movement of the oscillation was only just observable in H but prominent in D.

A single bay disturbance attributable to EW then WE superposed vectors transverse to the meridian and a component directed first to S then to N in the direction of the meridian, both phases being effected in the interval 21h.20m. to 23h.10m. were the chief features of the later part of the disturbance.

(f) MAY 13, 0h. TO 14h.

Only a short interval relatively free from large perturbations separated the disturbance of May 13 from that just described, otherwise the two outbreaks might have been treated together. See Fig. 18.

Following on the continued rise in the value of H and increase in westerly deflexion in D during the last hour of May 12, both these elements proceeded to vary in phase till 8h.3m. on May 13. Two bay-like movements of long period, the earlier 50% longer in duration than the second, occupied the time till 5h.15m., after which there was an interval of comparative quiet. Beginning at 7h. a third oscillation of decidedly smaller range lasted till 8h.3m. Up to 6h. the changes in H and Z were mainly in step with those in declination, increasing values of the field strength in these components corresponding with increasing easterly D. The third of the oscillations in the two force components . coincided with a westerly movement in D.

Between 8h.20m. and 8h.42m. two rapid oscillations in declination directed east-west-east synchronised with rapid rises in both the vertical and meridian field strengths. In the former a rise of $224_{\rm Y}$ occurred between 8h.20m. and 8h.37m. and in the latter a rise of $82_{\rm Y}$ occurred between 8h.35m. and 8h.42m. A further slow increase in H and a decrease to normal strength in Z from 9h. to 14h. answered to a progressive westward movement in D. All components were frequently interrupted by minor oscillations of brief period.

Remarkable differences and similarities in the progress of the elements at Cape Denison and Cape Evans during the disturbance of May 13 are to be noted. The parallelism between the H and Z traces during the bay-like movement centred about 1h.30m. at Cape Denison, has no counterpart at Cape Evans in the behaviour of either of the corresponding components N^1 and Z. There is, on the other hand, considerable similarity in the variations of declination at Cape Denison and E¹ at Cape Evans. Attention is most strikingly attracted, however, by the absence of any analogue at Cape Denison to the sharp movement between 5h.50m. and 6h.30m. in all three components at Cape Evans, and conversely to the absence at this latter station of any movements of dimensions and characteristics similar to those which are prominent in the Cape Denison magnetograms about 8h.30m,

.

.

(g) June 8.

The subdivision of the disturbance on June 8 and 9 does not mean that four separate and independent outbreaks of disturbance were discernible in the records from Cape Denison. On the contrary, from 21h. on June 7 till the early hours of June 9 there was no interval undisturbed in at least one component. The subdivisions had been resorted to in the investigation on the basis of the records from Cape Evans (*vide* Brit. Ant. Expedition, 1910–13, Terrestrial Magnetism, Section 120), simply to allow comparison with curves for various parts of the disturbance contributed by other stations. The adoption of the same subdivisions in the present examination therefore facilitates comparison between events in the same limited intervals at these other stations.

2h. то 5h.

The main movements in H and Z executed with remarkable parallelism of variation and closeness of phase were two bays, the first a "negative" bay answering to a rise followed by a fall in the value of the two fields (always considering a rise in Z in the Antarctic as the equivalent of a decrease of dip indicating a numerical decrease in the vertical field strength there), and the second, following after about 16 minutes, a bay of the usual type. These movements occupied the time from 3h.15m. to 4h. 35m. They were preceded by two smaller perturbations of shorter period and smaller amplitude. Two major eastward deflexions in D corresponding to the bays in the force traces were interrupted by oscillations of range not less than that of the bays.

6h. то 8h.

In place of the well developed "disturbance of special type" shown on the Cape Evans magnetograms from 6h.55m. to 7h.50m., disturbances in H and Z Adelie Land in the interval between 5h.40m. and 8h.10m. took the form of a succession of two bays of inconspicuous range. Simultaneously, declination was highly variable in short period movements and, except for an eastward increase approximately synchronous with the second bay in the force components, showed no obvious correspondence.

10h. то 16h.

During this part of the disturbance also, magnetic events at Cape Denison and Cape Evans differed markedly. From 10h. to 12h.36m. there was nothing of prominence. But at 12h.36m. a rapid increase in H and Z coincided with a rotation of the disturbance vector to the east, and, after reaching simultaneous turning points at 12h.45m., a reverse tendency continued in all components till 13h.12m. when the fall abruptly ceased. A short interval of renewed increase in the horizontal and vertical field strengths was followed about 13h.25m. by a period of unusual oscillation in all three components. Rapid changes of large amplitude and extremely short period (a small number of minutes) made a certain scrutiny of the progress of events from 13h.25m. to 14h.15m. impossible. On the whole, however, the mean-value of Z was well above its normal value, with H slightly below and D to the east of the normal meridian azimuth.

19h. то 22h.

During these hours the form of the disturbance was primarily a bay of long period, the disturbing vectors deflecting D first east then west and, both in the horizontal meridian and vertical fields, answering in the first phase to a decrease and in the second phase an increase of the average field strengths.

(h) JUNE 9, 0h. TO 5h.

Another shallow bay of long period in which H and Z were subjected to forces tending to decrease the fields in the first part of the disturbance and then restore them to normal strength in the second part characterised the early hours of June 9. The fall in the force vectors of the prime meridian had ceased by 2h.30m. Simultaneously declination increased in a slow drift to west then east. These changes in the three components were frequently interrupted by minor perturbations of considerable amplitude in the horizontal meridian and vertical fields. Centred at 0h. and with a duration of two minutes a sudden west movement in D was equivalent to a disturbing field from east to west increasing at the rate of $40_{\rm Y}$ per minute.

(i) JUNE 27, 6h. TO 12h.

Interrupted by a slight inverted bay between 6h.15m. and 6h.58m., the disturbing vector along the magnetic meridian increased gradually from 6h. to 8h.37m. when an accelerated increase forming the first phase of a larger movement like an inverted bay set in. The subsequent decrease in value of the component from 9h.10m. to 10h.30m. was more gradual. Between 6h.15m. and 7h. the vertical component of the field also increased and decreased; then, after remaining steady except for minor oscillations till 8h.40m., the main bay in H was echoed in Z though on a reduced scale. No declination record was available for the disturbance.

(*j*) JUNE 27, 22h., TO JUNE 28, 2h.

This a further example of an inverted bay (increase then decrease) in the two recorded force components. The traces were much interrupted by minor oscillations. There was no D trace.

(k) JULY 31, 14h., TO AUGUST 1, 8h.

A large movement of bay type beginning at 3h.10m. on August 1 and continuing for three hours was superposed on the progressive decrease in the horizontal and vertical fields which had set in at the commencement of the storm. The form of the bay in Z remained flat from the end of the first (decreasing field strength) movement at 3h.42m. till 4h.30m. when the return rise to the original normal value set in. D meanwhile was highly oscillatory about a mean azimuth which was westward of the undisturbed meridian.

(l) AUGUST 18, 14h., TO AUGUST 19, 6h.

Within the main part of this disturbance, which was comprised between 18h. on August 18 and 5h. on August 19, the chief movement occurred from 20h. to 21h.30m. Between 20h.7m. and 20h.35m. the change in declination was equivalent to an east to west deflecting vector of 203_{γ} and was followed by an eastward directed vector, interrupted by the usual minor oscillations, of 250_{γ} between 20h.54m. and 21h.32m. Corresponding with these, the changes in the vertical field were more spectacular than those along the meridian in the horizontal plane. For Z increased by 390_{γ} between 20h.36m. and 21h.13m. and the subsequent fall, though not completed till midnight of August 18 was of equal range. Until 23h.30m. H was mildly perturbed by minor oscillations, then followed two comparatively shallow bay movements, the earlier of which synchronized with a westerly change in D and a slight bay superposed on the gradual decrease which was proceeding in Z.

(m) AUGUST 19, 9h. TO 10h.

This movement has been selected in the discussion of the Cape Evans records because of its isolation and as exemplifying a typical "disturbance of special type." Somewhat similar characteristics to those at Cape Evans are present in the Cape Denison traces, though as usual, the real generic features of the special type are not well defined.

In both H and Z a simple oscillation, the direction of change of whose first phase answered to a decrease in field strength, took place simultaneously with an easterly change in declination. The duration of the latter, as was frequently the case, exceeded the duration of the oscillation in H or Z. As shown by the ranges for the hour given in Table CII, the movements were of similar amplitude in all three components. This disturbance is reproduced as Plate XIII.

(n) SEPTEMBER 17, 11h. TO 23h.

A detailed account of this disturbance is given in Chapter VI.

(o) SEPTEMBER 18, 0h. TO 14h.

The disturbance of the previous day continued spasmodically till about 14h. on September 18, the only intervals of comparative quiet—though always interrupted by minor fluctuations—being most evident in the force vectors of the meridian plane. From 0h. to 2h. a bay movement characterised all components with ranges of 181 γ in H, 133 γ in Z and 227.5 minutes of arc in D, the last being equivalent to an east to west disturbing force of 206 γ . As in all direct bays the commencing movements in H and Z corresponded to a diminution of the normal field strength with the return movement not so complete or deliberate as the first.

Further subsidiary perturbations centred at 4h. and 6h.25m. occurred in H and Z with a smaller one mainly in H at 7h.35m.; movements of considerable irregularity and not in phase with those in the force components were proceeding in D during the same period. Then after $3\frac{1}{2}$ hours of moderate quiet a sharp movement in all three components set in at 11h.29m., and in the subsequent 11 minutes H increased

by 77_{γ} , Z by 104_{γ} and the exchange in declination, 85.5 minutes of arc, was equivalent to an east force of 78_{γ} . Subsequent movements in all components were highly oscillatory, Z about a mean position at the culmination of an inverted bay initiated by the movement just described, H after a rapid rise and fall superposed on the major outline of a bay synchronous with that in Z and D during a similar rapid reversed excursion to west.

(p) SEPTEMBER 24, 0h. TO 14h.

All the disturbances hitherto described have had their main trend frequently interrupted by the additional perturbations of very local origin which are conspicuous on the records for most days at Antarctic stations. Such perturbations were singularly absent during the earlier part of the disturbance on September 24. Except for a temporary arrest of the major variation between 2h.20m. and 3h.10m., the strength of the horizontal field along the meridian fell continuously from 1h.45m. to 3h.56m. Between 3h.5m. and 3h.56m. the decrease was 175γ ; the total decrease from the opening of the disturbance was 336 Y. After 4h. H increased systematically till the end of the disturbed period. The trend in Z was similar. A fall of 229 γ from 0h. to 3h.35m. was succeeded by a continuous rise of 359_{γ} to 9h.50m. with a subsequent fall of 140_{γ} to a normal level at 12h.17m. In the main rise therefore, the variations in these components of the disturbance field were attributable simply to a much enhanced development of the regular disturbed day variation. Though additional perturbations were more evident than in H and Z, the same is true of the tranverse disturbing field. The greatest westerly elongation at 3h.26m. was attained after two hours of rapid oscillation, culminating in an E to W movement of range 2° 6' executed within 27 minutes. A further bay movement equivalent to the super position of an east-divided disturbing force of 355_{γ} and a return movement to W of 266_{Y} brought the meridian to normal azimuth by 12h. 14m.

About 10h. some small oscillations were visible in all three components, the largest in H was of range 42_{γ} , in Z 51_{γ} , and D 61' or 55_{γ} in west force.

(q) SEPTEMBER 24, 14h., TO SEPTEMBER 25, 2h.

Remarkably steady general conditions persisted from 14h. to 19h. with the only interruptions a succession of fairly regular oscillations in D and H, which were only partially recognisable in Z. Just after 19h. a larger bay movement began in D, reached a westerly elongation at 20h.58m. and remained in an oscillatory state there till 23h.14m. when the reverse eastward movement interrupted by further oscillations brought the trace to a normal position by 2h. The mean range in D during the day was 3°. H and Z were also affected by the disturbance field but the changes were not in phase with those in the EW component or with each other. The period of the oscillation was shorter in H and Z than in D and the mean minimum position reached later. Further, though the fall of $185_{\rm Y}$ in Z was almost equal to the rise, as in D, the main fall in H was partially counterbalanced by an immediately preceding rise; the oscillation in H was rather of the nature of a double oscillation about the mean. All three components were considerably affected by minor perturbations till 6h. on the 25th. This disturbance is reproduced as Plate XIV.

(r) SEPTEMBER 30, 21h., TO OCTOBER 1, 8h.

A clear sudden commencement (impetus) beginning at 21h.34m. on the 30th September after an exceptionally quiet period of 10 hours opened a moderate disturbance which continued for 20^{hours}.

The direction and magnitude of the constituent movements in the S.C. were as follows :---H fall 32_{γ} , then rise 93_{γ} .

Z fall 52γ , then rise 81γ .

D to east 44' then west 44' ($\equiv 40_{\gamma}$ E then W force). The turning points in the oscillation were partially masked by minor movements. The S.C. was equally clearly recorded at Cape Evans, and there the directions of change of N¹ and Z in the two parts of the movement were the reverse of those at Adelie Land. In the EW direction the vector component was in the same sense at the two stations.

After the S.C., H strengthened slightly to 24h., and, after a short decrease rose 309_{Y} between 2h.46m. and 3h.35m., when followed an almost linear fall of 437_{Y} to 5h.48m. with a subsequent slow rise of 269_{Y} to 15h. The only additional perturbation of note occurred between 23h.45m. and 0h.50m. Z was decidedly more affected by superposed oscillations than H, but, on the whole, its value fell after the S.C. to 4h.28m., most of the fall (266_Y) taking place in the $2\frac{1}{2}$ hours preceding the minimum. A recovery of 244_Y had been made by 7h.50m., and thereafter it continued a slow rise to slightly beyond its normal value at 11h.50m. Declination showed the usual oscillations at all phases of the disturbance. Slightly west of normal at the outset, $_{Y}$ made a series of rapid excursions to E, of which one between 0h.25m. and 0h.47m. ranged through 160'. A slower return movement to W with incessant minor interruptions preceded a further urge eastward drift from 3h.12m. to 8h.12m. and a reverse change from east to west through 6° 9' lasting till 14h.47m.

(s) OCTOBER 12, 20h., TO OCTOBER 13, 13h.

With continuous minor perturbations of no great amplitude, H fell from 21h. 35m. to 3h.10m., then increased to 10h.30m. Between 5h.42m. and 5h.52m. there was a rise of 107_{γ} in a sharp oscillation. Z was similarly affected, except that after the initial period of fall the rise was more gradual. A quick rise of 59_{γ} in the 12 minutes preceding the maximum at 10h. was synchronous with a smaller rise of 40_{γ} in H. In both these components the epochs of maxima and minima were again roughly those of the regular disturbance variation. The same is true of D. As H and Z fell, D increased to west with much oscillatoriness. Near the turning point at 0h.35m., a sudden E then W movement had a range of $2^{\circ} 6' (\equiv 106_{\gamma})$.

(t) OCTOBER 14, 6h., TO OCTOBER 15, 6h.

A succession of oscillatory perturbations of nearly equal amplitude superposed on the usual disturbance variation in all three components was the chief feature of this disturbance. Though specially conspicuous in D, the oscillations were mainly prominent in H and Z, and in these components were almost, if not quite, in phase. *.64550—F

The starting time of D most frequently was earlier than that for the two force components and the completion of the swing later. Details of some of the movements are as follows, using — to indicate a fall, + a rise, and E and W to indicate movements to east and to west in declination.

		7h. 40m to 9h.	11h. 20m. to 12h. 20m.	12h. 42m. to 13h. 30m.	13h. 46m. to 14h. 45m.	16h. 22m. to 16h. 40m.	18h. 30m. to 20h. 10m.	12h. 0m to 12h. 18m.
H		60y, + 90y	+ 40γ, - 20γ	$+34\gamma, -38\gamma$	$+50\gamma, -47\gamma$	+ 46γ	$+48\gamma, -36\gamma,$	+ 60γ
Z	•••		+ 52γ, — 59γ	$+55\gamma, -74\gamma$	$+52\gamma$, -78γ	+ 70γ	$+ 34\gamma, - 04\gamma$ $+ 81\gamma, - 37\gamma,$ $+ 48\gamma, - 85\gamma$	+ 140γ
D	•••	E 105', W 80'	E 40', W 45'	E 45', W 85'	E 37', W 74'		E 65', W 48', E 40', W 46'.	E 58'

Between 0h. and 20m. and 0h.45m., D increased E 5° 40'; in the same interval Z first increased 141_Y, then decreased 47_Y ; H showed minor oscillations of unimportant magnitude.

Overlapping the time of sudden increase of 94_Y in H, and 274_Y in Z during a period of 25 minutes centred at 2h., D increased E by 106' equivalent to an east directed force of 96_Y . This was really the first movement of a succession of four from 0h.48m. to 5h.33m., all being easily recognisable in the three components and with the major turning points approximately synchronous in H and Z though not always in D.

A small but conspicuous oscillation of the sudden commencement type appeared about 5h.45m. The chief changes were $H + 67\gamma$, $Z + 47\gamma$, D W 74' ($\equiv 67\gamma$).

(u) OCTOBER 20, 17h., TO OCTOBER 21, 1h.

Another period of freedom from considerable disturbance was broken by a poorly developed S.C. at 17h.22m. on October 20. The chief movements in the subsequent activity were completed by 1h. 30m. on the 21st.

In the "commencement" itself, the superposed field lowered the values of H and Z while D increased to W, the magnitudes being H and $Z=7_{Y}$ and $D=13' (\equiv 12_{Y})$. Only four (or five) perturbations of bay type were superposed on the general trend which again took the form of a simple enhancement of the regular variation in all three components. The most prominent of these additional perturbations occurred between 23h.15m. on the 20th and 0h.28m. on the 21st, the three components varying in phase. From 23h.15m. to 0h., H and Z rose 151_Y and 263_Y respectively; the equivalent increase in E force was only 58_Y. Over the 45 minutes to 0h.30m. (*i.e.*, including the preceding movement), H increased by 289_Y and Z by 321_Y. An eastward movement in D between 23h.46m. and 0h.1m. had a range of 142', being only 4' short of the extreme range for the whole disturbance.

§28.—Extreme Ranges in Disturbed Intervals at Cape Denison and Cape Evans.

The preceding descriptions of the broad outlines of force changes in 24 selected disturbances at Cape Denison provide no basis for a numerical comparison with disturbance recorded at other stations. But such a comparison with the other recording station in the Antarctic, Cape Evans, is of more than usual interest, more especially when it has been found that records covering the same disturbed period at the two stations differ so conspicuously in many of the major movements. While it is realised that the ideal foundation for comparison must be on the lines proposed by Bidlingmaier, even the next best substitute for the "activity integral" in the form of squares of ranges of force variations within small time intervals is associated with an expense of labour incommensurate with the value of the results to be derived. This is especially the case with such records as those from Cape Denison in which loss of trace from an extremely high oscillatoriness in one or more of the traces was partly overcome by the use of a double mirror so that part of the trace was frequently continued from off the top on to the bottom of the sheet.

With as many as 24 disturbances for comparison the average value of the extreme range of force variation encountered during each disturbed period will provide at least a rough comparative measure of the force changes and if current theory is well founded the squares of these extreme ranges should roughly measure the "activity" of the disturbing vectors. It is to be noted, however, that such measures will refer only to the major and more widely acting forces and can take little or no account of the local perturbing fields which impress short period fluctuations on the large scale field changes. A further consideration of such period activity is made in Chapter VIII.

The extreme ranges of the components D, H and Z at Cape Denison, together with the lines of occurrence of the maximum and minimum values, have been measured for the 24 disturbances whose main characteristics have already been summarised. The corresponding extreme values and times recorded in the same intervals at Cape Evans have been similarly measured. Both sets of data are supplied by Table CXI. The range in D is given in terms of its equivalent in force units as well as in minutes of arc. Since declination at Cape Denison during 1912 was $6^{\circ} \cdot 5$ west of north the equivalent force ranges relate to a disturbing vector component directed along a line $6^{\circ} \cdot 5$ south of west. No D record is available for the disturbances on June 27 and part of June 28.

N' at Cape Evans, it will be remembered, is the component directed 7°36' east of north and E', 7°36' south of true east. Z, the component directed radially downwards is, therefore, the only element providing strictly comparable data for the two stations. It may also be recalled that the average values of the horizontal meridian fields at Cape Denison and Cape Evans during the period covering the common disturbances were roughly proportional to the distances, 575 miles and 795 miles respectively, separating the two stations from the supposed locality of the south magnetic pole (71°10' S, 15°45' E). The horizontal field strength towards the pole at Cape Denison was 030 gauss and at Cape Evans 043 gauss. The stations were approximately 900 miles apart.

TABLE CXI.

						Cape D	enison.					Ra	nges.			_
_ From	l .	т	·••	I)		н		2		Cape De	nison.		Ca	pe Evar	ıs.
				Max.	Min.	Max.	Min.	Max.	Min.		D	н	·z	N'	E'	z
April 5 ", 10 ", 15 May 12 ", 12 ", 13 June 8 ", 8 ", 8 ", 9 ", 27 July 31 Aug. 18 ", 19 Sept. 17 ", 18 ", 24 ", 30 Oct. 12 ", 12	$ \begin{vmatrix} h. \\ 18 \\ 6 \\ 1 \\ 0 \\ 21 \\ 0 \\ 26 \\ 10 \\ 19 \\ 0 \\ 6 \\ 22 \\ 14 \\ 14 \\ 9 \\ 11 \\ 10 \\ 0 \\ 14 \\ 21 \\ 20 \\ 6 \\ 17 \end{vmatrix} $	April 6 " 10 " 12 " 12 " 13 June 8 " 8 " 8 " 8 " 9 " 27 " 28 Aug. 1 " 19 " 19 Sept. 17 " 18 " 25 Oct. 1 " 13 " 15	$\begin{array}{c} \text{h.} & 5\\ 12\\ 14\\ 14\\ 24\\ 14\\ 24\\ 14\\ 22\\ 5\\ 12\\ 2\\ 2\\ 2\\ 3\\ 6\\ 10\\ 23\\ 14\\ 12\\ 2\\ 18\\ 12\\ 6\\ 1\\ 12\\ 6\\ 1\\ 1\\ 12\\ 6\\ 1\\ 1\\ 12\\ 6\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	h. m. 3 12 9 30 11 10 7 35 21 19 8 40 4 5 6 10 14 0 19 5 4 40 No re No re 4 44 3 15 12 55 11 40 9 52 1 43 8 10 11 15 8 25 23 25				h. m. 3 28 9 36 11 30 11 22 23 5 8 37 5 0 8 0 13 35 21 48 0 1 10 35 1 40 17 46 21 12 19 0 11 50 9 54 1 0 11 43 10 30 21 54 23 5 1 43 10 30 11 22 12 23 12 23 14 20 13 20 14 20 13 20 13 20 14 20 13 20 14 20 14 20 15 20 16 20 17 46 21 12 19 0 11 20 10 20	$ h. m. \\ 0 8 \\ 6 3 \\ 3 36 \\ 3 39 \\ 22 10 \\ 1 25 \\ 4 10 \\ 6 18 \\ 12 15 \\ 20 13 \\ 2.18 \\ 6 32 \\ 23 57 \\ 3 44 \\ 3 58 \\ 20 25 \\ 0 49 \\ 3 32 \\ 23 36 \\ 4 30 \\ 5 42 \\ 4 17 \\ 0 29 \\ 1 29 \\ 1 25 \\ 1 2$	$\begin{array}{c} & & & \\ & 403 \\ & & 264 \\ & 338 \\ & 315 \\ & 182 \\ & 407 \\ & 100 \\ & 61 \\ & 464 \\ & 187 \\ & 139 \\ & - \\ & 209 \\ & 364 \\ & 60 \\ & 372 \\ & 303 \\ & 360 \\ & 206 \\ & 284 \\ & 301 \\ & 476 \end{array}$	$\begin{array}{c} \gamma^-\\ 363\\ < 238\\ 304\\ 284\\ 164\\ 366\\ 90\\ 55\\ 418\\ 168\\ 125\\ -\\ 188\\ 328\\ 54\\ 335\\ 273\\ 324\\ 185\\ 256\\ 271\\ 423\\ 131\\ \end{array}$	γ 233 106 261 214 98 209 171 60 337 80 147 131 88 310 173 64 181 215 339 156 445 171 257 360	γ 224 134 490 350 184 369 129 416 124 124 124 124 91 119 207 394 64 165 330 351 215 333 185 364 324	γ 208 228 207 300 106 382 116 78 197 59 215 153 93 196 188 102 256 260 351 265 226 216 336 380	γ 311 162 248 226 180 247 101 163 151 152 164 140 101 323 302 87 302 227 244 200 288 246 477 110	Υ 101 131 139 116 366 555 3366 124 388 150 955 23 324 82 63 324 82 63 324 82 613 119 957 210 103 180 109 962 2122
Me	ans o	f 24 ranges	(exce	pt for I) at C.I						243 (22)	200	239	205	211	123

Longer Disturbances : Ranges at Cape Denison and Cape Evans.

Since both stations were well within the auroral zone whose limits are critical for the definition of the primary features of disturbance in polar regions, it might have been anticipated that the effects of disturbance on the component of the horizontal field directed along the meridian would be approximately equally pronounced at both the Antarctic stations; while from the very sensibly smaller controlling field at Cape Denison, force variations in an EW direction would produce much larger ranges in the component along this direction at Cape Denison than at Cape Evans. There would have been little foundation either in fact or theory for a forecast of the average behaviour of the vertical disturbing vectors.

The expectations as regards the horizontal components are generally confirmed by the mean values of the range over the 24 disturbances. Only $5_{\rm Y}$ in a range of $200_{\rm Y}$ differentiate the mean ranges of the vector component along the meridian, that at Cape Evans being the higher, but the corresponding ranges for D and E' are $243_{\rm Y}$ and $219_{\rm Y}$, the latter being the mean from 22 common disturbances. There can, however, be only surprise at the result that the range of the vertical component at Cape Evans is no more than 51% of that at Cape Denison. In individual disturbances the Z range at the latter station exceeds that at Cape Evans in 20 of the total number of 24 tabulated ranges.

§29.—Squares of Extreme Ranges Compared.

Consequent upon the earlier consideration the squares of the ranges for separate components, for the combined vectors in the horizontal plane and for the resultant vectors in three dimensions are supplied by Table CXII. Two sets of mean values of the squares are appended; one set derived from the use of all available constituents of the table, the number in parenthesis after each mean denoting the number contributing to its formation, and a second set relating to the two disturbances for which complete data are available for both stations. Rounding to the unit of $100r^2$ of the table accounts for any discrepancy between the added values for the surface or total activities and the sums of the squares of ranges for individual components.

Though mean the squared range for E' at Cape Evans in the last line of the table exceeds that for D at Cape Denison, the excess in the value for the field component along the meridian at Cape Denison over that at Cape Evans more than counterbalances the deficit in the transverse field changes. The net result, therefore, is that both in the horizontal plane \overline{H} and the three-dimensional field \overline{T} , Cape Denison has precedence over Cape Evans. In the vertical field alone the square of the disturbing force range at Cape Evans is only 28% of that at Cape Denison. For the resultant in the horizontal plane \overline{H} the percentage is 83% and for the total resultant of all three components \overline{T} barely 61%. These figures refer to the second set of means derived from the 22 disturbances for which ranges are complete in all components.

TABLE CXII.

· · · · · · · · · · · · · · · · · · ·		ape Deniso	•n.	<u> </u>	Cape Evans	s.	Cape	Cape	Cape	Cape
Date of Disturbance.	Da	Н	Z²	N' ²	E'3	Z ³	H _D	Evans. H _E	T _D	Evans. T _E
April 5_6	1 218	543	502	433	967	102	1 861	1 400	2,362	1.502
April 10	566	112	180	520	262	172	679	782	858	954
April 15	924	681	2.401	428	615	193	1.605	1.044	4.006	1.237
May 12 $0h = 14h$	807	458	1,225	900	511	135	1.265	1.411	2.490	1.545
May 12, 21h24h.	269	96	339	112	324	13	365	436	704	449
May 13	1.340	437	1.362	.1.459	610	936	1.776	2.069	3.138	3,006
June 8. 2h5h.	81	292	166	135	102	30	373	237	540	267
June 8, 6h8h.	30	36	38	61	266	74	66	327	105	400
June 8, 10h16h.	1.747	1.136	1.731	388	228	154	2,883	616	4,613	770
June 8, 19h22h.	282	64	1,538	35	231	14	346	266	500	280
June 9	156	216	1,538	462	269	225	372	- 731	526	956
June 27, 6h12h.		172	83	234	196	· 90	— —	430		520
June 27, 22h28, 2h.		77	142	86	102	5		189		194
July 31, 14hAug. 1, 8h.	353	961	428	384	1,043	1,050	1,314	1,427	1,743	2,477
August 18 14h19, 6h.	1,076	299	1,552	353	912	67	1,375	1,265	2,927	1,333
August 19	29	41	41	104	76	40	70	180	· 111	219
September 17	1,122	· 328	272	655	912	142	1,450	1,567	1,722	1,709
September 18	. 745	462	1.089	676	515	76	1,208	1,191	2,297	1,267
September 24, 0h14h.	1,050	1,149	1,232	1,232	595	441	2,199	1,827	3,431	2,268
September 24, 14h25, 2h.	342	243	462	702	400	106	586	1,102	1,048	1,208
September 30	655	1,980	1,109	511	829	324	2,636	1,340	3,745	1,664
October 12	734	292	342	467	605	119	1,027	1,072	1,369	1,191
October 14	1,789	660	1,325	1,129	2,275	262	2,450	3,404	3,775	3,667
October 20	172	1,296	1,050	324	121	149	1,468	445	2,517	594
Means-				1			· 			
(1) Days in parenthesis	7'9 (22)	536 (22)	724 (24)	491 (24)	540 (24)	205(24)	1244(22)	1032(24)	2044(22)	1237 (24)
(2) 22 Common days	709	536	- 779	521	576	219	1,244	1,097	2,044	1,317

Longer Disturbances at Capes Denison and Evans : Squares of Ranges. (Unit 100_{γ}^2 .)

 \overline{T} for Cape Evans exceeds \overline{T} for Cape Denison in only 5 of the 22 complete disturbances but \overline{H} at Cape Evans exceeds \overline{H} at Cape Denison in 12 of the disturbances. Therefore, though the average activity in all three components during disturbance at Cape Denison does greatly exceed that at Cape Evans, the pre-eminence of Cape Denison is essentially a result of the behaviour of the vertical disturbance vector there.

In the discussion of the instrumental side of the magnetic work of the Expedition (Scientific Reports, Series B, Vol. I) it was pointed out that the behaviour of the vertical force variometer was not always completely satisfactory. But the main troubles were encountered in 1913 after the period of simultaneous records which are at present under discussion was past. In addition, the observer in charge of the magnetograph installation decided that the anomalous records obtained in 1913 and, therefore, presumably in 1912—if the source of imperfection was present to an unnoticed degree then—were to be attributed to friction in the balance system. Such a defect would, however, tend to diminish the range of the recorded vertical force changes rather than enhance them. The accuracy of the scale values used in reducing the measured ordinates on the traces to force units was verified. It must, therefore, be concluded that the differences between the recorded ranges of the vertical component of the disturbance vectors at the two stations are real.

It is true that differences in the vertical field changes even within such a limited area of the pole were to some extent to be anticipated, but the differences actually found seem out of proportion to the difference in the distances between either station and the region of the magnetic pole. The result can only mean that within the auroral zone there is an inner zone of discontinuity in the vertical force changes which normally arise from the overhead current system in disturbance.

CHAPTER VI.—THE DISTURBANCE OF SEPTEMBER 17, 1912.

§30.—Description of the Chief Features as Registered at Cape Denison.

After 48 hours of comparatively quiet conditions a disturbance began just before noon on September 17. For reasons which will become plain in the ensuing discussion, the subsequent movements in the magnetic field at Cape Denison have been made the subject of special study. A tracing of the magnetogram of this occasion is reproduced in Fig. 19.

Declination alone showed much variation during the first hour, but after 13h. the variations in all three components took the form of a succession of waves, the earlier members of which were remarkably regular. These waves continued till after 19h. Then at 19h.30m. a much larger movement, well developed in all components set in. The phase relationships in the horizontal components of the disturbing force vectors during this movement were rendered specially conspicuous by their approximate regularity and made it obvious that the influencing forces had been rotatory in character, swinging from east to west through north, *i.e.*, anti-clockwise. Similar peculiarities had also been evident in the same interval of the synchronously recorded disturbance at Cape Evans and had been examined with reference to the records at other magnetic observatories (vide Brit. Ant. Expedition, 1910–13, Terr. Mag. Sections 125–7).

Plate VIII reproduces an attempt to illustrate the main features of the Adelie Land and Cape Evans magnetograms for the interval covering the disturbed hours. In the original magnetograms the sense of direction for increasing force or its equivalent in declination at Cape Denison was opposite to that at Cape Evans in both horizontal components. Further, the high sensitivity of the declination magnetograph at the former station—the scale value was such that 1 millimetre of ordinate on the trace meant a change of 1.65_{γ} in the vector transverse to the meridian—was such as to require almost continuous use of the reserve trace which was made available by the wide angle mirror of the Eschenhagen instrument used. Direct reproduction of the original magnetograms would, therefore, have assisted little in a comparison of the two Antarctic records. An attempt has therefore been made to reduce systematically the ordinates of the D trace after drawing a continuous trace by piecing together the primary record and the discontinuous excursions from the second trace at the other side of the sheet. The reproduced record is therefore a composite production and as such is intended merely to represent the main features in the variations of the disturbing force vectors at Cape Denison for comparison with those at Cape Evans. The measurements of times and changes of force quoted in the following tables and discussion are based on the actual magnetograms.

Table CXIII summarises the main characteristics of the constituent movements of the disturbance from 12h.15m. to 19h.30m., changes in declination being expressed in terms of their equivalents in force units.

TABLE CXIII.

Cape Denison: September 17, 1912. Field changes during succession of waves.

			H			D (to East).			í	Z	•
Move- ment of Series.		ne.	Direction of Field	Magnitude of Field	Tin	ne.	Direction of Field	Magnitude of Field	Tir	ne.	Direction of Field	Magnitude of Field
	From.	To.	Change.	Change.	From.	To.	Change.	Change.	From.	To.	Change.	Change.
	h. m.	h. m.			h. m.	h. m.			h. m.	h. m.]	.
Α	$12 \ 15$	13 0	Decrease	20	$12 \ 15$. 12 55	Increase	59			∫None ap-	•••
	13 0	13 47	Increase	23	12 55	13 47	Decrease	49			1 preciable	•••
			(mainly).	•						•	~ -	
\mathbf{B}	13 47	14 5	Increase	· 38	13 47	14 5	Increase	41	13 47	14 7	Increase	43
	14 5	14 37	Decrease	27	14 5	14 39	Decrease	68	14 7	14 37	Decrease	52
С	14 37	14 55	Increase	50	14 39	15 1*	Increase	62	14 37	14 55	Increase	48
	14 55	$15 \ 35$	Decrease	56	15 1	15 33	Decrease	74	14 55	$15 \ 35$	Decrease	67
D	$15 \ 35$	$15 \ 50$	Increase	54	$15 \ 33$	15 50	Increase	45	15 35	15 50	Increase	56
	15 50	16 45	Decrease	35	15 50	17 12†	Decrease	120	15 50	$16 \ 45$	Decrease	52
\mathbf{E}	16 45	17 40	Increase	93	17 12	17 50	Increase	54	16 45	$17 \ 40$	Increase	127
	17 40	$18 \ 25$	Decrease	114	•		•••		17 40	$18 \ 25$	Decrease	77
\mathbf{F}	$18 \ 25$	19 3	Increase	64	•	'			18 25	19 0	Increase	81
		•••							19 0	$19 \ 32$	Decrease	58
				I				1			Į –	

* Previous spur 14h.50m. † Out of step.

In the first of the succession of waves A, unrepresented in the vertical disturbing field, the change in declination answers to a force increasing first to east and reaches its maximum some five minutes before the less well developed minimum of an oscillation in H which started almost simultaneously. In the three subsequent waves B, C and D represented by all three components, turning points are attained almost simultaneously or only differ by times which are within the margin of error in the estimation of time allowable on account of superposed perturbations of short period or from errors of parallax inherent in the mode of registration. Only at the completion of the return movement from east to west after 15h.50m. does declination take a course different from the meridian and radial force components. Further, if Z be regarded as increasing positively when the dip of the south end of the magnet is decreased, and declination be considered as changing positively, under the influence of an east-directed force, all three components are completely in phase throughout these early movements. Indeed the parallelism between the vectors in the meridian plane throughout the disturbance is one of the remarkable features.

Towards the completion of the fourth wave, the disturbance field, as indicated by the independent variation of declination, began to assume a rotatory motion out of phase with the synchronous variations in H and Z. From that stage up to 19h.30m. when the largest of the constituent movements of the disturbance begins, declination changes are only slightly related to those of the two force components. These latter, however, continue to vary in step throughout the remainder of the disturbance. After a short interval of hesitation about 16h. H and Z execute two further movements of longer period when the principal movement of the day begins.

This culminating oscillation exceeded its precursors both in duration and amplitude. From a preliminary maximum value in an easterly direction at 19h.37m. declination changed through 4° 11' to its extreme westward position at 20h.35m. then swung back through 4° 52' in the next 115 minutes. These changes in declination were equivalent to the superposition, first of a west force of $227_{\rm Y}$, followed by a force in the opposite direction of $265_{\rm Y}$. The maximum in H and in Z was not attained till 19h.55m. after which the values of both these components decreased, then rose to complete the movement about 22h.

§31.—The Interval 19h.30m, to 22h. in Detail : 5-minute Ordinates.

Undulatory variations in the disturbance field similar to those just described were experienced throughout the earth, and, in particular, the bay-like movement between 19h.30m. and 22h. as registered at Cape Denison was found to be prominent in the disturbance at almost all the other observatories from which records were obtained. Since this part of the disturbance had received special attention in the discussion of the records from Cape Evans, a detailed analysis has been extended to Cape Denison.

TABLE CXIV.

Time. ΔD (to west). ΔH ΔT ΔN ΔW ΔN^4 ΔW^4 h. m. 19 30 -115 $+2$ $+52$ $+16$ -114 256 12,096 19 35 -120 $+9$ $+52$ $+16$ -118 529 13,924 19 40 -120 $+2$ $+56$ -116 -119 256 14.161	ΔΖ*
h. m. γ <t< th=""><th></th></t<>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Cape Denison: 1912 September, 17th: Departures from Mean at 5-minute Intervals and Squares.

Thirty-one ordinates at 5-minute intervals over the period 19h.30m. to 22h. were tabulated for the three components and expressed in terms of force units, considering declination as increasing positively when the change in disturbing force across the meridian was directed eastward. Then taking the average ordinate over the interval as the standard of reference, 5-minute departures of each vector component from the standard were obtained and from these the departures for the true geographical components N, E and Z were deduced. The results are given in Table CXIV and graphically represented in Plate VIII. This figure also shows the changes in the three geographical components in the same interval at Cape Evans and, to illustrate simultaneous magnetic events at stations distributed over northern latitudes, at Honolulu, Sitka Helwan and Eskdalemuir. The data for these stations were furnished by Table CLXXVI, p. 369 Brit. Ant. Expedition Terr. Mag.

Since the rotation of the disturbing vector in the movement now being considered had commenced before the previous disturbance in the meridian force components H and Z had completely disappeared, the values of field strengths of these components continue to rise till 19h.55m. then fall steadily in sympathy with the rotation. Though the maximum easterly elongation in D was reached by 20h.35m., H (N) did not begin to increase till 21h. It is this phase difference between force components in and across the meridian which establishes the anti-clockwise rotation of the vector in the horizontal plane.

§32.—VECTOR CHANGES AT CAPE DENISON AND OTHER STATIONS.

Attention has already been directed to the fact that in most disturbances as registered at Cape Denison a prominent feature was the parallelism, sometimes remarkably close, in the major variations of the two disturbing vector components in the meridian plane. In contrast to the usual state of affairs at Cape Evans this was especially noticeable, and could be attributed only to the position of the current systems responsible for the magnetic field changes relative to the two stations. If the amplitudes of corresponding movements in the H and Z traces at Cape Denison had been exactly equal-and there were many examples of a fair approach to this condition-then the current system would be approximately just as many kilometres to the north or south of the station as it was high above the surface. At Cape Evans, on the other hand, the system would be sufficiently distant relative to its height that the vertical component of the associated field was reduced and distorted by secondary perturbing fields. To a minor degree a similar difference in behaviour between the horizontal meridian and vertical field components of disturbance have been noted at two stations in lower latitudes in the northern hemisphere. There are many more cases of approximation to parallelism between the H and Z traces in disturbance at Lerwick, Shetland (60° 8' N, 1° 11' W) than at Eskdalemuir (55° 19', 3° 12' W) only some 360 miles further south.

TABLE CXV.

September 17, 1912, 19h.30m. to 22h. : Magnetic "Activity."

						N .	Е	Z	Horizontal Plane.	Complete Field.
Cape Denison						56-2	164.8	71.8	221.0	292.8
Cape Evans			••• •	•••		42-7	175.3	19.0	218.2	237.3
Honolulu			••• 1	•••		4.8	3.0	0.3	7.8	8.0
Helwan						43·3	2.6	6.4	46.1	52·5
Sitka		·			·	35.4	14.3	10.2	49.7	59.9
Eskdalemuir	•••	•••	•••	••••	•••	154.5	80.2	12.7	234.7	247.4

(Unit: $1 \times 10^{\circ}$ Erg/cc.)

Table CXV and Plate VIII show that the part of the disturbance of September 17, 1912, between 19h.30m. and 22h. was no exception to the difference between the two Antarctic stations. For though the horizontal vector components along the meridian took the same course, the vertically directed component showed no parallelism. The changes in H both at Honolulu and at Sitka were similar to those at the Antarctic stations; in the group of stations Mauritius, Helwan, Falmouth and Eskdalemuir, on the other hand, the field strengths to north and east in the horizontal plane increased while the decrease was in progress in the Antarctic, and also, if Honolulu and Sitka are representative, in the hemisphere to the west of a line joining Agincourt to the region of the south magnetic pole.

The rotatory character of the disturbance field is further shown in vector diagrams of Plate IX, the co-ordinates of the diagrams being the departures entered in Table CXIV, smoothed by the formula (a + 26 + c)/4 to facilitate comparison with Plate LVII of the Brit. Ant. Expedition Terr. Mag. Volume. As in the case of the horizontal plane vectors at Cape Evans, the direction of rotation at Cape Denison is anti-clockwise and though a general NW-SE trend characterises the diagrams for both stations, the superposed perturbations between 20h.30m. and 21h.30m. result in a much less regular description in the south-easterly quadrant at Cape Denison than at Cape Evans. On the other hand while a meridian vector diagram for the latter station would have little regularity and small development owing to the behaviour of the vertical force component, that for Cape Denison is a fairly regular figure with major axis directed approximately 45° from the vertical and is described in an anti-clockwise direction.

§33.—THE "ACTIVITY" OF THE DISTURBANCE BETWEEN 19h.30m. AND 22h.

The "activity" of the disturbance field as computed from the approximate form of Bidlingmaier's activity integral for short intervals of time $\Sigma \triangle^2/8\pi n$. Where \triangle is the departure of the element from an assumed normal or standard of reference at each of a number n of small submultiples of the interval, had been considered for that part of the disturbance between 19h.30m. and 22h. on September 17, 1912, and Cape Evans and ten other stations (vide Table CLXXVII, p. 373, Brit. Ant. Exp. Terr. Mag., 1910–13). Using the data of Table CXV an estimate of "activity" has been made for the disturbance at Cape Denison during the same interval.

Though it is true that the mean of the 31 five-minute ordinates for the $2\frac{1}{2}$ hours was far from representing the undisturbed level for the interval, the preceding disturbance made the choice of the value of the field at 19h.30m. equally unacceptable. The activity has therefore been calculated on the basis of the mean ordinate. Activities for N and E separately are given in Table CXV and are therefore immediately comparable with those for N¹ and E¹ at Cape Evans, and for N and E at Honolulu, Sitka, Helwan and Eskdalemuir extracted from Table CLXXVII cited above. Combined activities for the resultants in the horizontal plane and in all three dimensions are also supplied by the table.

The prominent features of the table are :----

- 1. Of the two Antarctic stations the activity of the disturbance vector either in the horizontal field alone or when extended to three dimensions is greater for Cape Denison than for Cape Evans. The activity of the east directed component alone at this latter station is greater than the activity of the corresponding component at Cape Denison.
- 2. The main difference between the two stations lies in the contribution to the total activity made by the vertical field component. At Cape Evans this is only 8%; at Cape Denison it is nearly 25% of the activity of the total resultant in space.
- 3. Eskdalemuir is the only other station of the table with an activity of a similar order of magnitude to that in the Antarctic. Indeed the disturbance field in the horizontal plane at that station was more active when judged by the criterion at present employed than at either of the Antarctic stations.
- 4. The relative insignificance of the disturbance at stations in an intermediate zone between the Antarctic stations and Eskdalemuir or even Sitka is well represented by the entries for Honolulu. The activities at Buitenzorg and Alibag are of similar magnitude.

§34.—Relation of "Activity" to Squares of Ranges During the Disturbance.

It is convenient to examine here the relations between the mean square of the departures of the disturbing forces from the "normal" field with the mean square of the range of the forces. For Bidlingmaier in considering the estimation of activity in small intervals of time, had proposed the use of the square of the range in an interval of the order of an hour to replace the computation of $\Sigma \Delta^2/12$ from five-minute departures as a means of approximating to the activity integral. If R represents the range for an hour or for an interval comprising a small number of hours covered by a disturbance ($2\frac{1}{2}$ in the present case) and Δ is the departure at each of n sub-multiples of the interval then the ratio $\Sigma \Delta^2/nR^2$ should be constant.

From the data obtained from Cape Evans and two other stations for the period 19h.30m. to 22h., September 17, 1912, the value of the constant has been found to be approximately 0.09 (vide Brit. Ant. Exp. Terr. Mag. p., 375).

Taking as the range the difference between the largest and smallest ordinates in Table CXIV, the values of the ratio for the horizontal plane and derived from all three components are :—

$rac{1}{31}rac{\mathcal{E} riangle_{\scriptscriptstyle N}^2+\mathcal{E} riangle_{\scriptscriptstyle R}^2}{\mathrm{R}^2_{\scriptscriptstyle N}+\mathrm{R}^2_{\scriptscriptstyle \mathrm{B}}}$		$rac{1}{31}rac{\mathcal{E} riangle_{\mathtt{N}}^{2}+\mathcal{E} riangle_{\mathtt{E}}^{2}+\mathcal{E} riangle_{\mathtt{E}}}{\mathrm{R}_{\mathtt{N}}^{2}+\mathrm{R}_{\mathtt{E}}^{2}+\mathrm{R}_{\mathtt{z}}^{2}}$	3
Cape Denison 0.080		0.082	
Cape Evans 0.082		0.080	

These values of the ratio are intermediate between the two sets of values derived from the Term Hour data (see Table C, Chapter IV). Though not computed in the same way as those given above, the average value of the ratio for the three components was somewhat less (\cdot 075 for Cape Denison and \cdot 072 for Cape Evans) when the extreme range was used and somewhat higher (\cdot 091 for Cape Denison and \cdot 094 for Cape Evans) when the range from the five-minute ordinates was substituted for R. As explained in the discussion of these results conditions were comparatively quiet during the intervals covered by the Term Hour data.

CHAPTER VII.—DISTURBANCE AT CAPE DENISON AND CAPE EVANS REFERRED TO SIMULTANEOUS DISTURBANCE AT CHRISTCHURCH, NEW ZEALAND.

§35.—The Basis and Limited Scope of the Comparison.

Unless it be referred to and compared with the record of simultaneous disturbance at some station in more moderate latitudes, the real magnitude of disturbance in the Antarctic is apt to be grossly underestimated. At the time of the expeditions there were few stations in the Southern Hemisphere providing continuous records for such a purpose and the employment of data from stations on the other side of the earth weakens deductions which might be drawn from a comparison. The nearest continuously recording station was at Christchurch, New Zealand (43° 32' S, 172° 37' E). By the courtesy of the Director, H. F. Skey, of the Observatory there, reprints of magnetograms were made available for a number of days within the period of synchronous registration at the two Antarctic bases, and on which there had been a fair degree of disturbance. The ultimate selection of disturbed periods to be used for the comparison was determined primarily by the appearance of the Christchurch records. In the general magnetic quiet of the months concerned, 1912, April to October, with a paucity of first class disturbance, the final list was very limited and certainly not representative of the relative intensities under conditions of really well developed disturbance.

For reasons which have been discussed elsewhere the hourly range and its square have been taken as the basis of comparison of the relative magnetic activities at the three stations. The range within each hour, in groups of hours varying from one to twenty-four, were measured for all available components at the two Antarctic bases and at Christchurch, and the material finally retained and tabulated referred to 153 disturbed hours. For these all the Cape Denison records are complete for D, H and Z, though on two days, 8 June 13h. to 14h. and 4 July 14h. to 15h., the ranges quoted are under-estimated through the trace going beyond the limits of registration; the curve covering the disturbing hours on 6 August at Cape Evans was missing. Uncertainties arising from local artificial disturbance in the vicinity of the Christchurch Observatory made the estimates of hourly range for the vertical component unreliable in all but a few hours each night. Ranges for that station are, therefore, published only for the two horizontal components.

The hourly ranges r_{D} relating to declination at Cape Denison and Christchurch have been converted into the equivalent force units, and as leading to the most appropriate comparison the ranges for Cape Evans have been tabulated for E¹, N¹ and Z in that order. In addition to the estimates of range for each of the 153 hours, Table CXVI gives the squares of these ranges for each component separately and for the resultant vector in the horizontal plane. For the two Antarctic stations the squared range of the complete resultant in space is given in the final columns of the two relevant sections of the table.

TABLE CXVI.

Hourly Ranges at Cape Denison, Cape Evans and Christchurch during Selected Disturbed Periods.

	Hour				(Cape Denison							Ca	ape Evans	•					Christe	hurch.	
Date.	Ending G.M.T.	r _D	r _H	rz	r [*] _D	r _H	r_z^{i}	$r_D^s + r_H^s$	$\mathbf{r}_{\mathrm{D}}^{\mathrm{s}} + \mathbf{r}_{\mathrm{H}}^{\mathrm{s}} + \mathbf{r}_{\mathrm{Z}}^{\mathrm{s}}$	r _{E1}	r _» ,	rz	r [*] _{E1}	r ² _{N1}	r [*] z.	$r_{E^1}^{i} + r_{N^1}^{i}$	$ r_{E^1}^* + r_{N^1}^* + r_{Z^1}^* $	r _D	r _н	r _D	r _H	$r_{\rm D}^{\rm a} + r$
1912		Ŷ	Ŷ	γ	γ^2	γ^2	γ^2	γ2	γ ²	 γ	Υ. Υ.e	γ	γ^2	γ^2	γ ²	γ ²	γ ²	γ	Υ	γ^2	γ^2	γ^2
ay 12	2	113	43 56	48 84	4,761	3,136	2,304 7,056	15,905	8,914 22,961	43 30	. 77	8 14	900	5,929	64 196	5,965 6.829	4,029 7.025	$12 \\ 15$		$144 \\ 225$	49 49	$\begin{vmatrix} 193\\274\end{vmatrix}$
i	3	69	39	57	4,761	1,521	3,249	6,282	9,531	61	75	26	3,721	5,625	676	9,346	10,022	6	n	36	121	15'
. 1	4	141	93	129	19,881	8,649	16,641	28,530	45,171	66	93	16	4,356	8,649	256	13,005	13,261	13	18	169	324	493
į	5	68	63	70	4,624	3,969	4,900	8,593	13,493	48	32	17	2,304	1,024	289	3,328	3,617	7	13		169	218
	7	30	04 49	39	1,290	2,910	1,521	4,212	5,733	30	39	22	3.844	1,521	484	2,740	3,230	11	29	121	2841	96
	8	101	40 51	31	10.201	2.601	961	12.802	13,763	65	90	49	i 4.225	8.100	2.401	12.325	14,726	50	33	2.500	1.089	3.58
	ğ i	84	88	41	7,056	7,744	1,681	14,800	16.481	86	48	51	7,396	2,304	2,601	9,700	12.301	23	18	529	324	85
	10	37	25	23	1,369	625	529	1,994	2,523	41	30	14	1,681	900	196	2,581	2,777	1	10	1	100	10
	11	23	18	13	529	324	169	853	1,022	39	- 24	15	1,521	576	225	2,097	2,322	3	18	9	324	33
	12	112	.67	192	12,544	4,489	36,864	17,033	53,897	85	97	21	7,225	9,409	441	16,634	17,075	19	24	361	576	93
	13	44 62	42 33	44 74	1,936 3,844	1,704 1,089	1,936 5,476	3,700 4,933	5,636 10,409	$\frac{43}{32}$	50 50	$\frac{13}{25}$	1,849	2,500 2,500	$\begin{array}{c}169\\625\end{array}$	4,349 3,524	4,518 4,149	9	5	121 81	$\begin{bmatrix} 121 \\ 25 \end{bmatrix}$	106
ay 13	1	31	66	53	961	4,356	2,809	5,317	8,126	44	78	19	1,936	6,084	361	8,020	8,381	12	17	144	289	43.
	2	152	88	123	23,104	7,744	15,129	30,848	45,977	162	129	73	26,244	16,641	5,329	42,825	48,214	30	30	900	900	1,800
	3	46	96	103	2,116	9,216	10,609	11,332	21,941	53	98	39	2,809	9,604	1,521	12,413	13,934	18	24	324	576	90
	4	62	84	119	3,844	7,056	14,161	10,900	25,061	- 54	39	11	2,916	1,521	121	4,437	4,558	4	10	16	100	8
	6	80 53	70 61	54 54	2 809	· 3 721	2 916	6 530	9.446		20 58	14	2,500	3 364	10 000	6 964	3,372	- 11 - 29 -	10	841	361	1 20
	7	68	37	34	4.624	1.369	1.156	5.993	7.149	129	73	177	16.641	5.329	31.329	21.970	53.299	32	15	1.024	225	1.24
	8	147	100	42	21,609	10,000	1,764	31,609	33,373	- 151	184	45	22,801	33,856	2,025	56,657	58,682	47	49	2,209	2,401	4,61
	9	103	81	227	10,609	6,561	51,529	17,170	68,699	99	56	138	9,801	3,136	19,044	12,937	31,981	26	19	676	361	1,03
·	10	50	70	63	2,500	4,900	3,969	7,400	11,369	74	57	85	5,476	3,249	7,225	8,725	15,950	19	27	361	729	1,09
	11	98	40	81	9,604	1,600	6,561 1 1 <i>50</i>	11,204	17,765	105	107	81	24,025	11,449	6,561 5 476	35,474	42,035	34	12	1,156	144	1,30
	12	481	13 39	34	2,304	0,529	1,100	3 049	0,789 4 418	10 52	28	78	9 704	0,121 784	0,470 6.084	3 488	9 572	14	10	190	49	30 0
	14	45	29	38	2.025	841	1,000	2,866	4.310	50	32	27	2,500	1.024	729	3,524	4.253	3	4	9	16	2
ĺ		10		50	_,		-,	,				-:	_,			-,~	-,00	-	-			-

428

AUSTRALASIAN ANTARCTIC EXPEDITION.

7

fiddily italiges at oupe Dombon, cupe Doubt and online and and a different and posterioral for
--

	Hour					Cape Denisor					•		C	ape Evan	s.					Christe	urch.	
Date.	Ending G.M.T.	r _D	r _H	r _z	r _D	Γ ^s	r _z	$r_{D}^{*}+r_{H}^{*}$	$\left \mathbf{r}_{\mathbf{D}}^{\mathbf{s}} + \mathbf{r}_{\mathbf{H}}^{\mathbf{s}} + \mathbf{r}_{\mathbf{Z}}^{\mathbf{s}} \right $	r_{E^1}	r _n ,	rz	$r_{E^1}^*$	r [*] _{H1}	r _z	$r_{E^{1}}^{2}+r_{H}^{2}$	$r_{E^1}^{*}+r_{H^1}^{*}+r_{Z^1}^{*}$	r _d	r _{n.}	$r_{\rm D}^{*}$	r _H .	$r_{D}^{s}+r_{H}^{s}$
1912. June 8	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	$\begin{array}{ c c c } & & & & & & \\ & & & & & & \\ & & & & & $	Y 84 72 98 50 40 50 40 50 40 50 40 50 40 46 44 19 64 43 38 66 45 24 16 19 37 43	$\begin{array}{c} \gamma \\ 97 \\ 85 \\ 126 \\ 37 \\ 44 \\ 58 \\ 36 \\ 54 \\ 26 \\ 39 \\ 129 \\ > 358 \\ 303 \\ 115 \\ 57 \\ 388 \\ 16 \\ 45 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 386 \\ 16 \\ 57 \\ 57 \\ 386 \\ 16 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 5$	γ^2 6,241 3,025 3,136 6,724 3,136 1,764 4,096 3,481 784 2,500 11,449 > 14,884 21,904 2,304 1,764 2,304 1,764 2,304 1,764 0,816 10,816	γ^2 7,056 5,184 9,604 2,500 1,600 3,136 900 2,116 1,936 361 4,096 114,244 4,356 2,025 576 256 361 1,369 1,849	γ^{3} 9,409 7,225 15,876 1,369 1,936 3,364 1,296 2,916 676 1,521 16,641 128,164 91,809 13,225 3,249 1,444 256 2,025 3,249	$\begin{array}{c} \gamma^2 \\ 13,297 \\ 8,209 \\ 12,740 \\ 9,224 \\ 4,736 \\ 4,900 \\ 4,996 \\ 5,597 \\ 2,720 \\ 2,861 \\ 15,545 \\ > 129,128 \\ 26,260 \\ 4,329 \\ 2,340 \\ 452 \\ 650 \\ 5,465 \\ 12,665 \\ 12,665 \end{array}$	$\begin{array}{c} \gamma^2 \\ 22,706 \\ 15,434 \\ 28,616 \\ 10,593 \\ 6,672 \\ 8,264 \\ 6,292 \\ 8,513 \\ 3,396 \\ 4,382 \\ 32,186 \\ > 257,292 \\ 118,069 \\ 17,554 \\ 5,589 \\ 1,896 \\ 906 \\ 7,490 \\ 15,914 \\ 906 \\ 7,900 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 906 \\ 15,914 \\ 10,9$	Y 27 57 80 57 89 50 92 55 71 47 110 57 37 23 25 869 110	Y 48 72 79 51 64 79 69 56 30 46 86 120 185 333 47 28 28 28 55	γ 8 26 43 40 18 89 17 25 17 25 17 25 17 23 8 17 21 18	y ² 729 6,400 3,249 7,921 25,281 2,500 8,464 3,025 5,041 2,209 1,369 529 625 784 4,761 12,100	$\begin{array}{c} \gamma^2 \\ 2,304 \\ 5,184 \\ 6,241 \\ 2,601 \\ 4,096 \\ 6,241 \\ 4,761 \\ 3,136 \\ 900 \\ 2,116 \\ 7,396 \\ 14,400 \\ 34,225 \\ 1,089 \\ 2,209 \\ 784 \\ 324 \\ 784 \\ 3,025 \\ \end{array}$	$\begin{array}{c} \gamma^2 \\ 64 \\ 676 \\ 1,849 \\ 1,600 \\ 324 \\ 7,921 \\ 289 \\ 961 \\ 729 \\ 625 \\ 289 \\ 3,600 \\ 11,025 \\ 1,369 \\ 529 \\ 64 \\ 289 \\ 441 \\ 324 \\ 289 \\ 441 \\ 324 \\ $	$\begin{array}{c} & & & & & \\ & & & & & \\ 3,033\\ & & & & & \\ 8,433\\ 12,641\\ & & & & \\ 5,850\\ 12,017\\ & & & \\ 31,522\\ & & & \\ 7,261\\ 11,600\\ & & & \\ 3,925\\ & & & \\ 7,265\\ 11,600\\ & & & \\ 3,925\\ & & & \\ 7,265\\ 13,925\\ & & \\ 7,265\\ 2,738\\ 2,738\\ 2,738\\ 2,738\\ 2,738\\ 1,409\\ 1,108\\ 5,545\\ 15,125\\ 15,125\\ \end{array}$	γ^2 3,097 9,109 14,490 7,450 12,341 39,443 7,550 12,561 4,654 7,782 9,894 30,100 48,499 3,827 1,473 1,397 5,986 15,449	γ 99 57 6 29 24 15 13 4 7 18 30 6 1 7 4 2 11 7 7	$\begin{array}{c} \gamma \\ 10 \\ 20 \\ 23 \\ 7 \\ 31 \\ 25 \\ 13 \\ 10 \\ 5 \\ 7 \\ 30 \\ 14 \\ 23 \\ 8 \\ 2 \\ 4 \\ 8 \\ 15 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	γ^2 81 25 49 36 841 576 225 169 16 49 324 900 256 1 49 16 41 256 1 49 121	$ \begin{array}{c} \gamma^2 \\ 100 \\ 400 \\ 529 \\ 49 \\ 961 \\ 625 \\ 169 \\ 100 \\ 255 \\ 49 \\ 900 \\ 196 \\ 529 \\ 64 \\ 4 \\ 4 \\ 16 \\ 64 \\ 225 \\ 64 \\ 16 \\ 64 \end{array} $	γ^2 181 425 578 85 1,802 1,201 269 41 98 1,224 1,096 785 65 53 20 20 185 274
July 3	22 23 24 18 19 20 21 22 23 24	116 70 64 27 14 15 46 53 85 36	71 48 42 13 31 34 76 58 75 29	51 74 32 27 54 44 87 69 62 16	13,4564,9004,0962292,1962,252,1162,8097,2251,296	5,041 2,304 1,764 169 961 1,156 5,776 3,364 5,625 361	2,601 5,476 1,024 729 2,916 1,936 7,569 4,761 3,844 256	18,497 7,204 5,860 898 1,157 1,381 7,892 6,173 12,850 1,657	$\begin{array}{c} 21,098\\ 12,680\\ 6,884\\ 1,627\\ 4,073\\ 3,317\\ 15,461\\ 10,934\\ 16,694\\ 1,913\\ \end{array}$	81 26 26 17 55 40 74 63 71 25	49 33 51 24 21 24 42 32 71 19	33 14 19 11 15 34 56 40 32 14	6,561 676 289 3,025 1,600 5,476 3,969 5,041 625	2,401 1,089 2,601 576 441 576 1,764 1,024 5,041 361	1,089 196 361 121 225 1,156 3,136 1,600 1,024 196	8,962 1,765 3,277 865 3,466 2,176 7,240 4,993 10,082 986	$10,051 \\ 1,961 \\ 3,638 \\ 986 \\ 3,691 \\ 3,332 \\ 10,376 \\ 6,593 \\ 11,106 \\ 1,182 \\ 10,051 \\ 1,182 \\ 1,0051 \\ 1,$	$ \begin{array}{c} 11 \\ 6 \\ 1 \\ 4 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ $	13 6 1 12 6 7 5 7 7 24	121 36 1 16 4 9 4 4 9	169 36 1 144 36 49 25 49 49 256	$\begin{array}{c} 290\\ 72\\ 2\\ 160\\ 52\\ 53\\ 34\\ 53\\ 53\\ 265\\ \end{array}$

MAGNETIC DISTURBANCE AT CAPE DENISON.

ξt.

	Hourly	y Ranges at	Cape	Denison,	Cape	Evans	and	Christchurch	during	Selected	Disturbed	Periods.
--	--------	-------------	------	----------	------	-------	----------------------	--------------	--------	----------	-----------	----------

Hour					Cape Denisor	ı.		۰.				c	ape Evan	8.					Christel	nurch.	
Date. Ending G.M.T.	r	<u>r</u> _H	<u>r</u> z_	r	r_ [*]	r _z	$r_{\rm D} + \tilde{r}_{\rm H}^2$	$\left \Gamma_{\rm D}^2 + \Gamma_{\rm H}^2 + \Gamma_{\rm Z}^2 \right $	r_{E^1}	_ r _{H1} .	-r _z -	$\mathbf{r}_{E^1}^*$.	, r _{H1}		$ \mathbf{r}_{\mathbf{E}^1}^* + \mathbf{r}_{\mathbf{H}^2}^* $	$r_{E^1}^2 + r_{H^1}^2 + r_{Z^1}^3$	r _D	r _±	- r ³	$-r_{\bar{H}}^{2}$	$r_{\rm D}^2 + r_{\rm H}^2$
1912. uly 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7 68 94 98 94 88 51 96 72 52 64 27 51 66 811 117 118 105 598 71 354 71 354 119 46 119	γ 42 74 111 61 56 67 67 47 26 37 32 81 86 199 47 29 33 3 51 43 64 75 74 118	$\begin{array}{c} \gamma \\ 32 \\ 82 \\ 84 \\ 45 \\ 48 \\ 41 \\ 29 \\ 32 \\ 52 \\ 32 \\ 45 \\ 98 \\ 217 \\ 81 \\ 235 \\ 49 \\ 58 \\ 74 \\ 70 \\ 60 \\ 68 \\ 88 \\ 66 \end{array}$	γ^2 4,624 8,836 7,744 2,601 9,216 3,364 5,184 2,704 4,096 729 2,601 4,356 6,561 13,689 13,924 11,025 3,841 1,025 3,841 1,225 1,156 3,844 14,161 2,116	γ^2 1,764 5,476 12,321 3,721 3,136 1,764 4,489 4,489 4,489 4,489 6,766 1,369 1,024 6,561 7,396 39,601 2,209 841 1,089 2,601 1,849 4,096 5,625 5,476	$\begin{array}{c} \gamma^2 \\ 1,024 \\ 6,724 \\ 7,056 \\ 2,025 \\ 2,304 \\ 1,681 \\ 841 \\ 1,024 \\ 2,704 \\ 1,024 \\ 2,025 \\ 9,604 \\ 47,089 \\ 32,761 \\ 55,225 \\ 2,401 \\ 3,364 \\ 5,476 \\ 4,900 \\ 3,600 \\ 4,624 \\ 7,744 \\ 4,356 \end{array}$	γ^2 6,388 14,312 20,065 6,322 12,352 5,128 9,673 7,193 6,305 1,405 3,970 5,380 13,122 21,085 53,525 13,234 4,322 3,393 7,642 3,074 5,252 9,469 9,537 16,640	$\begin{array}{c} \gamma^2 \\ 7,412 \\ 21,036 \\ 27,121 \\ 8,347 \\ 14,656 \\ 6,809 \\ 10,514 \\ 8,217 \\ 10,009 \\ 2,429 \\ 5,995 \\ 14,984 \\ 60,211 \\ 53,846 \\ 60,211 \\ 53,846 \\ 60,211 \\ 53,846 \\ 61,233 \\ 6,757 \\ 13,118 \\ 7,974 \\ 8,852 \\ 14,093 \\ 27,281 \\ 20,396 \end{array}$	$\begin{array}{c} \gamma \\ 45 \\ 54 \\ 37 \\ 76 \\ 90 \\ 67 \\ 84 \\ 78 \\ 147 \\ 339 \\ 45 \\ 97 \\ 50 \\ 80 \\ 48 \\ 50 \\ 16 \\ 78 \\ 31 \\ 56 \\ 63 \\ 56 \\ 56 \end{array}$	γ 41 79 49 29 73 61 62 55 45 43 22 51 58 69 103 123 44 30 62 54 34 42 34 42 31 23	γ 14 9 18 22 14 87 64 24 45 21 17 19 35 17 10 20 24 31 17 10 20 24 35 13 13 13 13 13 13 13 13 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18	γ^2 2,025 2,916 1,369 5,776 8,100 4,489 7,056 6,084 21,609 1,089 1,521 2,025 9,409 2,500 6,561 2,304 2,500 2,566 6,084 2,304 2,500 2,566 6,084 2,305 2,30	γ^2 1,681 6,241 2,401 841 5,329 3,721 3,844 3,025 2,025 1,849 484 2,601 3,364 4,761 10,609 15,129 1,936 900 3,844 2,916 1,156 1,764 5,329 15,129	γ^2 196 197 196 196 1,569 4,096 5,766 2,025 625 625 441 1,225 289 961 1,225 169 289 961 1,225 169 289 100 400 576 1,225 961 1,225 961 1,225 169 289 100 100 100 100 100 100 100 10	γ^2 3,706 9,157 3,770 6,617 13,429 8,210 10,900 9,109 23,634 2,938 2,005 4,626 12,773 7,261 17,170 17,433 4,436 1,156 9,928 3,877 4,292 5,733 9,554 18,265	γ^2 3,902 9,238 4,094 7,101 13,625 15,779 14,996 9,685 25,659 3,563 2,446 4,915 13,134 8,486 17,459 18,394 5,661 1,325 10,217 3,977 4,692 6,309 10,779 19,226	$ \begin{array}{ c c c c } & \gamma & 3 \\ & 3 & 5 \\ & 12 & 7 \\ & 22 & 22 \\ & 10 & 3 \\ & 26 & 12 \\ & 7 & 5 \\ & 26 & 13 \\ & 7 & 5 \\ & 9 & 24 \\ & 29 & 19 \\ & 17 & 5 \\ & 6 & 7 \\ & 7 & 5 \\ & 6 & 7 \\ \end{array} $	Y 15 8 3 13 13 21 10 40 36 10 7 13 22 28 29 18 7 5 7 4 8 6 3 27	γ^2 9 225 144 49 484 100 9 676 324 49 25 81 576 841 361 289 36 49 64 49 25 36 49	$\begin{array}{c} \gamma^2 \\ 225 \\ 64 \\ 9 \\ 169 \\ 169 \\ 441 \\ 100 \\ 1,600 \\ 1,296 \\ 100 \\ 1,296 \\ 100 \\ 49 \\ 169 \\ 484 \\ 784 \\ 841 \\ 324 \\ 884 \\ 324 \\ 49 \\ 255 \\ 49 \\ 255 \\ 49 \\ 255 \\ 49 \\ 26 \\ 64 \\ 36 \\ 9 \\ 9 \\ 729 \end{array}$	$ \begin{vmatrix} \gamma^2 \\ 234 \\ 234 \\ 289 \\ 153 \\ 218 \\ 653 \\ 541 \\ 109 \\ 2,276 \\ 1,620 \\ 1,620 \\ 1,625 \\ 1,202 \\ 613 \\ 85 \\ 74 \\ 113 \\ 20 \\ 113 \\ 61 \\ 45 \\ 778 \end{vmatrix} $

14 V.

.*

Hourly Ranges at Cape Denison, Cape Evans and Christchurch during Selected Disturbed Periods.

	· <u> </u>				<u> </u>									· ·			·······					
	Honr				•	Cape Denison	ı .					-	(Cape Eva	18.			•		Christel	hurch.	
Date.	Ending G.M.T.	r _D	r _n	r _z	r [*] _D	r ^a	r_z^*	$r_{D}^{*} + r_{H}^{*}$	$r_{\mathrm{D}}^{*}+r_{\mathrm{H}}^{*}+r_{\mathrm{Z}}^{*}$	r _{E1}	r _# ,	rż	$r_{E^1}^{a}$	r [*] _{H1}	r_z^*	$r_{E^1}^* + r_{H^1}^*$	$\mathbf{r}_{\mathbf{E}^1}^* + \mathbf{r}_{\mathbf{H}^1}^* + \mathbf{r}_{\mathbf{Z}^2}^*$	r _D	r _н	$r_{\rm D}^2$	r [*]	$r_{\rm D}^{\rm *}+r_{\rm H}^{\rm *}$
1912. July 5	1	Υ 97	γ 73	γ 43	γ² 9.409	γ^2 5 329	γ^2 1 849	γ^2	γ^{2} 16.587	γ 171	γ 95	γ. 94	$\frac{\gamma^2}{29,241}$	γ^2 9.025	γ^2 8 836	γ^{2} 38 266	γ^{2} 47 102	Ϋ́	Υ 22	; γ ² 49	γ^2 484	γ ² 533
omy o	$\hat{2}$	208	129	191	43,264	16,641	36,481	59,905	96,386	168	104	50	28,224	10,816	2,500	39,040	41,540	4	18	16	324	340
	3	78	119	156	6,084	14,161	24,336	20,245	44,581	45	82	17	2,025	6,724	289	8,749	9,038	6	6	36	36	72
	4	47	68	76	2,209	4,624	5,776	6,833	12,609	55	74	24	3,025	5,476	576	8,501	9,077	11	13	121	169	290
	5	60	43	73	3,600	1,849	5,329	5,449	10,778	129	65	175	16,641	4,225	30,625	20,866	51,491	8	27	64	729	793
	6	44	68	42	1,936	4,624	1,764	6,560	8,324	160	141	· 216	25,600	19,881	46,656	45,481	92,137	8	10	64	100	164
		31	18	22	961	324	484	1,280	1,769	40	- 20 20	. 24	2,025	3,130	570	5,161	5,737	15	15	225	225	. 450
	8	48	27	37	2,304	729	1,369	3,033	4,402	39		13	1,521	2,500	2 600	4,021	4,190	13	10	109	100	269
	10	34	47	39	1,100	2,209	1,021	3,300	4,880	100	20 65	97	10,004	4 995	3,000	4,140	7,748	15	10	484	100	295
	10	88	160	174	7 906	99 561	2,209	25 057	66 999	100.	· 80	01 65	11,000	7 091	4 995	19,046	21,78± 02 171	20	22	1 4 4 4	1 080	9 5 2 2
	12	136	140	50	18 4 96	19,600	3 481	38,006	41 577	54	38	94	2 916	1 444	576	4 360	4 936	8	15	64	225	2,000
	13	102	144	94	10,404	20 736	8,836	31,140	39 976	62	70	31	3.844	4,900	961	8,744	9,705	18	5	324	25	349
٠.	14	63	88	191	3.969	7.744	36,481	11.713	48,194	85	32	16	7.225	1.024	256	8.249	8,505	10	17	100	289	389
,	15	54	99	151	2,916	9,801	22.801	12,717	35,518	69	65	35	4.761	4.225	1.225	8,986	10.211	5	12	-25	144	169
	16	32	64	72	1.024	4,096	5,184	5,120	10,304	46	30.	28	2,116	900	784	3,016	3,800	4	5	16	25	41
	17	43	20	62	1,849	400	3,844	2,249	6,093	41	39	12	1,681	1,521	144	3,202	3,346	6	3	36	9	45
	18	47	39	108	2,209	1,521	11,664	2,730	15,394	39	31	16	1,521	961	256	2,482	2,738	4	9	16	81	97
	19	45	57 -	109	2,025	3,249	11,881	5,274	17,155	· 71	40	13	5,041	1,600	169	6,641	6,810	4	3	16	9	25
	20	68	60	48	4,624	3,600	2,304	8,224	10,528	44	26	14	1,936	676	196	2,612	2,808	6	3	36	9	45
	21	69	53	57	4,761	2,809	3,249	7,570	10,819	56	41	9	3,136	1,681	81	4,817	4,898	9	5	81	25	106
	22	170	62	124	28,900	3,844	15,376	32,744	48,120	120	56	20	14,400	3,136	400	17,536	17,936	7	16	49	256	305
	23	132	51	82	17,424	2,601	6,724	20,025	26,749	52	73	29	2,704	5,329	841	8,033	8,874	4	3	16	9	25
•	24	66	45	31	· 4,356	2,025	961	6,381	7,342	39	49	24	1,521	.2,401	576	3,922	, 4,498	4	3	16	9	25

MAGNETIC DISTURBANCE AT CAPE DENISON.

Hourly Ranges at Cape Denison, Cape Evans and Christchurch during Selected Disturbed Periods.

					Ca	pe Denison.							Cap	e Evans.						Christch	urch.	
Date.	Hour Ending G.M.T.	r _D	r _n	rz	r _D	r [*] .	r_z	$r_{D}^{t}+r_{H}^{t}$	$r_{D}^{*}+r_{H}^{*}+r_{Z}^{*}$	r _{E¹}	r_{H^1}	rz	$\Gamma_{E^1}^{a}$	r ³	r'z	$ \mathbf{r}_{\mathbf{E}^1}^* + \mathbf{r}_{\mathbf{H}^1}^* $	$r_{E^1}^* + r_{H^1}^* + r_Z^*$	r _D	r _n	r _D	r _H	$r_{D}^{2}+r_{H}^{2}$
1912. July 6	1 2 3 4	γ 87 65 25 46	Y 71 61 31 52	γ 87 84 33 35	γ ² 7,569 4,225 625 2,116	γ^2 5,041 3,721 961 2,704	γ^2 7,569 7,056 1,089 1,225	γ ² 12,610 7,946 1,586 4,820	$\begin{array}{r} \gamma^2 \\ 20,179 \\ 15,002 \\ 2,675 \\ 6,045 \end{array}$	γ 35 33 21 18	Y 34 40 19 11	Υ 8 9 7 7	γ^2 1,225 1,024 441 324	γ^2 1,156 1,600 361 121	γ ² 64 81 - 49 49	γ^2 2,381 2,624 802 445	γ^{2} 2,445 2,705 851 494	γ 9 5 4	γ 0 2 1 3	γ^2 81 25 16 16	γ ² 0 4 1 9	γ ² 81 29 17 25
·	5 6 7 8 9 10	39 33 25 14 10 15	44 46 28 12 17 18	25 20 26 6 11 .15	1,521 1,089 625 196 100 225	1,936 2,116 784 144 289 324	625 400 676 36 121 225	3,457 3,205 1,409 340 389 549	4,082 3,605 2,085 376 510 774	30 23 9 10 16 25	10 15 13 8 11 20	7 20 6 6 6 10	900 529 81 100 256 625	$ \begin{array}{r} 100 \\ 225 \\ 169 \\ 64 \\ 121 \\ 400 \end{array} $	49 400 36 36 36 100	$ 1,000 \\ 754 \\ 250 \\ 164 \\ 377 \\ 1.025 $	$1,049 \\ 1,154 \\ 286 \\ 200 \\ 413 \\ 1,125$	4 4 2 1	5 2 3 2 4 7	16 16 16 4 1	25 4 9 4 16 49	41 20 25 8 17 50
^{>} 	11 12 13 14 15	24 289 149 20 28	12 498 500 22 22 22	15 295 117 111 39	576 83,521 22,201 400 784	144 248,004 250,000 484 484	225 87,025 13,689 12,321 1,521	720 331,525 272,201 884 1,268	945 418,550 285,890 13,205 2,789	36 40 65 25 18	23 98 73 24 25	12 70 40 17 27	$1,296 \\ 1,600 \\ 4,225 \\ 625 \\ 324$	529 9,604 5,329 576 625	144 4,900 1,600 289 729	1,825 11,204 9,554 1,201 949	1,969 16,104 11,154 1,490 1,678	7 10 14 3 4	.7 .32 .8 4 3	49 100 196 9 16	49 1,024 64 16 9	98 1,124 260 25 25
a gal a	10 17 18 19 20 21	25 72 41 61 63 50	21 29 67 48 31	10 33 27 59 91 31	5,184 1,681 3,721 3,969 2,500	289 441 841 4,489 2,304 961	206 1,089 729 3,481 8,281 961	914 5,625 2,522 8,210 6,273 3 461	1,170 6,714 3,251 11,691 14,554 4,422	32 45 24 79 54 35	41 20 21 25 28 97	16 13 6 20 13	1,024 2,025 576 6,241 2,916 1 225	1,681 400 441 625 784 729	256 169 36 400 169 225	2,705 2,425 1,017 6,866 3,700	2,961 2,594 1,053 7,266 3,869 2,170		4 1 3 5 4	4 144 36 16 1	16 1 9 25 16	20 145 45 41 17
	22 23 24	58 46 40	58 41 29	62 63 32	3,364 2,116 1,600	3,364 1,681 841	3,844 3,969 1,024	6,728 3,797 2,441	10,572 7,766 3,465	29 41 45	30 31 29	10 8 8 7	841 1,681 2,025	900 961 841	64 64 49	1,741 2,642 2,866	2,119 1,805 2,706 2,915	1 8 7	1 12 6	1 64 49	9 1 144 36	13 2 208 85
July 8	13 14 15 16	31 50 88 34	7 73 108 30	21 148 211 28	961 2,500 7,744 1,156	49 5,329 11,664 900	441 21,904 44,521 784	1,010 7,829 19,408 2,056	1,451 29,733 63,929 2,840	17 75 90 . 39	21 24 87 45	6 13 24 15	289 5,625 8,100 1,521	441 576 7,569 2,025	36 169 576 . 225	730 6,201 15,669 3,546	766 6,370 16,245 3,771	4 14 10 1	7 14 14 4	16 196 100 1	49 196 196 16	65 392 296 17

Hourly Ranges at Cape Denison, Cape Evans and Christchurch during Selected Disturbed Periods.

	• _			•																		
	Hour				Ċ	ape Denison		,					C	ape Evans	s.			Í		Christc	hurch.	
Date.	Ending G.M.T.	r _D	r _H .	r _z	· r _b	r ^ı .	r_z^*	$r_{D}+r_{H}^{a}$	$r_{D}^{*}+r_{H}^{*}+r_{z}^{*}$	r _e ,	r _n	rz	$r_{E^1}^*$	r ,	r_z^*	$\left \mathbf{r}_{\mathbf{E}^{1}}^{*} + \mathbf{r}_{\mathbf{H}^{1}}^{*} \right $	$r_{E^1}^{*} + r_{N^1}^{*} + r_{Z^1}^{*}$	r _d	r _н	r _D	r [*] _H	$r_{D}^{*}+r_{H}^{*}$
July 21	11 12 13	γ 21 62 17	γ 18 30 26	γ 13 38 25	γ ² 441 3,844 289	γ ² 324 900 676	v ³ 169. 1,444 625	Υ ² 765 4,744 965	γ ² 934 6,188 1,590	Y 10 22 19	Y 23 36 6	Υ 6 10 14	γ^{2} 100 484 361	γ ² 529 1,296 36	γ² 36 100 196	γ ² 629 1,780 397	γ ² 665 1,880 593	Y 12 4 4	Υ 7 16 2	γ² 144 16 16	γ ² 49 256 4	γ^2 193 272 20
Aug. 6	17 18 19 20 · 21	19 69 84 14 16	15 12 17 29 8	33 30 74 36 11	361 4,761 7,056 196 256	225 . 144 289 841 64	1,089 90 5,476 1,296 121	586 4,905 7,345 1,037 320	1,675 4,995 12,821 2,333 441									5 18 13 1 4	$5 \\ 3 \\ 10 \\ 4 \\ 6$	25 324 169 1 16	$25 \\ 9 \\ 100 \\ 16 \\ 36$	50 333 269 17 52
Aug. 21	10 11 12 13 - 14	52 63 54 35 50	20 15 19 31 36	23 45 19 19 49	2,704 3,969 2,916 1,225 2,500	400 225 361 961 1,296	529 2,025 361 361 2,401	3,104 4,194 3,277 2,186 3,796	3,633 6,219 3,638 2,547 6,197	60 42 73 19 41	14 82 55 24 45	8 16 31 8 9	3,600 1,764 5,329 361 1,681	196 6,724 3,025 576 2,025	64 256 961 64 81	3,796 8,488 8,354 937 3,706	3,860 8,744 9,315 1,001 3,787	2 17 8 7 11	9 24 12 7 6	4 289 64 49 121	81 576 144 49 36	85 865 208 98 157
Aug. 23	8	111	32	69	12,321	1,024	4,761	13,345	18,106	30	63.	- 9	900	3,969	81	4,869	4,950	15	35	225	1,225	1,450
Aug. 24	8 9	33 50	43 47	52 22	1,089 2,500	1,849 2,209	2,704 484	2,938 4,709	5,642 5,193	95 62	18 72	47 39	9,025 3,844	324 5,184	2,209 1,521	9,349 9,028	11,558 10,549	16 8	7 18	256 64	49 324	305 388
Aug. 24	15 16	22 20	35 27	52 38	· 484 400	1,225 729	2,704 1,444	1,709 1,129	4,413 2,573	28 31	18 27	7 14	784 961	324 729	49 196	1,108 1,690	1,157 1,886	7 6	13 11	49 36	169 121	218 157

MAGNETIC DISTURBANCE AT CAPE DENISON.

§36.—Some Aspects of Table CXVI Containing Parallel Data.

Even with the lack of ranges for the vertical component of the disturbing field at Christchurch, many features of interest are provided by individual hourly estimates for the remaining components at the three stations. In particular the intensely localised nature of many of the superposed perturbations of period under an hour becomes manifest. The first hours of the disturbance of 12 May may be taken as typical. Whereas the range of the disturbing force in the meridian at Christchurch remained steady in the first two hours it increased from 43_{γ} to 56_{γ} at Cape Denison and from 46_Y to 77_Y at Cape Evans. In the same interval, though the force transverse to this direction only increased its range of variation from 12_{γ} to 15_{γ} at Christchurch, it rose from 697 to 1137 at Cape Denison, but at Cape Evans, only some 900 miles distant, it fell from 43γ to 30γ . The change in behaviour of the vertical force within these hours was similar at the two Antarctic stations but the magnitude of the range at Cape Denison was exactly six times that at Cape Evans in both hours. Such a difference between scales of change of the disturbing field in the vertical at the expedition bases were frequent. In the hour 3h. to 4h. on 13 May the change in Z at Cape Evans was only 11_{Y} , little more than the average expected from the diurnal variation appropriate to that epoch. But at Cape Denison in the same hour the range was about eleven times as great. Other illustrations of this feature are given by the hour 13h. to 14h., 4 July, when the comparable Z ranges were 217_{γ} at Cape Denison and 19_{γ} at Cape Evans, and again for the hour 13h.-14h., 5 July with 191_{γ} as against 16_{γ} . Examples of the opposite tendency are much more limited and the relative difference much reduced. 5 July 4h. to 5h. when the Z range at Cape Denison was 73_{γ} and that at Cape Evans 175_{γ} is one of the few.

Almost without exception the ranges and squares quoted for Christchurch are of a different order of magnitude from those for the Antarctic stations. Both in the meridian and transverse disturbing forces, but especially in the latter, the ratios of the Antarctic to the Christchurch range are commonly above 10. On some of the larger movements recorded at Christchurch, when presumably the current system responsible for the disturbance has been much further north than usual, the range of one or other horizontal component at that station approximates to that at Cape Evans and less frequently to that at Cape Denison. 12 May, 7h. to 8h. is a case in point. On occasions of really large disturbance in the Antarctic, on the other hand, as on 8 June, 13h. to 14h. the range of the force in the meridian at Cape Denison may exceed 24 times the range for the same hour at Christchurch.

§37.—Examples of Extreme Ranges and Times of Occurrence at the Three Stations.

As exemplifying further details of the disturbances selected for comparison, the following Table CXVII contains the extreme ranges with times of occurrence of maximum and minimum values at the three stations for the disturbance of 12 and 13 May and 8 June.

TABLE CXVII.

Typical extreme ranges and times of extreme in disturbed intervals.

					C	lape Deniso	n.	·		
Date.	Interval.	R _D	Max.	Min.	R _{II}	Max.	Min.	Rz	Max.	Min,
1912.		~	h. m.	h. m.)	~	h.m	h. m .		h. m.	h. m.
May 12	0h. to 14h.	287	7 35	1 35	207	11 25	3 40	342	11 20	3 35
. 13	0h. to 14h.	370	8 40	1 30	210	13 50	8 35	368	8 40	1 25
June 8	2h. to 5h.	88	4 15	2 15	170	2 25	4 25	126	5 0	4 10
", 8 [.]	6h. to 8h.	56	6 10	6 25	60	6 40	7 20	65	8 0	6 20
,, 8	10h. to 16h.	148	14 0	14 50	331	13 40	$13 \ 50$	>393	13 30	$12 \ 15$
	ĺ	•	· [1					to	
									14 5	
"' 8	19h. to 22h.	168	19 5	20 35	78	19 45	$20 \ 30$	123	21 50	$20 \ 15$

Date			·		Cape I	Svans.	,				ļ		Christ	churcl	1.	
	Interval.	R _{E1}	Max.	Min.	$\mathbf{R}_{\mathbf{N}^{1}}$	Max.	Min.	Rz	Max.	Min.	R _D	Max.	Min,	R _H	Max.	Min.
1912. May 12 ,, 13 June 8 ,, 8 ,, 8 ,, 8 ,, 8	0h. to 14h. 0h. to 14h. 2h. to 5h. 6h. to 8h. 10h. to 16h. 19h. to 22h.	γ 226 247 101 163 151 152	h. m. 7 37 8 15 4 20 7 14 11 15 19 0	h. m. 11 12 0 5 2 45 6 35 13 40 20 30	γ 300 382 116 78 197 59		h. m. 3 33 1 23 4 13 7 40 14 30 20 31	$ \begin{array}{c} \gamma \\ 116 \\ 306 \\ 55 \\ 86 \\ 124 \\ 38 \\ \end{array} $	h. m. 2 10 0 20 2 30 7 5 12 35 21 40	h. m. 8 5 9 10 4 30 7 30 14 12 19 15	γ 96 84 15 52 30 22	h. m. 3 35 1 10 4 5 6 10 13 25 20 20	$ \begin{array}{c} \text{h. m.} \\ 7 \ 40 \\ 10 \ 25 \\ 2 \ 0 \\ 7 \ 20 \\ 13 \ 5 \\ 22 \ 0 \end{array} $	γ -74 91 46 38 37 22	h. m. 11 30 7 50 2 5 6 0 13 35 19 45	h.m. 6 0 1 32 4 30 7 10 11 35 20 20

Two features of the table are noteworthy. Approximate coincidence of times of attainment of highest and lowest values of the disturbing forces at the three stations is not uncommon. For example, in the component of the disturbing force in the direction of the meridian the maxima on 12 May at Cape Denison and Cape Evans were synchronous and the minima occurred within seven minutes of each other; in the component across the meridian in the same disturbance two minutes separated the maximum turning points. As between Cape Evans and Christchurch the maximum in N¹ on 12 May occurred only 5 minutes before the maximum in H and on the following day the maxima occurred simultaneously while the minimum values were attained within nine minutes of each other.

Such results indicate that the major influences in the disturbance were operating approximately simultaneously over the area covered by the three stations and that the resultant movements in the resulting magnetic field were sufficiently developed to transcend the phase differences in the ordinary diurnal variations arising from the local time differences between the stations. For Cape Evans and Christchurch this was only about half an hour, and Cape Denison and Christchurch about two and one-quarter hours.

Secondly, instead of the almost systematic supremacy of the Cape Denison hourly ranges over those for Cape Evans in all components, and instead of the differences between either of these and the ranges for Christchurch amounting to several multiples of the latter, the differences between the extreme ranges over sets of hours are not so consistently large and unidirected except in the case of vertical force. On 12 May the extreme range R_D for Cape Denison exceeds R_{E^1} , but in the same interval of fourteen hours R_H is only 69% of R_{N^1} . A similar change as between

the superiority of the extreme ranges in these two components is noticeable on the following day. At the same time the corresponding ranges for Christchurch increase from the average of about one-fifth those in the Antarctic, which is the ratio for the hourly ranges (vide infra) to one-third.

§38.—Average Hourly Ranges for each Disturbance.

Such changes are best considered with reference to the summarised values of average hourly ranges \bar{r} and their squares for each of the groups of disturbed hours of Table CXVI. These averages are supplied by Table CXVIII. That the direct addition of the mean squared ranges in this table does not always lead to the entry in the column of combined squared ranges for the vector in the horizontal plane and for the total vector is accounted for by the fact that these latter are derived from the addition of the separate squared resultants for each tabulated hour. Where a difference does exist it should not exceed one unit.

In addition to the means for each group of disturbed hours, the table contains three sets of general means; the first set relates to the seven days comprising 12, 13 May, 8 June, and 3, 4, 5 and 6 July of the upper half of the table and therefore has as its basis 131 of the total number (153) of selected disturbed hours; the second relates to the further group of seven periods of disturbances (except in the case of Cape Evans, where only six days are available); and the third comprises all the constituent groups. In each of the three sets of general means the contributing groups are equally weighted irrespective of the number of constituent hours of each group.

Representing most favourably the average relative state of affairs in longer disturbance, the first of these sets of means shows that in all components, but most prominently in the vertical component, the disturbing field at Cape Denison is more highly active than at Cape Evans and almost incomparably more so than at Christchurch. If the squared ranges be regarded as a measure of the activity of the disturbance vector, disturbance activity in the horizontal plane at Cape Evans is on the average only 66% of that at Cape Denison, and at Christchurch only 5%. When all three components are combined the activity at Cape Evans for this set of 131 hours is only 50% of the activity at Cape Denison.

When the comparison is extended to the whole number of tabulated disturbances, the mean range for the forces along the meridian is the same for the two Antarctic stations; but the mean squared range for this component at Cape Denison is nearly 50% greater than that for Cape Evans, the difference arising from the greater variability of the constituent hourly ranges about the mean at the former station. 57γ and 52γ represent the average ranges per hour at Capes Denison and Evans respectively for the disturbing force directed across the meridian, but the difference between the corresponding ranges for the vertical field 61γ and 26γ is relatively much greater. In comparison with the horizontal field ranges at either of these stations the corresponding means for Christchurch are only between one-quarter and one-fifth of the Antarctic values, with a resulting activity for the combined components in the horizontal plane about one-twentieth of that at Cape Evans.

That the differences in mean range and deduced magnetic activity between the Antarctic stations on the one hand and such a station as Christchurch on the other is not alone due to a difference in scale (arising, say, from concentration of the responsible current system) of the same system of acting forces, is clear both from the differences which are manifest between the two Antarctic stations themselves and also from the changes in the relative values of the range of variation of the disturbing forces as between these stations and between either and Christchurch, when for the average range within the hour is substituted the extreme range over the complete group of hours for each selected disturbance.

As noted in connexion with Table CXVII, Cape Denison does not maintain such a constant supremacy over Cape Evans in the case of extreme range as for the average hourly, and the ratio 1 to 5 for Christchurch to the Antarctic for the mean hourly range is much reduced when the extreme range is the basis of comparison. Such results make it clear that though the scale of magnitude of the disturbing force vectors is really enormously increased with increasing proximity to the polar cap, superposed short period fluctuations arising from local perturbing forces contribute in large measure to the total activity of the magnetic field during even average disturbance in the Antarctic.

TABLE CXVIII.

Summary of Mean Hourly Ranges and Squares for Disturbed Periods at Cape Denison, Cape Evans and Christchurch.

	Numbor					Cape Denis	on.		-					Cape Eva	ans.					Christo	hurch.	
Date.	of Hours.	r _D	r _n	r _z	 r	t 	Γ_z^{a}	$\frac{1}{r_{D}} + \frac{1}{r_{H}}$	$\frac{1}{r_{\rm D}+r_{\rm H}+r_{\rm Z}}$	r _{E1}	 Г _{N1}	rz	r_{E^1}	r _{N1}	r _z	$\frac{1}{\Gamma_{E^1} + \Gamma_{N^1}}$	$\frac{1}{\Gamma_{E^1} + \Gamma_{N^1} + \Gamma_{Z^1}}$	r _D	r _m	$r_{\rm D}$		_* _* T _D +T _H
1912.		Ŷ	Υ	Υ	γ2	γ²	γ²	γ²	γ ³	γ	Υ	Y	γ²	γ²	γ²	γ²	. γ ²	r	Y	γ²	γ²	γ^2
May 12 , 13 June 8 July 3 , 5 , 6 , 8 , 21 , 23 , 24 , 24	$ \begin{array}{c} 14\\ 14\\ 22\\ 7\\ 24\\ 24\\ 4\\ 3\\ 5\\ 5\\ 1\\ 2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\$	$71 \\ 74 \\ 68 \\ 39 \\ 70 \\ 75 \\ 55 \\ 51 \\ 33 \\ 40 \\ 51 \\ 111 \\ 41 \\ -21 \\ -21$	$51 \\ 66 \\ 61 \\ 45 \\ 65 \\ 72 \\ 74 \\ 55 \\ 25 \\ 16 \\ 24 \\ 32 \\ 45 \\ 31 \\ \hline$	63 77 85 51 85 87 56 102 25 37 37 69 37 45	6,210 6,811 5,684 2,085 5,608 7,613 6,272 3,090 1,525 2,526 2,663 2,321 1,705 441	3,038 4,901 7,847 2,487 5,571 6,837 22,181 4,485 633 313 649 1,024 2,029 977	$\begin{array}{c} 6,069\\ 8,544\\ 14,307\\ 3,144\\ 11,571\\ 10,174\\ 6,572\\ 16,912\\ 746\\ 1,614\\ 1,135\\ 4,761\\ 1,594\\2,074\\ \end{array}$	$\begin{array}{r} 9,247\\ 11,713\\ 13,531\\ 4,573\\ 11,179\\ 14,451\\ 28,453\\ 7,576\\ 2,158\\ 2,839\\ 3,311\\ 13,345\\ -3,823\\ -3,823\\ -1,419- \end{array}$	15,317 20,256 27,838 7,717 22,749 24,625 35,026 24,488 2,904 4,453 4,447 18,106 5,417 	53 87 63 49 62 77 33 55 17 47 30 78 	59 73 60 33 59 60 28 44 22 44 63 45 -23-	$\begin{array}{c} 22\\ 69\\ 32\\ 29\\ 27\\ 46\\ 15\\ 15\\ 10\\ -\\ 14\\ 9\\ 43\\ -11-\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$	3,080 9,288 5,068 2,861 4,546 7,729 1,339 3,884 315 2,547 900 6,435 	$\begin{array}{c} 4,111\\ 7,174\\ 4,905\\ 1,398\\ 4,203\\ 4,355\\ 1,181\\ 2,653\\ 620\\ 2,509\\ 3,969\\ 2,754\\ -527\\ -\end{array}$	632 6,857 1,573 1,065 1,028 4,670 416 251 111 2855 81 1,865 	7,191 16,463 9,973 4,258 8,749 12,084 2,520 6,537 935 5,056 4,869 9,189 	7,823 23,320 11,546 5,324 9,778 16,754 2,936 6,788 1,046 5,341 4,950 11,053 ;521	$ \begin{array}{c} 14\\20\\11\\3\\11\\10\\5\\10\\7\\8\\9\\15\\12\\-6-\end{array} $	16 18 13 10 15 11 5 11 8 6 12 35 12 -12-	331 573 179 9 189 154 37 114 59 107 105 225 160 43-	314 456 237 87 325 187 64 123 103 37 177 1,225 187 145	645 1,029 416 96 515 341 101 237 162 144 283 1,450 347
Means. 1st 7 periods 2nd 7 periods All	131 22 153	65 50 57	62 33 47	72 49 61	5,755 3,480 4,617	7,552 1,444 4,498	8,626 4,119 6,373	13,309 4,924 9,116	21,933 9,044 15,488	61 43 52	53 40 47	34 17 26	4,844 2,492 3,759	3,904 2,172 3,105	2,320 453 1,458	8,748 4,664 6,863	11,069 _. 5,117 8,322	11 10 10	13 14 13	210 116 163	239 285 262	449 401 425

438

AUSTRALASIAN ANTARCTIC EXPEDITION.

CHAPTER VIII.

Some General Features of Disturbance.

§39. Inequalities for Days Grouped According to the International Character Figure.

Preceding chapters have been concerned with special features of magnetic disturbance as registered at Cape Denison. It remains to consider such of the more general features as may be deduced from a study of the diurnal inequalities representative of disturbed conditions of varying degrees of intensity. Although almost entirely based on the magnetic records of stations in the northern hemisphere, the international scheme for the characterisation of individual Greenwich days according to the intensity and duration of disturbance has been shown to be applicable to world wide conditions in a way not at first anticipated. Almost all the days of available record from the Adelie Land base have therefore been grouped according to the international character figure. The groups comprised :—

1. The five days per month selected as international quiet days.

2. Days of character figure 0.1 and 0.2.

3. Days of character figure 0.3 and 0.4.

4. Days of character figure 0.5, 0.6, 0.7 and 0.8.

5. The five days per month of largest character figure.

In many months there was a residue of more than five days of complete data after the five groups had been formed; the average number per month in excess of the required five was, however, only two, not enough to justify the formation of an additional group of days between that for characters 0.5 to 0.8 and that representing the most disturbed conditions.

Seasonal mean inequalities for each of the five types of day were formed, grouping together the contributions from the months May to August, 1912 and May to July, 1913 for winter, April, September and October, 1912 and March and April, 1913 as equinox and November, 1912, to February, 1913, as summer. By suitable combination of the mean inequalities for D and H, N and W inequalities were deduced, using in the transformation, a mean value of declination and horizontal force appropriate to the months constituting each season. The annual mean inequalities for each element, both primary and derived and for each group of days, have been formed as the means of the three corresponding seasonal inequalities.

Both the range (the algebraic difference between the largest and least of the inequality ordinates) and the average departure (the mean of the 24 constituents of the inequality regardless of sign) are given for each inequality. For moderate latitudes and in average conditions the former will serve as a measure of the magnitude of the forces producing the inequality but in the conditions of the present investigation with the almost constant presence of additional and highly localised perturbing forces, the average departure is a safer criterion of comparison.
TABLE CXIX.

Mean Diurnal Inequalities for Days Grouped according to International Character Figure : Year : G.M.T.

	Inter-	<u> </u>	ſ		1		ı	<u> </u>	1			<u> </u>	<u> </u>		1		1	1		1			1			··	
Ele- ment.	national Charac- ter Figure.	1h.	2h.	3h .	4h.	5 h .	6h.	7 h .	8 b.	9h.	10 h .	11h.	12h.	13h.	14b.	15h.	16h.	17h.	18h.	19h.	20h.	21h.	22h.	23h.	24h.	Range.	Average Depart- ture.
		`,			,					,				1		,	,	,	,	, .		,		,	,	,	,
D	0.04	+18.2	+ 9.8	+ 0.2	- 8.7	-15.8		-17.2	-13.5		-13.5	-12.4	-13.0	9.9	- 5.9	-1.0	- 0.1	+ 1.2	+ 3.4	+ 5.5	+11.5	+15.7	+20.8	+28.2	+25.2	45·4	11.6
	0.15	+23.1 +24.0	+18.4 +18.6	+ 7.4	- 5.2 - 6.0	-17.1	-10.2 -20.9	-13.8 -22.7	-21.3	-17.7 -20.7	-21.2	-10.3 -20.1		-13.0	-10.1	- 2.9 - 2.1	+ 2.3	+ 1.0 + 3.5	+ 2.3 + 9.5	+ 4.0 + 8.6	+ 3.2 + 12.3	+14.4 +21.6	+21.0 +25.7	+20.0 +28.8	+20.4 +26.7	43.5 51.5	12.8
	0.64	+25.8	+17.2	+ 7.8	— 0·9	-12.8	-20.8	-26.4	-23.8	-28.6	-26.9	-28.5	$-25 \cdot 1$	-19.5	-10.7	— 1·4	+ 1.4	+ 6.8	+ 8.7	+13.6	+20.9	+28.5	+31.6	+33.4	+29.5	62.0	18.8
	1.15	+38.0	+33.2	+23.6	+ 5.7	-10.9	-27.4	43.9	-49·7	54.0		53-2	53-1	-41.7	-25.8		+ 1.2	+13.2	+23.1	+26.0	+41.0	+56.7	+57.2	+58.9	+48.4	114.8	3 5∙5
		Y	Y	Y	Y.	Y,	Y_	Y	Y	Y	Ŷ	Ϋ́,	Y Y	Y	Y.	Υ .	Y,	Y	. γ•	.Υ	, Y	Υ <u></u>	.Υ.	Y.	γ.	Y.	. Υ
н	0.04	- 0·4	- 6.9 - 3.4	-50 + 0.5	- 3.0	$- \frac{1.9}{7.3}$	- 4.7	$- \frac{7 \cdot 0}{- 9 \cdot 3}$	- 5·0 - 6·9	- 5·3 - 9·0		- 3.1 - 4.3	- 2.0 + 0.5	+ 1.9 + 3.9	+ 4.1	+ 64	+ 5.2 + 5.8	+ 5.9 + 5.6	+ 6.0 + 6.4	+ 70 + 61	+ 7.8 + 8.1	+ 6·0 +10·2	+ 9.5	+ 0.1 + 2.9	- 3·6 + 0·6	20.3	48 59
	0.34	$-2\cdot 2$	- 7.0	-10.0	-10.8	-12.5	-13.3	-11·3	- 8.7	— 7·1	→ 6·4	— <u>3</u> .0	- 0.2	+ 7.0	+ 7.8	+10.3	+ 9.7	+ 9.3	+ 7.6	+ 7.4	+ 8.7	+ 9.5	+ 8.3	+ 6.4	+ 0.6	23.6	7.7
	0.64	- 3·7	- 9·7	-16.6 -30.2	-21.9	-18.8	-14.2 -35.7	16·2 20.0		- 9·7 -24·3	- 5·7	- 1·4	+ 4.1	+ 8.0	+ 9.3 + 25.7	+11.8 +28.3	$^{+13\cdot1}_{\pm25\cdot1}$	+13.9 +23.8	+10.9 +21.0	+11.7 +20.7	+13.0 +23.0	+12.5 +21.8	+ 9.4 + 18.8	+ 9.1 + 10.2	+ 1.4 + 0.7	35.8	10·7 21.7
	1.10		-200		-010	JIU	-001	-20 5		-210			1 11-2	7201	7-20,1	7200	7201	T200	T #10	- 20	T 20 V	T210		T10-2	T 91	040	. 414
.Z	0.04	- 7.5	-17.3 -99.1	-27.9	-29.7	-28.1	-20.1	-13.1 12.4	- 5.6	1·9	+ 0.9 + 0.0	+ 3.0	+ 5.9	+10.3	+12.6 +12.7	+10.5	+10.1 +11.0	+11.3	+13.4	+15.3	+16.0	+14.2	+14.7 +18.0	+10.4	- I·0	45.7	12.5
	0.34	-12·3	-27.5	-35.8	-38.8	-33.1	-25.3	-15.8	-11.0	- 5·1	-0.3	+ 6.2	+11.3	+12.3	+17.4	+17.0	+15.4	+14.5	+12.9	+20.0	+21.4	+20.2	+19.2	+10.6	+ 2.9	60.2	16.9
	0.64	- 8.7	-26.9	-40.7	-41.6	-34.8	-24.4	-15.3	-10.6	- 3.7	-0.1	+ 7.5	+13.8	+13.9	+14.7	+12.3	+17.4	+18.6	+19.5	+23.1	+20.8	+19.3	+16.8	+ 8.7	+ 0.3	64.7	17·2
	1.12	-29.3		37.3	-52.0	40.8		-19.8	-15·Z	+ 0.1	+ 9.2	+10.7	+21.3	+33.0	+40.3	+30.8	+32.1	+21.4	+23.2	+24.1	+23.0	+17.8	+18.3	+ 0.1	-13.0	97.6	26.9
N	0.04	- 8.3	- 7.8	- 4.9	-2.1	-0.2	- <u>3</u> ·1	- 51	- 3.5	- <u>3</u> ·9	- 2·9	— 1·9	- 0.8	+ 3.0	+ 4.6	+ 7.0	+ 5.2	+ 5.7	+ 6.1	+ 7.0	+ 6.7	+ 4.9	+ 3.2	-2.8	- 6.3	15.3	4.5
	0.15	- 4.8	- 5.3	-10.3	-10.1	-10.6	-11.0	- 8.8	- 5·1)- - 6·3	- 4.9	— 5·0 — 4·1.	$- \frac{2.0}{- 0.8}$	+ 2.1 + 1.9	+ 8.4	+ 4.8 + 8.8	+ 10.4	+ 9.3	+ 5.5	+ 6.1 + 6.6	+ 5.0 + 6.4	+ 7.2 + 7.0	+ 8·7 + 7·1	+ 7.1 + 5.5	+ 0.1 + 3.3	$- \frac{2:2}{2\cdot 6}$	21.4	5·4 7·0
	0.64	— 6·5	-11.5	-17.4	-21.6	-14.0	-11.9		- 7.3	- 6.6	— 2·7	+ 1.6	+ 6.8	+10.1	+10.4	+11.8	+12.8	+13.1	+ 9.9	+10.1	+10.6	+ 9.3	+ 5.9	+ 5.8	1.7	34.7	9.7
	1.12		27.4	33-0	-35.3				-23.6	-18·3	— 5·0	$+7\cdot 2$	+16.8	+24.5	+28.3	+29.2	+24.6	+21.9	+18.3	+17.8	+18.7	+15.9	+13.0	+ 4.5	+ 5.0	64.5	20.9
W	0.04	+15·3	+ 7.0	- 0.9	— 8·1	-14·1		<i>—16∙0</i>	<u>12.6</u>				<u>—10∙6</u>	- 8.4	- 4.6	+ 0.2	+ 0.6	+ 1.9	+ 4.1	+ 5.2	+10.0	+13.9	+18.8	+24.4	+21.8	40.4	10.3
	0.15	+20.2 +21.3	+16.1	+ 6.7	- 5.8	-11·5		-15·3	-15.3 -20.1	-16·4	-16.1	14·2			- 6.1	- 1·8	+ 1.2 + 3.2	+ 1.6	+ 2.9	+ 4.8	+ 8.3 + 15.1	+14.1	+20.4	+23.6	+23.8	40.2	12·0
. j	0.34	+21.3 +22.7	+14.3	+ 5.0	- 3.4	-13.7	-20.3 -20.3	-25.6	-20.1 -22.5	-26.8	-24.7	-25.5	-22.0	-16.5	- 8.2	+ 0.2	+ 2.8	+ 4.3 + 7.9	+ 9.1	+ 3.0 +13.5	+20.3	+27.0	+29.4	+31.0	+26.6	57.8	17.5
	1.15	+33.0	+28.3	+22.2	+ 4.6	11·2	-26.1	-41.9	-47.6	51.4	51.3	-47·5		36-2	20-2	- 5.6	+ 5.8	+17.4	+23.9	+24.9	+37.4	+50.6	+49.6	+44.4	+39.9	102 0	32.0
	I			1	r l	L	, ,	· I		1	1		1 I		1	1	1	1	Į,	. 1	1	. 1	1	1	ł	1	

TABLE CXX:

Mean Diurnal Inequalities for Days Grouped according to International Character Figure : Winter : G.M.T.

Ele- ment.	Inter- national Charac- ter Figure.	1h.	2h.	3h.	4h.	5h.	6h	7h.	8h.	9h.	10b.	11h.	12h.	13h.	14h.	15h.	16h.	17h.	18b.	19h.	20h.	21h.	22h.	23h.	24b.	Range.	Average Depart- ure.
D	0.05 0.17 0.35 0.62 1.09	+10.1 +13.2 +15.0 +16.2 +33.5	+ 4.8 + 7.9 + 10.9 + 11.0 + 32.3	+ 1.5 + 1.6 + 5.6 + 8.8 + 12.0	$ \begin{array}{c} , \\ - & 5.5 \\ - & 5.8 \\ - & 2.8 \\ + & 1.9 \\ - & 0.8 \end{array} $	$ \begin{array}{c} $	$ \begin{array}{c} -8.8 \\ -11.0 \\ -10.0 \\ -9.8 \\ -23.2 \end{array} $	$ \begin{array}{c} $	- 6·7 - 9·3 11·0 10·1 38·2	$ \begin{array}{c} - & 5 \cdot 9 \\ - & 9 \cdot 1 \\ - & 10 \cdot 5 \\ - & 12 \cdot 7 \\ - & 37 \cdot 2 \end{array} $, - 6·3 - 9·0 -11·3 -16·9 -39·5	, 	, -7.2 -10.1 -13.3 -19.5 -41.4	, -6.7 -8.7 -12.5 -19.5 -32.0	$ \begin{array}{c} - 2.9 \\ - 3.9 \\ - 8.6 \\ - 9.0 \\ - 23.7 \end{array} $	$ \begin{array}{c} , \\ - & 0.2 \\ - & 1.7 \\ - & 0.4 \\ - & 2.8 \\ - & 9.1 \end{array} $, + 1.8 + 2.7 + 2.3 + 2.2 - 3.0	+ 3.2 + 5.1 + 2.8 + 4.4 + 3.9	, + 2.5 + 4.3 + 6.5 + 4.2 + 13.5	+ 4.0 + 5.5 + 6.5 + 6.6 + 17.5	+ 7.2 + 6.9 + 10.8 + 9.8 + 36.3	' + 7.1 + 9.6 +11.1 +15.9 +44.4	+ 9·3 +12·5 +11·3 +18·8 +47·0	, +11.4 +14.7 +15.4 +20.2 +48.3	, +10·7 +14·4 +17·4 +18·1 +47·4	20.6 25.7 31.0 41.8 89.7	6.1 8.2 9.6 11.5 28.0
H.	0.05 0.17 0.35 0.62 1.09	$ \begin{array}{c} \gamma \\ - \cdot 2 \cdot 5 \\ - 5 \cdot 1 \\ - 4 \cdot 5 \\ - 5 \cdot 3 \\ - 18 \cdot 6 \\ \end{array} $	$ \begin{array}{c} $	$ \begin{array}{c} $	$ \begin{array}{c} & \gamma \\ - & 3 \cdot 7 \\ - & 7 \cdot 4 \\ - & 11 \cdot 3 \\ - & 14 \cdot 9 \\ - & 36 \cdot 3 \end{array} $	$\begin{array}{c} & \gamma \\ - & 2 \cdot 4 \\ - & 7 \cdot 1 \\ - & 10 \cdot 2 \\ - & 13 \cdot 8 \\ - & 31 \cdot 2 \end{array}$	$ \begin{array}{c} & \gamma \\ - & 3 \cdot 3 \\ - & 6 \cdot 8 \\ - & 8 \cdot 0 \\ - & 11 \cdot 2 \\ - & 20 \cdot 9 \end{array} $	$ \begin{array}{c} \gamma \\ - 5 \cdot 1 \\ - 6 \cdot 2 \\ - 6 \cdot 1 \\ - 12 \cdot 6 \\ - 19 \cdot 3 \\ \end{array} $	$ \begin{array}{c} & \gamma \\ - & 3 \cdot 2 \\ - & 3 \cdot 3 \\ - & 5 \cdot 8 \\ - & 7 \cdot 9 \\ - & 21 \cdot 9 \end{array} $	Ý 2·1 1·7 5·0 6·4 17·6		$ \begin{array}{c} & \gamma \\ - & 1 \cdot 1 \\ - & 0 \cdot 5 \\ - & 2 \cdot 5 \\ - & 1 \cdot 2 \\ + & 3 \cdot 0 \end{array} $	$ \begin{array}{c} \gamma \\ - 0.3 \\ + 3.4 \\ + 1.2 \\ + 3.9 \\ + 9.1 \end{array} $	$\gamma + 2.3 + 3.0 + 6.8 + 7.3 + 14.3$	$ \begin{array}{r} $	$\dot{\gamma} + 4.0 + 6.9 + 9.7 + 10.3 + 25.7$	$\begin{vmatrix} & \gamma \\ + & 3 \cdot 9 \\ + & 6 \cdot 1 \\ + & 7 \cdot 3 \\ + & 12 \cdot 9 \\ + & 20 \cdot 8 \end{vmatrix}$	$\gamma + 2.3 + 5.9 + 5.6 + 10.4 + 25.3$	$\gamma + 3.0 + 4.3 + 7.5 + 8.3 + 26.2$	$\gamma + 3.1 + 3.8 + 6.9 + 8.7 + 26.5$	$\gamma + 3.5 + 5.3 + 5.0 + 9.3 + 26.2$	$\begin{array}{c} \gamma \\ + 2 \cdot 6 \\ + 4 \cdot 4 \\ + 4 \cdot 2 \\ + 8 \cdot 1 \\ + 18 \cdot 0 \end{array}$	$ \begin{array}{r} \gamma \\ + 3 \cdot 2 \\ + 3 \cdot 9 \\ + 5 \cdot 8 \\ + 6 \cdot 9 \\ + 10 \cdot 7 \end{array} $	$\begin{array}{c} \gamma \\ 0.0 \\ + 2.1 \\ + 3.2 \\ + 4.5 \\ + 10.4 \end{array}$	$\begin{array}{c} & \gamma \\ - & 0.2 \\ - & 1.3 \\ + & 1.0 \\ - & 0.9 \\ - & 8.9 \end{array}$	Y 9·6 15·2 21·4 27·8 62·8	$\begin{array}{c} \gamma \\ 2 \cdot 7 \\ 4 \cdot 6 \\ 6 \cdot 2 \\ 8 \cdot 3 \\ 19 \cdot 7 \end{array}$
Z	0.05 0.17 0.35 0.62 1.09	$ \begin{array}{c} & 6 \cdot 8 \\ & 11 \cdot 5 \\ & 16 \cdot 8 \\ & 14 \cdot 1 \\ & 29 \cdot 6 \end{array} $	$ \begin{array}{c} -13.8 \\ -18.4 \\ -21.7 \\ -19.3 \\ -38.3 \\ \end{array} $	$-16.8 \\ -21.4 \\ -19.9 \\ -27.0 \\ -38.9$	-17.1-20.5-22.1-26.8-38.8	-13.6-16.9-17.8-19.7-32.7	-7.8-10.4-12.8-14.5-20.7	$ \begin{array}{r} - 3.0 \\ - 6.9 \\ - 8.0 \\ - 11.5 \\ - 17.3 \end{array} $	$ \begin{array}{r} - 1.8 \\ - 1.3 \\ - 6.9 \\ - 6.6 \\ - 13.2 \\ \end{array} $	$ \begin{array}{r} - & 0.3 \\ - & 0.9 \\ - & 3.3 \\ - & 1.0 \\ - & 2.1 \end{array} $	+ 1.6 + 1.9 - 0.6 - 1.8 + 6.2	+ 2.0 + 3.5 + 6.1 + 4.4 + 15.6	+ 3.5 + 5.4 + 11.8 + 10.5 + 22.0	+ 8.6 + 9.2 + 12.3 + 11.6 + 30.8	+ 8.2 + 9.8 + 17.5 + 14.6 + 36.6	+ 9.4 + 12.2 + 16.0 + 15.8 + 33.0	+ 8.0 + 11.3 + 11.3 + 17.8 + 39.0	+ 6.4 + 8.9 + 10.5 + 12.5 + 22.1	+ 6.2 + 9.0 + 12.2 + 11.8 + 19.2	+ 6.3 + 10.1 + 12.0 + 11.7 + 19.7	+7.0 +9.7 +9.8 +10.6 +15.3	+ 6.8 + 9.1 + 12.1 + 14.3 + .9.1	+ 5.9 + 7.9 + 7.3 + 11.9 + 2.6	+ 2.3 + 3.2 + 0.1 + 2.7 - 11.2	-1.9 -3.0 -9.0 -7.9 -28.4	26·5 33·6 39.6 44·8 77·9	$6.9 \\ 9.3 \\ 11.6 \\ 12.5 \\ 22.6$
N	0.05 0.17 0.35 0.62 1.09	$ \begin{array}{c} - 3.6 \\ - 6.5 \\ - 6.1 \\ - 7.0 \\ - 22.1 \end{array} $	$ \begin{array}{c c} - & 3 \cdot 1 \\ - & 9 \cdot 0 \\ - & 9 \cdot 2 \\ - & 9 \cdot 8 \\ - & 31 \cdot 3 \end{array} $	$ \begin{array}{c} - 4.6 \\ - 7.6 \\ - 10.3 \\ - 13.3 \\ - 27.0 \end{array} $	$\begin{array}{c} - & 3 \cdot 1 \\ - & 6 \cdot 7 \\ - & 10 \cdot 9 \\ - & 15 \cdot 0 \\ - & 35 \cdot 9 \end{array}$	$ \begin{array}{r} - 1.5 \\ - 6.1 \\ - 9.0 \\ - 13.2 \\ - 29.6 \end{array} $	$ \begin{array}{r} - & 2 \cdot 4 \\ - & 5 \cdot 6 \\ - & 6 \cdot 8 \\ - & 10 \cdot 1 \\ - & 18 \cdot 3 \end{array} $		$ \begin{array}{r} - & 2 \cdot 5 \\ - & 2 \cdot 3 \\ - & 4 \cdot 6 \\ - & 6 \cdot 7 \\ - & 17 \cdot 7 \end{array} $	- 1.5 - 0.7 - 3.9 - 5.1 -13.6	$ \begin{array}{r} - & 0.8 \\ + & 0.6 \\ - & 1.8 \\ - & 2.1 \\ - & 2.9 \\ \end{array} $	$\begin{array}{r} & 0.5 \\ + & 0.6 \\ & 1.1 \\ + & 1.1 \\ + & 7.1 \end{array}$	$ \begin{vmatrix} + & 0.5 \\ + & 4.5 \\ + & 2.6 \\ + & 6.0 \\ + & 13.4 \end{vmatrix} $	$ \begin{array}{r} + 3.0 \\ + 3.9 \\ + 8.1 \\ + 9.3 \\ + 17.6 \end{array} $	$\begin{vmatrix} + & 4 \cdot 8 \\ + & 6 \cdot 9 \\ + & 10 \cdot 9 \\ + & 9 \cdot 6 \\ + & 22 \cdot 1 \end{vmatrix}$	+ 4.0 + 7.1 + 9.6 +10.5 +26.5	$ \begin{array}{r} + 3.7 \\ + 5.8 \\ + 7.0 \\ + 12.6 \\ + 21.0 \end{array} $	+ 2.0 + 5.4 + 5.3 + 9.8 +24.7	+ 2.7 + 3.8 + 6.7 + 7.8 + 24.6	$ \begin{array}{r} + 2.7 \\ + 3.2 \\ + 6.2 \\ + 7.9 \\ + 24.4 \end{array} $	+ 2.7 + 4.6 + 3.9 + 8.2 + 22.2	+ 1.8 + 3.4 + 3.0 + 6.3 + 13.2	+ 2.2 + 2.6 + 4.6 + 4.9 + 5.6	-1.2 + 0.5 + 1.6 + 2.4 + 5.2	$- 1.3 \\ - 2.8 \\ - 0.8 \\ - 2.8 \\ - 13.8 \\ - 13.8 $	9·4 16·1 21·8 27·6 62·4	$ \begin{array}{r} 2 \cdot 5 \\ 4 \cdot 4 \\ 5 \cdot 8 \\ 8 \cdot 0 \\ 19 \cdot 0 \end{array} $
W	0·05 0·17 0·35 0·62 1·09	+ 8.7 +11.2 +12.9 +13.9 +27.8	+ 4.0 + 6.1 + 8.8 + 8.9 + 25.6	+ 0.8 + 0.5 + 3.8 + 6.4 + 7.7	$ \begin{array}{r} 5 \cdot 3 \\ 6 \cdot 1 \\ 3 \cdot 8 \\ 0 \cdot 1 \\ 5 \cdot 0 \\ \end{array} $	$ \begin{array}{r} - 8.2 \\ - 9.0 \\ -10.8 \\ - 5.5 \\ - 15.9 \end{array} $	$ \begin{array}{r} - 8.3 \\ -10.7 \\ - 9.9 \\ -10.1 \\ -23.3 \\ \end{array} $		6·4 8·7 10·6 9·9 36·8	— 5·5 — 8·4 —10·0 —12·2 —35·4			$ \begin{array}{c} - & 6.5 \\ - & 8.6 \\ - & 11.8 \\ - & 17.0 \\ - & 36.0 \end{array} $	$ \begin{array}{r} - 5.7 \\ - 7.4 \\ - 10.4 \\ - 16.6 \\ - 27.0 \end{array} $	$ \begin{array}{c c} - & 2 \cdot 1 \\ - & 2 \cdot 7 \\ - & 6 \cdot 5 \\ - & 7 \cdot 1 \\ - & 18 \cdot 9 \end{array} $	$ \begin{array}{r} \dot{+} & 0.3 \\ \hline - & 0.7 \\ + & 0.7 \\ \hline - & 1.3 \\ \hline - & 5.2 \end{array} $	$\begin{vmatrix} + & 2 \cdot 1 \\ + & 3 \cdot 1 \\ + & 3 \cdot 0 \\ + & 3 \cdot 5 \\ - & 0 \cdot 2 \end{vmatrix}$	+ 3.2 + 5.3 + 3.2 + 5.1 + 6.5	+ 2.6 + 4.4 + 6.7 + 4.8 + 15.2	+ 4.0 + 5.3 + 6.6 + 6.9 + 18.8	+ 6.9 + 6.8 + 10.3 + 9.9 + 35.6	+ 6.7 + 9.1 + 10.4 + 15.2 + 41.9	+ 8.7 + 11.6 + 10.8 + 17.6 + 43.4	+10.2 + 13.4 + 14.2 + 18.6 + 44.5	$^{+ 9.6}_{+ 12.7}_{+ 15.7}_{+ 16.1}_{+ 41.4}$	19-0 24-1 28-2 38-1 81-3	5.67.5 $8.910.625.7$

N GADE DENTRON

TABLE CXXI.

Mean Diurnal Inequalities for Days Grouped according to International Character Figure : Equinox : G.M.T.

		· · .																			• • •						
Ele- ment.	Inter- national Charac- ter Figure.	1h.	2h.	3h.	4h.	5h.	6h.	7h.	8h.	9b.	10h.	11h.	12h.	13h.	14h.	15h.	16h.	17h.	18h.	19h.	20h.	21h.	22h.	23h.	24h.	Range.	Average Departure.
	1	ĺ ,			,	1,	Ι.	<u> </u>			.		[,		Ι,				1,		,		,				
n	0.05	.1.91.4	1 12.0	1.0	7.0	14.0	16.0	76.8	12.0	11.5	19.5	11.5	14.0		5.0	0.0	. 9.0	, 1, 1, 1, 1	1 5.0	5.7		, i1.9	1.16.1	1.99.5	1.96.0	40.0	111
D	0.14	+21.4	+13.0	+100	- 6·3	-12.4	18.3	-10.8 -14.3	-13.0	-14.7	-13.0 -18.0	-11·5 -15·9	-18.5	-16.7	-10.4	- 2.9	+ 0.8	+ 2.1	+ 6.7	+ 7.5	+10.5	+13.9	+20.6	± 25.9	+20.0	42.8	13.6
	0.33	+20.0	+12.7	+5.0	- 7.5		$-22 \cdot 2$	-22.6	-21.7	$-21 \cdot 1$	-20.3	-19.1	-19.2	-11.4	- 5·8	+ 1.9	+ 3.9	+ 7.8	+ 7.2	+10.2	+14.9	+23.8	+27.1	+26.5	+26.4	49.7	15.6
	0.65	+22.5	+21.1	+ 8.9	+ 2.3	-13.7	-23.2	-30.7	-27.1	-31.6	-36.3	-33.1	-28.0	-17.9	- 9.2	- 0.8	+ 4.2	+ 9.6	+12.8	+17.2	+26.1	+30.1	+32.6	+34.9	+29.3	71.2	21.0
	1.21	+30.3	+25.2	+20.1	+ 5.0	-10.5	-33.6	-49.8	-47.1		-61·7	—53·6	-48.7	-38·9		- 7.4	+ 1.6	+17.9	+27.2	+31.1	+41.1	+65.1	+62.9	+54.3	+47.9	126.8	35.8
		ł	{ I				- 1	{					l	ł	ļ				1			.					
		Y	Ϋ́	Υ _α	Υ.	Y,	Υ	Y	×γ	Ϋ́	Ϋ́	Y	Υ,	· Υ	Y	.Υ <u></u>	Υ.	, Υ	.Υ.,	, Υ, ,	Υ	Υ <u>·</u>	Ŷ	Y	Ϋ́	Υ.	Ŷ
н	• 0.05	- 0.2	3.3	- 3.3	- 8.1	- 4.7	- 7.4	9.9	- 6·4	- 7.0	- 5.0	- 0.7	+ 1.4	+ 6.4	+ 7.9	+ 7.2	+ 4.0	+ 6.3	+ 4.1	+ 4.9	+ 4.7	+ 5.6	+ 4.5	+ 2.3	— 3·5	17.8	4.9
	0.99	- 0.0	- 1.7	- 9.8	- 5.2	- 0.3	8.3	- 6.2	- 0.3	0.3	- 0.1	- 2.1	+ 2.9	+ 7.0	+ 9.0	+ 8.3	+ 7.0	+ 0.0	+ 0.3	+ 5.0	+ 4.1	+ 4.8	+ 1.0	-2.9	-2.6	19.3	5.3
_	0.65	- 6.0	- 10.0	-18.6	-13.7			-12.9	_ 0.9	$-\frac{4\cdot 2}{5\cdot 2}$	- 3.7	± 1.7	+ 6.4	± 10.3	± 12.3	± 19.4	± 11.5	± 13.3	+12.6	± 13.5	± 12.3	+ 5.4	+ 9.2 + 9.1	±11.4	+ 4·0	30.8	8.0 19.0
	1.21	— 8·4	-16.6	-28.0	-40.7	-44.3	-39.2	-38.0		-24·6	- 9.2	+ 5.8	+10.6	+24.2	+26.6	+30.0	+31.2	+31.4	+28.3	+26.7	+22.3	+17.8	+11.0	+4.4	$+ \frac{1}{8 \cdot 2}$	75.7	23.2
	1	1 -	1	}			1					,]) · · · ·	1				·	1	,		
Z	· 0·05	— 7·0		-29.3	<u>-30-9</u>	26.5	16·6	— 6·9	- 0.8	+ 2.5	+ 3.7	+ 6.9	+ 9.3	+11.7	+11.9	+ 8.5	+ 8.5	+ 9.6	9.3	+ 9.3	+10.8	+13.4	+11.0	+ 9.7	+ 1.2	44.3	11.4
	0.14	— 9·3	-23.9	-35.4	29.6	-32.0	-25.7	-11.3	— 5·l	+ 2.0	+ 2.6	+ 6.1	+11.9	+18.6	+18.3	+14.0	+13.1	+12.0	+12.4	+12.6	+15.7	+17.0	+12.9	+ 7.1	4.0	54.0	14.7
	0.33	-10.5	-25.1	35-1	39-0	<u>-37·1</u>	-23.7	11·6	- 6.9	+ 0.3	+ 0.5	+ 8.1	+11.2	+13.4	+15.1	+12.4	+12.7	+14.0	+15.4	+17.0	+21.3	+18.7	+16.5	+10.4	+ 2.0	60·3	15.8
	0.65	-17.2		-45.1	-44.9		-20.5	9.5	- 7.0	- 1.9	+ 6.7	+16.6	+18.9	+17.5	+16.6	+13.0	+13.9	+18.0	1 + 21.9	+28.0	+18.1	+17.2	+ 9.9	+ 0.2	-6.7	73.1	18.1
•	1.21	-29.4	- 40.9	-97.1	-39.7		-40.8	-29.4	11.9	+ 4.0	+18.4	+22.1	+ 30.8	+28.0	+00.9	+25.8	+30.1	+ 20.9	+ 30.0	+31.4	+23.3	+14.2	+19.0	+ 5.0		93.5	28.8
N	0.05	- 2.5	4.7	- 3.2	- 7.2	- 3.2	- 5.5	- 8.0	- 5.0	— <u>5</u> ·7	- 3.5	+ 0.6	+ 2.9	+ 7.4	+ 8.3	+ 7.0	+ 3.7	+ 6.1	+ 3.6	+ 4.3	+ 4.0	+ 4.4	+ 2.7	— 0·3	- 6.3	16.3	4.6
	0.14	- 2.8	- 3.3	-10.8	- 4.5	- 4.9	6.2	- 4.6	- 4.7	- 3.7	-4.1	- 0.4	+ 4.9	+ 9.3	+10.5	+ 8.5	+ 7.3	+ 5.8	3 + 5.6	$+ \hat{4}\cdot\hat{2}$	$+ \overline{3} \cdot \overline{0}$	+ 3.3	$-\bar{0}6$	$-\tilde{5}\cdot\tilde{7}$	- 5.8	21.3	5.2
	0.33	5.6	- 7.2	-10-0	-12.8	-18.0	-15.5	-10.3	- 5.0	— 1·9	+ 0.8	+ 2.8	+ 3.1	+ 8.3	+ 8.2	+ 8.8	+ 7.8	÷ 7.0	+ 6.1	+ 6.5	+ 9.2	+ 6.7	+ 6.1	+ 3.4	+ 1.1	27.2	$\tilde{7}\cdot \tilde{2}$
	0.65	— 8·5	-12.2		-28.7	23.0	-17.4	14 4	- 6.1	— 1·8	+ 0.3	+ 5.3	+ 9∙5	+12.2	+13.2	+12.4	+10.9	+12.2	+11.1	+11.5	+ 9.4	+11.7	+ 5.4	+ 7.5	— 1·3	41 ·9	11.1
	1.21	-11.6	<u>1</u> 9·2		-40.9	-42.9	-35.2	-32.3	-24.2	-18.0	- 2·4	+11.6	+15.8	+28.2	+28.5	+30.6	+30.8	+29.2	+25.1	+23.1	+17.6	+10.6	+ 4.0	- 1.5	+ 2.9	73 ·7	21.5
117	- 0F	1.10.1	111.0	1 1 0		10.1	1 1 0	100	10.4		10.7	10.4	100		200	. 17	. 9.1				1 0 1	1.10.7	114.7	1 31 9	1 00 0	00.0	10.0
¥¥	0.14	1.1 18.0	+11.2	- 1·3	- 13	11.0	-10.9	-10.2			-12.7	-10.4	-12.3	14.0	- 3.0	+ 1.7	+ 5.1	+ 2.1	+ 6.9	+ 5.7	+ 0.1	+10.7	+14.7	+21.3 +99.0	+22.8	39.0	10.3
	0.33	+17.5	+10.7	1 3.9	_ 8.2	17.9		-13.5 -21.7	20.3	-10.7 -19.4	-18.3		17.1	<u> </u>	4.3	+ 2.8	+ 4.5	1 8·0	+ 7.2	+10.0	+14.6	± 22.4	+25.3	+24.5	+24.1	47.3	14.6
	0.65	+19.4	+17.7	+ 5.8	- 1·3	-15.2	-23.1	-29.5	-25.3	28.9	32.9	-29.4	-24.2	-14.8	- 6.7	+ 0.8	+ 52	+10.2	+12.9	+17.0	+24.8	+28.7	+30.2	+32.6	+26.4	65.5	19.3
	1.21	+26.1	+20.5	+14.6	- 0.4	-14.7	-34.7	-49.1	-45.6	55.8	-56.3	-47.2	-42.2	-31·9	-14.1		+5.1	+19.8	+27.7	+31.0	+39.4	+60.3	+57.5	+49.0	+43.8	116.6	32.9
	¥	ļ	'	l' [1											• •		[]	· -		[····]	·		• •		

TABLE CXXII.

Mean Diurnal Inequalities for Days Grouped according to International Character Figure : Summer : G.M.T.

																_	7	•	•								
Ele- ment.	Inter- national Charac- ter Figure.	1h.	2h.	3h.	4h.	5h.	6h.	7h.	8h.	9h.	10h.	11h.	12h.	13h.	14h.	15h.	16h.	17h.	18h.	19h.	20h.	21h.	2 2h .	23h.	24h.	Range.	Average Depart- ure.
D	0-02 0-15 0-35 0-66 1-15	+23.2 +34.7 +37.0 +38.8 +50.1	+11.6 +32.6 +32.1 +19.5 +42.1	0.0 + 10.8 + 11.6 + 5.6 + 38.8	-13.6 -3.4 -7.8 -6.8 +13.0	$\begin{array}{r} -24.7 \\ -14.0 \\ -24.2 \\ -20.3 \\ -8.5 \end{array}$	-20.1-19.3-30.5-29.3-25.5	-25.6-22.8-34.6-36.7-46.1	-20.8-24.7-31.1-34.3-63.9	$-22.7 \\ -27.5 \\ -30.6 \\ -41.6 \\ -65.7 \\ -65.7 \\ -$	$ \begin{array}{r} -20.6 \\ -24.3 \\ -32.0 \\ -27.4 \\ -66.6 \end{array} $	-20.3 -19.7 -27.7 -30.7 -67.4	$ \begin{array}{c} -17.8 \\ -18.0 \\ -26.0 \\ -27.7 \\ -69.3 \end{array} $	$\begin{array}{c} \gamma \\ -13 \cdot 9 \\ -15 \cdot 3 \\ -17 \cdot 7 \\ -21 \cdot 1 \\ -54 \cdot 2 \end{array}$	Ý 	Ŷ 3·8 4·0 7·8 0·6 15·1	$ \begin{array}{r} \gamma \\ - 5 \cdot 1 \\ - 1 \cdot 6 \\ + 0 \cdot 8 \\ - 2 \cdot 3 \\ + 5 \cdot 0 \\ + 5 \cdot 0 \end{array} $	\hat{r} - 1.0 - 4.1 0.0 + 6.4 +17.7	$\gamma + 2.7 - 4.0 + 14.7 + 9.0 + 28.5$	$\begin{array}{r} & \gamma \\ + & 6 \cdot 9 \\ + & 0 \cdot 7 \\ + & 9 \cdot 1 \\ + & 16 \cdot 9 \\ + & 29 \cdot 3 \end{array}$	$\gamma + 21.0 + 7.1 + 21.3 + 26.8 + 45.6$		$\gamma + 36.9 + 31.7 + 38.7 + 43.5 + 61.6$	$\gamma + 49.8 + 37.3 + 44.5 + 45.0 + 74.1$	$\dot{\gamma} + 38.8 + 35.9 + 46.2 + 41.2 + 49.9$	γ 75·4 64·8 80·8 86·6 143·4	Y 18·3 17·5 23·8 24·3 43·1
Ħ	0.03 0.15 0.35 0.66 1.15	$ \begin{array}{c c}16 \cdot 6 \\6 \cdot 6 \\ + 1 \cdot 2 \\ + 0 \cdot 1 \\ + 4 \cdot 4 \end{array} $	-14.8 -0.2 -7.1 -10.5 -26.8	$ \begin{array}{r} - & 7 \cdot 2 \\ + 18 \cdot 8 \\ - 10 \cdot 7 \\ - 18 \cdot 8 \\ - 36 \cdot 6 \\ \end{array} $	+2.7 -17.6 -7.4 -22.1 -26.7	+ 1.5 - 8.6 - 7.4 18.0 28.4	$ \begin{array}{c} -3.5 \\ -12.6 \\ -14.0 \\ -11.3 \\ -47.1 \end{array} $	$ \begin{array}{c} - & 6.0 \\ - & 15.6 \\ - & 14.9 \\ - & 18.3 \\ - & 32.5 \end{array} $	$\begin{array}{c}5 \cdot 3 \\11 \cdot 0 \\12 \cdot 7 \\12 \cdot 9 \\35 \cdot 8 \end{array}$	$ \begin{array}{c} - & 6 \cdot 9 \\ - & 20 \cdot 0 \\ - & 12 \cdot 1 \\ - & 17 \cdot 5 \\ - & 30 \cdot 6 \end{array} $	$ \begin{array}{c} - & 6 \cdot 4 \\ - & -14 \cdot 3 \\ - & -14 \cdot 7 \\ - & 9 \cdot 4 \\ - & -16 \cdot 7 \end{array} $	$ \begin{array}{c} & 7 \cdot 5 \\ & 10 \cdot 3 \\ & 7 \cdot 2 \\ & 4 \cdot 7 \\ & 4 \cdot 2 \end{array} $	$ \begin{array}{c} - & 7 \cdot 2 \\ - & 4 \cdot 9 \\ - & 2 \cdot 7 \\ + & 1 \cdot 9 \\ + & 14 \cdot 0 \end{array} $	$ \begin{array}{r} - 2.9 \\ + 1.0 \\ + 7.0 \\ + 6.5 \\ + 21.8 \end{array} $	$- 0.2 \\ - 3.7 \\ + 5.5 \\ + 6.8 \\ + 30.9$	+ 9.8 + 4.0 + 12.2 + 12.6 + 29.3	+ 7.7 + 3.7 + 13.4 + 14.8 + 23.3	$+ 9.1 \\+ 4.9 \\+ 14.3 \\+ 18.0 \\+ 14.7$	+12:6 + 8.6 + 8.5 +11.7 + 8.7	+14.7 + 9.6 + 7.6 +12.8 + 8.9	+15.3 + 14.9 + 10.1 + 17.3 + 20.4	+11.3 +21.6 +14.8 +14.2 +29.5	$+ 8.5 \\ + 22.9 \\ + 9.9 \\ + 12.2 \\ + 34.7$	$- \frac{1 \cdot 9}{+ 9 \cdot 6} \\ + 9 \cdot 6 \\ + 11 \cdot 3 \\ + 15 \cdot 7$	-7.2 + 5.8 - 3.2 + 3.3 + 29.8	31.9 42.9 29.7 40.1 81.8	$7.8 \\ 10.5 \\ 9.5 \\ 12.0 \\ 23.8$
Z	0.03 0.15 0.35 0.66 1.15	$ \begin{array}{r} - 8.7 \\ +11.4 \\ - 9.6 \\ + 5.3 \\ -28.9 \\ \end{array} $	-18.7-24.1-35.8-30.9-71.5	$-37.7 \\ -38.3 \\ -52.3 \\ -49.9 \\ -76.0$	-41·1 -48·4 -54·4 53·1 -59·3	$-44.3 \\ -48.7 \\ -44.3 \\ -51.1 \\ -47.1$	-36.0-36.3-39.4-38.1-43.9	$\begin{array}{c}29 \cdot 3 \\19 \cdot 1 \\27 \cdot 9 \\24 \cdot 9 \\12 \cdot 6 \end{array}$	-14.1-20.0-19.1-18.2-14.9	$ \begin{array}{r} - 8.0 \\ -10.4 \\ -12.2 \\ - 8.2 \\ - 2.3 \\ \end{array} $	$ \begin{array}{r} - & 2 \cdot 7 \\ - & 1 \cdot 7 \\ - & 0 \cdot 7 \\ - & 5 \cdot 2 \\ + & 2 \cdot 9 \end{array} $	+ 0.1 + 1.0 + 4.5 + 1.6 + 8.8	+ 4.9 + 7.6 +10.9 +11.9 +28.9	+10.7 + 9.4 +11.2 +12.7 +41.3	$+17.7 \\ + 9.9 \\ +19.7 \\ +12.8 \\ +50.5$	$^{+13\cdot7}_{+\ 6\cdot9}_{+22\cdot5}_{+\ 7\cdot5}_{+33\cdot9}$	$+13.7 \\ +11.4 \\ +22.1 \\ +20.5 \\ +27.3$	+18.0 +12.3 +18.9 +25.2 +16.8	$+24 \cdot 8 +20 \cdot 0 +21 \cdot 1 +24 \cdot 8 +20 \cdot 8$	$+30.2 \\ +28.9 \\ +30.9 \\ +29.7 \\ +21.3$	+30.2 + 34.4 + 33.1 + 33.7 + 32.1	$+32.4 \\ +31.3 \\ +29.9 \\ +26.5 \\ +30.1$	$^{+27\cdot 1}_{+36\cdot 0}_{+33\cdot 8}_{+28\cdot 5}_{+32\cdot 8}$	$^{+19\cdot 1}_{+16\cdot 9}_{+21\cdot 3}_{+23\cdot 3}_{+5\cdot 9}$	$\begin{array}{r} - & 2 \cdot 4 \\ + & 9 \cdot 6 \\ + & 15 \cdot 8 \\ + & 15 \cdot 6 \\ + & 2 \cdot 7 \end{array}$	$76.7 \\ 84.7 \\ 88.2 \\ 86.8 \\ 126.5$	$20.2 \\ 20.6 \\ 24.6 \\ 23.3 \\ 29.7$
N	0.03 0.15 0.35 0.66 1.15	$ \begin{array}{c}18.9 \\10.2 \\2.7 \\4.1 \\0.9 \\ \end{array} $	$ \begin{array}{c} -15.6 \\ -3.6 \\ -10.5 \\ -12.4 \\ -31.6 \end{array} $	-7.0 + 17.6 - 11.8 - 19.3 - 42.1	+ 4.1 -17.1 - 6.5 -21.2 -29.2	+ 4.0 - 7.0 - 4.8 - 15.8 - 28.2	$ \begin{array}{c} -1.7 \\ -10.5 \\ -10.7 \\8.1 \\ -45.0 \\ \end{array} $	$ \begin{array}{c} - 3.3 \\ -13.1 \\ -11.2 \\ -14.3 \\ -27.7 \end{array} $	$ \begin{array}{c} - & 3 \cdot 1 \\ - & 8 \cdot 3 \\ - & 9 \cdot 3 \\ - & 9 \cdot 2 \\ - & 28 \cdot 9 \end{array} $	$ \begin{array}{c} - & 4 \cdot 5 \\ - & 17 \cdot 0 \\ - & 8 \cdot 8 \\ - & 13 \cdot 0 \\ - & 23 \cdot 4 \end{array} $	$ \begin{array}{r} - & 4 \cdot 4 \\ - & 11 \cdot 6 \\ - & 11 \cdot 2 \\ - & 6 \cdot 4 \\ - & 9 \cdot 6 \end{array} $	$ \begin{array}{r} - 5.7 \\ - 8.1 \\ - 4.2 \\ - 1.5 \\ + 3.0 \\ \end{array} $	$\begin{vmatrix} - & 5 \cdot 7 \\ - & 3 \cdot 0 \\ & 0 \cdot 0 \\ + & 4 \cdot 8 \\ + 21 \cdot 3 \end{vmatrix}$	$ \begin{array}{r} -1.5 \\ + 2.6 \\ + 8.9 \\ + 8.7 \\ + 27.8 \\ \end{array} $	+ 0.7 - 2.9 + 7.2 + 8.3 + 34.4	$^{+10.0}_{+4.4}_{+12.9}_{+12.6}_{+30.5}$	+ 8.2 + 3.9 + 13.2 + 14.9 + 22.0	$+ 9.1 \\ +.5.3 \\ +14.2 \\ +17.2 \\ +11.8$	+12.1 + 8.9 + 6.9 +10.7 + 5.3	$+14 \cdot 1$ + 9 \cdot 4 + 6 \cdot 5 +10 \cdot 9 + 6 \cdot 0	+13.4 +14.1 + 7.8 +14.4 +16.2	$+ 8.5 \\+ 19.3 \\+ 11.5 \\+ 10.0 \\+ 23.8$	+ 4.7 + 19.4 + 5.7 + 7.5 + 29.3	$ \begin{array}{r} - & 6 \cdot 9 \\ + & 5 \cdot 6 \\ + & 4 \cdot 8 \\ + & 7 \cdot 5 \\ + & 9 \cdot 9 \end{array} $	$-11\cdot2 + 2\cdot0 - 8\cdot1 - 1\cdot0 + 25\cdot9$	33·0 36·4 26·0 38·4 79·4	$7.4 \\ 9.4 \\ 8.3 \\ 10.6 \\ 22.2$
W	0.03 0.15 0.35 0.66 1.15	+18.2 +30.4 +33.4 +34.9 +45.0	+ 5.9 + 29.3 + 28.1 + 16.3 + 38.8	$-\frac{2 \cdot 1}{+11 \cdot 9} \\ + 9 \cdot 2 \\ + 2 \cdot 8 \\ +44 \cdot 2$	11-8 5-1 7-9 8-7 + 19-3	$ \begin{array}{r} -20.9 \\ -13.6 \\ -22.7 \\ -20.3 \\ -3.0 \\ \end{array} $	$ \begin{array}{c} -15.5 \\ -18.9 \\ -29.0 \\ -27.6 \\ -20.3 \end{array} $	$\begin{array}{c}23 \cdot 1 \\22 \cdot 3 \\32 \cdot 8 \\35 \cdot 1 \\ -42 \cdot 1 \end{array}$	-19.1 -23.5 -29.5 -32.3 -60.4	$\begin{array}{c} -20.5 \\ -27.0 \\ -28.9 \\ -39.4 \\ -62.9 \end{array}$		-15.9 -18.9 -25.7 -27.6 -61.2	-12.9-16.8-23.7-24.7-61.2	-12.1-13.7-15.1-18.2-49.8	$- 8.0 \\ - 7.4 \\ -13.8 \\ -11.7 \\ -27.7$	$ \begin{array}{r} - 1 \cdot 4 \\ - 3 \cdot 1 \\ - 5 \cdot 6 \\ + 1 \cdot 0 \\ - 8 \cdot 6 \end{array} $	$ \begin{array}{r} - 3.5 \\ - 1.0 \\ + 2.3 \\ - 0.4 \\ + 12.4 \end{array} $	$+ 0.4 \\ - 3.1 \\ + 1.7 \\ + 7.9 \\ + 25.8 \\$	$ + \frac{4 \cdot 6}{-2 \cdot 6} + 14 \cdot 2 + 9 \cdot 5 + 28 \cdot 9 $	+ 5.8 + 1.7 + 9.1 + 16.7 + 24.9	+17.1 + 8.1 +20.3 +26.1 +37.1	+24.2 + 20.2 + 28.7 + 37.0 + 49.6	+33.0 +31.1 +35.9 +40.5 +47.9	+41.8 + 34.6 + 41.1 + 41.8 + 49.8	$+32.9 \\ +33.0 \\ +41.1 \\ +37.4 \\ +34.4$	$\begin{array}{c} 64 \cdot 9 \\ 61 \cdot 6 \\ 73 \cdot 9 \\ 81 \cdot 2 \\ 112 \cdot 7 \end{array}$	$ \begin{array}{r} 15 \cdot 3 \\ 16 \cdot 7 \\ 22 \cdot 1 \\ 22 \cdot 6 \\ 38 \cdot 2 \end{array} $

MAGNĒTIC DISTURBANCĒ DENISON

TABLE CXXIII.

(a) Inequalities for Q Days, Winter, 1913. (b) Difference Inequalities for Year and Seasons.

		1h.	2h.	Sh.	4h.	5h.	6h.	7h.	8h.	9h.	10h.	11h.	12h.	13h.	14h.	15h.	16h.	17b.	18h.	- 19h.	20h.	21h.	22h.	23h.	24h.	Range.	Average Departure.
(a) Q d	ays,	Winter	, 1913.				-				_						_		•			÷					
	D H Z N W	$\begin{vmatrix} \gamma \\ + 5 \\ - 3 \\ - 7 \\ - 4 \\ + 4 \end{vmatrix}$	$ \begin{array}{c} $	$\begin{vmatrix} Y \\ + 0.7 \\ - 3.2 \\ -11.0 \\ - 3.2 \\ - 5 \\ + 0.2 \\ - 5 \\ $	$ \begin{array}{c} & \gamma \\ & - & 3 \cdot 9 \\ & - & 9 \cdot 8 \\ & - & 3 \cdot 4 \\ & - & 4 \cdot 3 \end{array} $	$ \begin{array}{c} & \gamma \\ - & 5 \cdot 5 \\ - & 1 \cdot 6 \\ - & 7 \cdot 1 \\ - & 1 \cdot 0 \\ - & 5 \cdot 1 \end{array} $	$ \begin{array}{r} $	$ \begin{array}{c c} \gamma \\ - & 4.5 \\ - & 2.1 \\ - & 1.7 \\ - & 1.6 \\ - & 4.3 \end{array} $	$ \begin{array}{c} \gamma \\ -3.9 \\ -3.2 \\ 0.0 \\ -2.8 \\ -3.9 \\ \end{array} $	$ \begin{array}{c} & \gamma \\ & 3 \cdot 3 \\ & -1 \cdot 4 \\ & 0 \cdot 0 \\ & -1 \cdot 0 \\ & -3 \cdot 1 \end{array} $	$ \begin{array}{c} $	$ \begin{array}{r} & & & & \\ & - & 3 \cdot 9 \\ + & 0 \cdot 7 \\ + & 0 \cdot 4 \\ + & 1 \cdot 1 \\ - & 3 \cdot 4 \end{array} $	$ \begin{array}{c} & \gamma \\ & 8.9 \\ & -0.7 \\ & +3.4 \\ & +0.2 \\ & -8.0 \\ \end{array} $	$ \begin{array}{c} $	$ \begin{array}{c} $	$ \begin{array}{r} \gamma \\ + 3 \cdot 5 \\ + 6 \cdot 5 \\ + 3 \cdot 6 \\ - 0 \cdot 2 \\ $	$ \begin{vmatrix} \gamma \\ + & 3 \cdot 1 \\ + & 5 \cdot 0 \\ + & 5 \cdot 2 \\ + & 2 \cdot 7 \\ + & 3 \cdot 1 \end{vmatrix} $	$ \begin{array}{c} \gamma \\ + 2.5 \\ + 2.0 \\ + 4.3 \\ + 1.7 \\ + 2.5 \end{array} $	$+ \frac{1\cdot 3}{1\cdot 2\cdot 2} + \frac{3\cdot 8}{3\cdot 8} + \frac{2\cdot 0}{1\cdot 4}$	$ \begin{array}{c} \gamma \\ + & 3 \cdot 5 \\ + & 1 \cdot 7 \\ + & 4 \cdot 0 \\ + & 1 \cdot 3 \\ + & 3 \cdot 3 \\ \end{array} $	$ \begin{array}{r} $	$ \begin{array}{c} & \gamma \\ + & 5 \cdot 8 \\ + & 2 \cdot 9 \\ + & 3 \cdot 5 \\ + & 2 \cdot 3 \\ + & 5 \cdot 5 \end{array} $	$ \begin{array}{c} & \gamma \\ + & 7 \cdot 7 \\ + & 1 \cdot 5 \\ + & 2 \cdot 6 \\ + & 0 \cdot 7 \\ + & 7 \cdot 1 \end{array} $	$ \begin{array}{r} & \gamma \\ + & 9 \cdot 9 \\ + & 0 \cdot 9 \\ - & 0 \cdot 4 \\ - & 0 \cdot 2 \\ + & 9 \cdot 0 \\ \end{array} $	$ \begin{array}{c} & \gamma \\ + 8.9 \\ - 1.1 \\ - 3.6 \\ - 2.0 \\ + 7.8 \\ \end{array} $	$ \begin{array}{c} \gamma \\ 18.8 \\ 8.2 \\ 18.6 \\ 8.9 \\ 17.0 \end{array} $	$\begin{array}{c} \gamma \\ 4 \cdot 6 \\ 2 \cdot 2 \\ 4 \cdot 5 \\ 2 \cdot 0 \\ 4 \cdot 1 \end{array}$
(b) Diff	erend	e ineq	ualities.	•					•									•									
Year .	N W Z	- 3 + 17 + 17 + 21 + 21	$2 - 19 \cdot 6$ 7 + 21 \cdot 3 8 - 32 \cdot 8	$3 - 28 \cdot 1$ $3 + 23 \cdot 1$ $3 - 29 \cdot 4$	$-33 \cdot 2$ +12 \cdot 7 -22 \cdot 9	-33.4 + 2.9 - 17.7	-29.7 -12.9 -15.0	-30.0 -25.9 -6.7	-20.1 -35.0 -9.6	-14.4 -39.0 +2.0	-2.1 -39.4 + 8.3	$ ^+ 9.1$ -37.1 +12.7	+17.6 35.9 +21.4	$ ^{+21\cdot5}_{ -27\cdot8}_{+23\cdot3}$	5 + 23.7 3 - 15.6 3 + 27.7	$ +22 \cdot 2$ $ -5 \cdot 8$ $ +20 \cdot 4$	+19.4 + 5.2 +22.0	+16.2 +15.5 +10.1	+12.2 +19.8 +10.1	+10.8 +19.7 + 8.8	$ ^{+12.0}_{+27.4}$ +7.6	+11.0 +36.7 + 3.6	$ ^+ 9.8 \\ +30.8 \\ + 3.6$	+ 7.3 + 20.0 - 10.3	$^{+11\cdot3}_{+18\cdot1}_{-12\cdot0}$	$ \begin{array}{c} 57 \cdot 1 \\ 76 \cdot 1 \\ 60 \cdot 5 \end{array} $	$17 \cdot 4$ 22 \cdot 7 15 \cdot 0
Winter	N W Z	-18 + 19 - 22	$5 - 28 \cdot 2$ $1 + 21 \cdot 6$ $8 - 24 \cdot 5$	$2 - 22 \cdot 4$ $3 + 6 \cdot 9$ $5 - 22 \cdot 1$	-32.8 + 0.3 -21.7	—28·1 — 7·7 —19·1		-11.3 -25.6 -14.3		-12.1 -29.9 -1.8	$- 2 \cdot 1$ -30 \cdot 4 + 4 \cdot 6	+7.6 -29.4 +13.6	+12.9 29.5 +18.5	+14.6 -21.3 +22.2	3 + 17.3 3 - 16.8 2 + 28.4	+22.5 - 5.5 +23.6	+17.3 - 2.3 +31.0	+22.7 + 3.3 +15.7	+21.9 +12.6 +13.0	$^{+21\cdot7}_{+14\cdot8}_{+13\cdot4}$	+19.5+28.7+ 8.3	+11.4 + 35.2 + 2.3	+3.4 +34.7 -3.3	$^+ 6.4 \\ +34.3 \\ -13.5$	-12.5 + 31.5 - 26.5	55·5 65·6 54·9	$16.6 \\ 20.3 \\ 16.2$
Equino	x N W Z	-9 + 7 - 22	$\begin{array}{c c}1 & -14 \cdot 6 \\ 0 & + & 9 \cdot 3 \\ 4 & -21 \cdot 2 \end{array}$	$5 - 26 \cdot 8 + 15 \cdot 9 - 27 \cdot 8$	-33.7 + 6.9 -28.8		-29.7 -18.8 -24.2	-24.3 -32.9 -22.5		-12.3 -44.7 +2.1	+ 1.1 -43.6 +14.7	+11.0 36.8 +15.8	+12.9 -29.9 +21.6	+20.8 -24.5 +16.9	3 + 20.2 5 - 10.5 9 + 21.9	+23.6 -4.7 +17.3	+27.1 + 2.0 +21.6	+23.1 +17.7 +15.7	+21.5 +22.7 +21.3	+18.8 +25.3 +22.1	+13.6 +33.3 +12.5	+ 6.2 + 49.6 + 0.8	+ 1.3 + 42.8 + 8.6	-1.2 + 27.7 - 4.1	$^{+ 9\cdot 2}_{+21\cdot 0}_{-14\cdot 6}$	66-8 94-3 53-1	17·5 23·4 17·8
Summ	er N W Z	+18 +26 -20	$ \begin{array}{c c} 0 & -16 \cdot 0 \\ 8 & +32 \cdot 9 \\ 2 & -52 \cdot 8 \end{array} $	-35.1 + 46.3 38.3	-33.3 + 31.1 - 18.2	-32.2 + 17.9 - 2.8		-24.4 -19.0 +16.7	-25.8 -41.3 - 0.8	-18.9 -42.4 + 5.7	-5.2 -44.1 + 5.6	+ 8.7 45.3 + 8.7	+27.0 -48.3 +24.0	$\begin{vmatrix} +29 \cdot 3 \\ -37 \cdot 7 \\ +30 \cdot 6 \end{vmatrix}$	$\begin{vmatrix} +33.7\\ -19.7\\ +32.8 \end{vmatrix}$	$ ^{+20\cdot 5}_{-7\cdot 2}_{+20\cdot 2}$	+13.8 +15.9 +13.6	+ 2.7 +25.4 - 1.2	$- \frac{6 \cdot 8}{+ 24 \cdot 3}$ $- 4 \cdot 0$		$\begin{vmatrix} + & 2 \cdot 8 \\ + & 20 \cdot 0 \\ + & 1 \cdot 9 \end{vmatrix}$	+15.3 +25.4 - 2.3	+24.6 + 14.9 + 5.7	$^{+16\cdot8}_{+8\cdot0}$ $^{-13\cdot2}$	$^{+37\cdot 1}_{+\ 1\cdot 5}_{+\ 5\cdot 1}$	80·4 94·6 85·6	20.8 25.8 14.2

TABLE CXXIV.

Mean Hourly Values of H after commencement of 28 Disturbances.

Means.	1h.	2h.	3h.	4h.	5h	6h.	7h.	8h.	9h.	10h.	11h	12h.	13h.	14h.	15h.	16h.	17h.	18h.	19h.	20b.	21h.	22h.	23h.	24h.	25h.
A B C D			$ \begin{array}{r} & \gamma \\ 115 \cdot 8 \\ + 7 \\ - 6 \\ + 21 \end{array} $	$ \begin{array}{c} & \uparrow \\ 108 \cdot 0 \\ + 8 \\ 0 \\ + 16 \end{array} $	98.0 + 5 - 1 + 11		$ \begin{array}{c} & \gamma \\ 81 \cdot 4 \\ + 5 \\ + 15 \\ - 5 \end{array} $		$\gamma 55.1 -16 - 6 -25$		$ \begin{array}{c} \gamma \\ 68.0 \\ - 8 \\ 0 \\ - 16 \end{array} $			33.0 -16 -25 - 8	96.2 - 5 - 16 + 5	96-5 —11 —13 — 9	$ \frac{108.9}{-4} \\ -8 \\ +1 $	$ \begin{array}{r} & \gamma \\ 111 \cdot 3 \\ - & 6 \\ -20 \\ + & 8 \end{array} $	$ \begin{array}{r} \gamma \\ 112 \cdot 5 \\ - 6 \\ -14 \\ + 2 \end{array} $			$ \begin{array}{c c} & \gamma \\ & 124 \cdot 4 \\ & +12 \\ & +25 \\ & 0 \\ \end{array} $	$ \begin{array}{ c c } & & & & & \\ & & & & & \\ & & & & & \\ & & & & $		$\gamma \\ 115.5 \\ +11 \\ +22 \\ -1$

MAGNETIC DISTURBANCE AT CAPE DENISON.

In drawing conclusions from the results supplied by Tables CXIX to CXXII regard must be had to several points.

- 1. Though the winter and equinoctial inequalities are means from two separate sets of inequalities for 1912 and 1913 respectively, the constituent months are not symmetrically distributed about mid-summer. The mean epoch for winter is near the end of December, 1912, whereas that for equinox is more nearly the beginning. Since, therefore, general magnetic activity in the Antarctic was declining from 1912 to 1913 at a greater rate than would have been deduced from any criterion of solar activity or even from magnetic conditions in moderate latitudes, the differences in corresponding inequalities from the two seasons though mainly are not purely attributable to differences in magnetic conditions as between Antarctic winter and equinoctial conditions. Relative to the winter conditions, the mean activity of the months contributing to the tabulated equinoctial inequalities is slightly exaggerated. This effect is small and, as will be seen, the amplitude only and not the type of the inequality can be affected.
- 2. These considerations are even more cogently applicable to the table of summer data in all elements but D. For during December, 1912; the H and Z variometers were functioning so indifferently that that month has contributed no data to the seasonal mean in these elements, and, therefore, in N and W. The implication of this is that the summer inequalities of Table CXXII are also reduced in amplitude but not affected in form for all elements except declination.
- 3. Since the reduction in scale of the summer and equinoctial inequalities will not be compensated by the enhanced winter inequality relative to an epoch at 31st December, 1912, the annual mean inequalities will have suffered a slight net reduction.

§40.—THE EFFECTS OF INCREASING DISTURBANCE ON THE DIURNAL INEQUALITIES.

The material of Table CXIX for the year may be first considered. The results are partially illustrated in Plate X. The mean character figure entered in the final column for each group of days after the second is approximately double that of the preceding group. Though it is only after the third group that successive differences are really large, yet there is no element in which the average departure of the inequality does not systematically increase from the first to the fifth groups. Even in the case of the range, D and W, which are largely inter-dependent, are the only elements which fail to show a progressive increase with the increasing character figure. International character figures, therefore, even when restricted to a limited number of months, are thoroughly representative of magnetic conditions far beyond the area covering the ----

 $\mathbf{445}$

stations contributing to the scheme. And, further, not only do the figures provide an adequate means of differentiating between quiet and disturbed conditions even to within small distances of the magnetic pole, but they are also a sensitive means of discriminating between days of relatively poor magnetic dispersion in such localities.

According to current hypotheses there should be a difference in type as well as in amplitude between inequalities representative of quiet and of disturbed conditions. Between groups of days whose mean character figures differ by over one unit such a difference, if it exists in Antarctic regions, might be expected to be evident, and to accompany the increased disturbance associated with the increasing character figures of successive group inequalities of Table CXIX a corresponding increasing distortion of the quiet day variation due to superposition of the disturbance variation would be anticipated. Plate X shows that there is no evidence of such an effect in any one of the elements. Increase of international character has associated with it a progressive increase in amplitude on the variation but the type remains essentially the same.

§41.—THE REGULAR VARIATION ON DAYS OF LEAST RANGE.

1913 was a year of very low sunspot activity; it was the minimum year of the cycle. Not only so, but magnetically it was phenomenally quiet in all moderate latitudes. Even in Adelie Land there were isolated days during which no sensible perturbations interrupted the smooth run of the traces. Hence, if any quiet day variation exist, its characteristics should become evident by forming a mean inequality from days of 1913 which are at the same time of low international character figure and free from obvious local disturbance. Such conditions are approximately obtained by considering the inequalities from the selected quiet days of the winter of 1913 alone. Combing material derived from the fifteen selected quiet days of the three months May, June and July having a mean character figure, 0.04, the inequalities for this season reproduced from the appropriate tables in Part II, Volume I, are seen (Table CXXIII (a)) to have exactly the same form as for the days of just slightly character figure or for the days of higher general disturbance (in both years).

Hence, through a series of inequalities in which the average departure increases from 4.58 (quiet days winter 1913) to 43.1 (disturbed days summer) in D, from 2:21 to 23.8 in H and 4.49 to 29.7 in Z, for corresponding groups of days and seasons, the type of the inequality remains invariable. It can therefore be concluded either that the quiet day variation, if it exists, is vanishingly small and can only be detected on occasions of special Antarctic quiet, or that the regular quiet and disturbance variations, essentially different in type for stations outside a limited area surrounding the poles, become identical within this region. On the evidence here presented, the latter conclusion is the more acceptable,

MAGNÉTIC DISTURBANCE AT CAPÉ DENISON.

§42.—Seasonal Change in the Effects of Disturbance on the Inequalities.

The effectiveness of the forces producing the inequalities on either quiet or disturbed days increases substantially from the Antarctic winter to the Antarctic summer, the seasonal change being most conspicuous on quiet days. In all components the average departure for the selected quiet days of summer is about three times as great as for winter but in the groups of days of highest character figure the increase from winter to summer is only 54% in D, 21% in H and 31% in Z. The state of affairs in the equinoctial months is representative of the year as a whole.

§43.—DIFFERENCE INEQUALITIES AND VECTOR DIAGRAMS.

The nature of the time variation of the disturbing forces which, superposed on the normal quiet day variation, produces the composite inequality representative of disturbed days can be further examined by subtracting each hourly value in the quiet day inequality from the corresponding value in that for disturbed conditions. The resulting ' difference ' inequality specifies the additional disturbing force at each hour of the day. When such inequalities are combined for geographical force components in pairs, diagrams representing the space and time variations of the resulting vectors in three orthogonal planes can be constructed. Table CXXIII (b) contains the difference inequalities in the three rectangular components for the year and three seasons, and Plate X supplies their graphical representation as vector diagrams.

At stations in latitudes well on the equatorial side of the auroral zone in the northern hemisphere the vector diagram for the forces in the horizontal plane is elongated in a direction transverse to the magnetic meridian, but the direction of elongation changes to be along the meridian for stations on or just outside the zone. There is also evidence that that for at least some stations in the former category the elongation is along the meridian at one season of the year and transverse to the meridian at another. This latter fact means :—

1. That at such stations the changes in sense of the predominating uniquely directed disturbing force are abrupt; and

2. That the direction of the predominating force changes from being almost wholly in the plane of the meridian at one season to being perpendicular to it at another.

The corresponding events as presented by Plate XI are largely different from those just described. In the horizontal and prime vertical planes the only indication of a tendency to abruptness in change of vector direction is in the latter in summer, and might well arise from the paucity of material available. With this exception the vector diagrams for those two planes are fairly smooth and roughly oval with the longer axis in the east-west direction in both cases. In all three seasons the area swept by the vector in the night hours (18h. to 6h. L.M.T. or 9h. to 21h. G.M.T.) is not substantially less than that described in the daylight hours.

* 64550—I

In the case of the N V components the diagrams are distinctly elongated in the direction of increasing north and vertical force. On the average of the three seasons, there being no radical change of form of diagram from winter to summer, the times of quickest changes are 14h. to 16h. G.M.T. in the one direction and less quickly at about 4h. G.M.T. in the opposite direction. Such a form of diagram is a result of the approximate coincidence of phase of the two constituent components. If N and V increased and decreased systematically together the diagram would, of course, take the form of a right line.

§44.—The "Storm-time" Variation.

In the Antarctic the effect of disturbance is to depress the mean value of the horizontal force throughout the disturbed hours by about 10_{Y} and to enhance the vertically downward force (regarded as in the northern hemisphere as acting on the north pole of the suspended magnet) by at least double the amount. But no information is available as to the general form of the variation which is superposed on the regular disturbance variation while these net changes in the magnetic field around the pole are in progress. An attempt has been made to deduce the form of this variation (which, because of its supposed independence of local time and because of its dependence entirely on the time of commencement of the disturbance, supposed large and world wide, is called the "storm-time" variation) from the data collected at the Adelie Land base. Though unsuccessful in producing a variation differing from the Antarctic regular disturbance variation so conspicuously as the storm-time variation in low and moderate latitudes differs from the corresponding regular disturbance variation, it is of interest to record the procedure and results of the attempt.

Two methods were tried :--

1. On the assumption that days which were likely to furnish contributions to a synthetic storm-time variation must be internationally disturbed, a list of all days in the period April, 1912, to July, 1913, of character figure < 1.0 was formed. From this list were eliminated all days which had not been assigned a character-figure 2 on the basis of the Cape Denison magnetograms alone. 28 days remained. The magnetograms for these days were then examined to determine that hour on which each disturbance seemed to have begun. In some cases the initial hour was fixed by a movement of sudden commencement type but, in the absence of any such movement and more usually, the first sharp movement was noted which looked distinctively different from any preceding smaller and presumably local perturbations. The twenty-five hourly values of horizontal force following on each of these 28 initial hours were then tabulated arranging all the initial hours below each other independently of the actual Greenwich time. The average variation formed from the array is given as A in Table CXXIV and depicted in Plate XII.

MAGNETIC DISTURBANCE AT CAPE DENISON.

The form of the variation is a single wave with minimum eight hours and maximum 21 hours after the initial hour. It is evident, on comparison with the ordinary disturbance variation of H with 21h. as first ordinate reproduced below, the storm-time variation, that the variation obtained by this procedure is simply the ordinary variation commencing about 21h. G.M.T. That such a result might have been anticipated is obvious from the distribution of the 28 initial hours throughout the 24 hours of the day shown below.

Hour of day (G.M.T.)	3h.	5h.	7h.	12h.	16h.	17h.	19h.	20h.	21h.	22 h.	23h.	2 4h.
Frequency of initial hour	1 ·	1	2	1	2	2	3	4	5	4	1	2

The three hours 20h., 21h. and 22h. contributed 13 of the total 28 of selected initial hours, so that the centre of gravity of the distribution is not far from 21h. A resulting variation from such a distribution, therefore, necessarily had the ordinary disturbance variation with 21h. as commencing epoch as its chief ingredient. Since further there was a decided tendency for disturbance commencing in the Greenwich evening at Adelie Land to be more highly developed than disturbance commencing at other hours of the day, even a smaller contribution of initial hours for the part of the day would have produced a similar result.

The further remark is relevant, that the type of disturbance in which the storm-time variation might be expected to be most prominent should be sufficiently unique to have a commencing epoch independent of local time. That the disturbances resulting from the method of selection adopted were grouped around a certain hour therefore, indicates that they were not of the rare, first magnitude type; that, indeed the period covered by the available material was too restricted to furnish examples of disturbance of the calibre required.

A second attempt was, however, made by grouping those sequences of 25 hourly values, which were used in the first investigation, with the same initial hour, and forming a mean variation appropriate to each of the twelve hours of the day (see the distribution above), to which had been assigned an initial disturbed hour. Then from each of these twelve mean variations there was subtracted the regular disturbance variation (identified, because of the absence of evidence for a quiet day variation differing in type, with the variation for disturbed days) appropriate to the mean dates of the groups of days on which the selected disturbances had occurred and displaced so that its epoch coincided with the initial hour of the group. For example, July 3rd and August 22nd, 1912, were the two days on which 16h. G.M.T. was considered to be the initial hour of the disturbance. From the mean variation appropriate to these times and days was, therefore, deducted the disturbed variation for winter 1912, setting down the value for 16h. G.M.T. below the first hour of the variation and so on. The twelve residual variations thus found were set down with initial hours in the same vertical column and the resulting set of means derived for each of the 25 columns is given as B in Table CXXIV. That table also

contains two auxiliary mean variations, (C) and (D), derived the one (C) from those six constituent groups which had their initial hour in the part of the day 24h. to 16h. G.M.T., and the other (D) from the six constituents with the initial hour in the remaining seven hours 17h. to 23h. G.M.T. These three variations are represented in Plate XII.

In spite of the precautions taken to reduce the influence of the regular variation, the latter is still the conspicuous feature except in the case of the part-day variation for the set of contributing hours 0h. to 16h. G.M.T., when the form is too irregular for identification. The greater the disturbance on any one day or group of days the larger is the amplitude of the disturbance variation, so that the usefulness of a mean variation derived from a more extended set of days of lower average disturbance as a method of eliminating the regular variation is reduced. There still remains a considerable residual variation of the regular type and of sufficient amplitude to mask any storm-time changes which might be present.

It is, therefore, obvious that the prime essential in obtaining the sequence of storm-time changes is to have such a sufficiently extended set of magnetograph data that a considerable number of storms of first-class magnitude are represented; and, further, that these storms have clean cut starting movements (preferably of sudden commencements type) distributed as nearly as possible uniformly throughout the 24 hours of the day.

* 64550—K

l is

SERIES B. VOL. II. PLATE VIII.

*

0

 \mathbf{x}

0

14

Ē

8

ę.

2.0

VOL.		J	PRI	CE.
IV.	GEOLOGY-continued.	£	8.	d.
	PART 8METAMORPHOSED LIMESTONES AND OTHER CALCAREOUS SEDIMENTS			۰.
	FROM THE MORAINES-A FURTHER COLLECTION. By J. O. G.			
	Glastonbury	0	3	9
	" 9.—SOME HYBRID GNEISSES FROM THE MORAINES, CAPE DENISON. By			
	J. O. G. GLASTONBURY	0	1	6
	, 10REPORT ON A GROUP OF GNEISSES (SILLIMANITIC AND CORDIERITIC)			· `.
	FROM THE MORAINES AT CAPE DENISON. By C. E. TILLEY	0	1	6
	" 11SEDIMENTARY ROCKS. By Douglas Mawson	0	4	0
	" 12RECORD OF MINERALS OF KING GEORGE LAND, ADELIE LAND AND			
	QUEEN MARY LAND. By Douglas Mawson	0	4	0
	" 13.—CATALOGUE OF ROCKS AND MINERALS COLLECTED ON ANTARCTIC			
	LANDS. Prepared by Douglas Mawson	0	3	0
				۰.

de la

V. GEOLOGY. THE GEOLOGY OF MACQUARIE ISLAND. By L. R. BLAKE and DOUGLAS MAWSON.

SERIES B.

	•	
I. TERRESTRIAL MAGNETISM.		
PART 1FIELD SURVEY AND REDUCTION OF MAGNETOGRAPH CURVES. By ERIC		
N. WEBB	in -	0
" 2.—ANALYSIS AND DISCUSSIONS OF MAGNETOGRAPH CURVES. By Charles		v
UHREE \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots		
II. TERRESTRIAL MAGNETISM AND RELATED OBSERVATIONS.		
PART 1.—RECORDS OF THE AURORA POLARIS. By Douglas Mawson 01	15	0
" 2.—TERRESTRIAL MAGNETIC DISTURBANCE AND ITS RELATIONS TO AURORA .		
By Charles Chree 01	15′	0
" 3.—MAGNETIC DISTURBANCE AT CAPE DENISON. By J. M. STAGG 01	15	0
" 4.—THE TRANSMISSION OF WIRELESS SIGNALS IN RELATION TO MAGNETIC		ŝ
AND AURORAL DISTURBANCES. By C. S. Wright 0	9	6∙
III. METEOROLOGY.		
THE RECORD OF THE MACQUARIE ISLAND STATION. Compiled under the direction of		-
H. A. HUNT. Commonwealth Meteorologist, by Messrs. AINSWORTH, POWER and TULLOCK.		
Commonwealth Meteorological Bureau	0	0
	Ŷ	Ŭ
UV METEOROLOGY		
TY. MELEONOLOGI.	10	0
- THE RECORD OF THE OATE DERISON STATION, ADELLE LAND. BY C. I. MADIGAN I	LO	v
		۰
V. PART 1.—RECORDS OF THE QUEEN MARY LAND STATION	•	
" 2.—METEOROLOGICAL LOG OF THE S.Y. "AURORA"		2
, 3.—SLEDGE JOURNEY: WEATHER RECORDS, 2	0	0
APPENDIX.—Macquarie Island Weather Notes for 1909-1911.		
TABULATED AND EDITED BY DOUGLAS MAWSON.		`

VOL.