ANARE RESEARCH NOTES 60

An ionospheric Doppler and propagation delay monitor as operated at Macquarie Island 1986-87

Sjoerd Jongens, E.A. Essex and G.B. Burns

ANTARCTIC DIVISION
DEPARTMENT OF THE ARTS, SPORT,
THE ENVIRONMENT, TOURISM AND TERRITORIES

ANARE RESEARCH NOTES (ISSN 0729-6533)

This series allows rapid publication in a wide range of disciplines. Copies of this and other *ANARE Research Notes* are available from the Antarctic Division. Any person who has participated in Australian National Antarctic Research Expeditions is invited to publish through this series. Before submitting manuscripts authors should obtain a style guide from:

The Publications Office Antarctic Division Channel Highway Kingston Tasmania 7050 Australia

> Published August 1988 ISBN: 0 642 13260 7

CONTENTS

	ABST	TRACT	
1.	INTRODUCTION		
2.	DOP	PLER FREQUENCY MEASUREMENTS 4	
	2.1.	INTRODUCTION	
	2.2.	THE RECEIVERS	
	2.3.	AERIALS	
	2.4	HARDWARE MODIFICATIONS5	
		2.4.1Reference oscillator62.4.2Beat frequency oscillator6	
	2.5	THE FREQUENCY METER7	
	2.6	DIGITAL FREQUENCY RECORDING	
3.	TIME-OF-ARRIVAL MEASUREMENTS		
	3.1.	INTRODUCTION8	
	3.2.	THE AUTOMATIC GAIN CONTROL	
	3.3.	A-TO-D TRIGGERING8	
4.	SOFTWARE DEVELOPMENT		
	4.1.	DOPPLER MEASUREMENTS	
	4.2.	TIME-OF-ARRIVAL 10	
5.	DATA COLLECTED AND PRELIMINARY ANALYSIS		
6.	FUTURE STUDIES		
	ACKNOWLEDGMENTS		
	REFERENCES		
APPI	ENDIX	ES	
I. II. III. IV. V. VI.	The VNG frequencies monitored 25 Stacked diurnal plots of Δf 29 Sonagrams of Δf values 33 FORTRAN program TIMFSD for Δf 48 FORTRAN program BLEEP for Δf 58 Auxilliary circuits diagrams 73		

FIGURES

1.	The path under study	14
2.	The experiment at its most developed stage	15
3.	Resolution enhancement f _B /f ₀	16
4.	The Doppler monitor principle	16
5.	Normal heterodyne receiver with a phase locked loop local oscillator	17
6.	ICOM R7IA	18
7.	Interfacing block diagrams	19
8.	IF band filters	20
9.	Errors in determining group delay by demodulating time marks	21
10.	The effect of frequency dispersion on audio signal	22
11.	Signal strength, Doppler shift and modulation delay	23
	APRIALS	

AN IONOSPHERIC DOPPLER AND PROPAGATION DELAY MONITOR AS OPERATED AT MACQUARIE ISLAND 1986-87

by

Sjoerd Jongens(1), E.A. Essex(2) and G.B. Burns(1)

(1)Antarctic Division
Department of the Arts, Sport, the Environment, Tourism and Territories
Kingston, Tasmania, Australia

(2)Division of Theoretical and Space Physics Latrobe University Bundoora, Victoria, Australia

ABSTRACT

A monitoring system was developed to study the Doppler frequency shifts and time-of-arrival variations of VNG's carrier frequencies, and the propagation delay of their modulation. This report describes the equipment development, how the data were collected and presents some of the data in a more accessible form.

The 'Standard Frequency and Time Signal Service' VNG is located at Lyndhurst, Victoria, Australia (38°3.3' S, 145°15.7' E). This study is a continuation of similar monitoring of VNG by Cornelius and Essex (1978) on a much shorter path within Victoria, Australia. The present report describes the equipment used in creating a monitoring station for Macquarie Island at 54°30'S, 158°57'E. The monitoring station was constructed with minimal cost and development time. The system developed used slightly modified commercial equipment, and is easy to duplicate. Dedicated minicomputers were employed to automate the parameter recording and to control the HF receivers.

The VNG timing signals are transmitted on 4.5 MHz (0945-2130 UT), 7.5 MHz (2245-2230 UT) and 12.0 MHz (2145-0930 UT) each day. Only one frequency was monitored at any time.

This experiment was operated and developed between 19 August 1986 and 26 January 1987. The data collected include the Doppler frequency shift and HF signal strength recorded on chart, printed and digitally recorded sixty sample averages and standard deviation values, and some frequency modulated audio tapes. A few weeks of 'time-of-arrival' data were also recorded on chart.

The digitally recorded sixty sample averages of the Doppler frequency shift values are plotted in stacked diurnal form. Frequency spectra of the audio tape recorded Doppler frequency values are also presented in sonagram form.

It is demonstrated that group delay can be more accurately determined by software signal analysis, rather than by the use of a hardware level-discriminator.

PREMICE DOPPLES AND PROPAGATION DE A VA OPRIMITED A LIVE FOR A SILAMON DESA

amed Ripha 1 - Lampack hasoj?

of the state of the form of the Town of the Spirit and the state of the Town of the Spirit and the state of t

Properties of Theory of the System Physics Literate Leave of the Parties of the Committee o

1 14 11 211 1

Action was developed to south the market frequency study of the control of the co

The strain of the strain server of the strain serve

one frequency was the first term of the first te

to the property of the party of

tide gamman in the state of the

the determinant of the control of th

1. INTRODUCTION

Doppler shifts cause signal degradation on high frequency (HF) radio circuits propagated via the ionosphere. This is particularly so on the more critical modulation modes such as data circuits or medium speed telegraph circuits. As the HF signal is refracted by the ionosphere, a Doppler shift may be introduced by the time-varying changes in the ionosphere, such as refractive index changes along the ray path or the physical motion of the ionosphere. These effects are more prevalent and more intense in the higher latitudes where the ionosphere shows rapid variations under the influence of auroral and magnetic activities and the presence of the ionospheric trough. Very little research into the ionosphere's behaviour has been done in the southern high latitude region, particularly in the Australian sector of the Antarctic and Southern Ocean region. As a contribution to the research of the near earth plasma and its effect on HF propagation, the Doppler monitoring and time-of-arrival HF receiver described here was developed. It can measure the received carrier frequency of any HF transmitter very accurately (limited mainly by the accuracy of the reference oscillator available on-site), and it also provides a 'clean' and useful detection of any time-signal modulation. This second facility enables the study of the variation in the propagation group delay, or the dispersion of the HF signal.

Macquarie Island is a good location for this project, as routine measurements of various parameters related to the ionospheric properties are made along the same path. Information on the path under study is given in Figure 1. Although a comparison with other data sets is not presented in this report, both at Beveridge in Victoria and at Macquarie Island geomagnetic pulsations are measured, and at Beveridge, Hobart and on Macquarie Island ionosondes operate routinely. A Faraday rotation experiment located on Macquarie Island (Lambert et al. 1986) measures the total electron content (TEC). This is maximally influenced at the sub-ionospheric point (SIP) of the ionosphere around 153°E, 48°S (approximately halfway between Macquarie Island and Hobart). If an appropriate frequency is selected for single hop propagation, the VNG monitoring equipment will indicate the effect of the ionospheric properties just north of this SIP, adding to the geographical chain of monitoring points.

Macquarie Island is conveniently close to VNG, while still enabling the monitoring of the effects of auroral, magnetic and ionospheric events, including the winter mid-latitude trough, by this method. Other Australian National Antarctic Research Expeditions (ANARE) stations will experience a much more complex signal over at least a two-hop path, with more auroral absorption and hence much lower signal-to-noise ratios.

This report deals with the hardware modifications required to commercially available equipment, the development of the software for the data collection, the presentation of some initial data reductions and some thoughts on possible future developments. It is written as a guide to those who may wish to use this equipment, develop similar equipment or proceed further with the analysis of the data collected.

A block diagram of the most developed experimental set up is shown in Figure 2.

2. DOPPLER FREQUENCY MEASUREMENTS

2.1 INTRODUCTION

The 'Standard Frequency and Time Signal Service', VNG Lyndhurst, Victoria transmissions on 4.5, 7.5 and 12 MHz are accurate to within 1 part in 10¹¹ (expressed as a 24 hour average) of Telecom Australia's standard of frequency. The Telecom frequency standard is maintained to within a few parts in 10¹² of the international definition of a time interval.

In order to obtain meaningful Doppler measurements, of the order of a few Hz for a 4.5 to 12 MHz carrier, the accuracy of the receiving equipment should be at least 1 part in 108. Previous studies (Cornelius 1976) have developed purpose built receivers to achieve this accuracy. This report indicates a method of modifying high-standard consumer-type receivers to give the high accuracy frequency measuring ability required.

This is achieved by phase-locking the receiver's local oscillators to the frequency standard of the laboratory clock used at the Macquarie Island station. The laboratory clock, a Systron-Donner model 8120 with a thermostatically controlled crystal oscillator (option B11), is accurate to 1 part in 109. A fine control adjustment of the crystal oscillator is used to set the long term accuracy compared with the VNG time signals to within 2 ms per week.

2.2 THE RECEIVERS

The first requirement of a Doppler monitor is a suitable short-wave receiver. A general purpose HF receiver keeps the equipment flexible.

As the Doppler shifts are small compared with the transmission frequencies, direct measurements would be hard to accomplish. The heterodyne principle overcomes this problem. The received frequency is mixed with a local reference, enhancing the resolution (Figure 3).

In our application, the first heterodyne in the system is designed into the HF receiver. After signal amplification the resulting frequency is then mixed again with the beat frequency oscillator (BFO), producing the Doppler frequency added to a 10 Hz offset (Figure 4).

Most modern receivers use the heterodyne principle and are designed with a phase locked loop (PLL) local oscillator, which synthesises the required receive frequency (Figure 5).

Heterodyne receivers are based on the principle that it is a lot easier to produce a variable local oscillator with a fixed frequency bandpass filtered amplifier, than a variable frequency bandpass filtered amplifier in a direct receiver. A direct receiver would need to maintain, for instance, a 3 kHz audio bandwidth anywhere within the 2 to 30 MHz range. A bandpass amplifier of that calibre is hard to produce. Introducing the heterodyne principle, where the received signal is mixed with a variable local oscillator. The intermediate frequency (IF) amplifier needed to bring the signal to a detectable level only operates around a fixed frequency of nominally 455 kHz.

In the early days, local oscillators were designed with an L-C type oscillator, where either the capacitor (C) or the coil (L) was made variable. Modern designs with higher accuracy use a crystal reference oscillator (Xtal), the frequency of which is nominally divided down to 10 kHz (refer Figure 5). The actual local oscillator is a voltage controlled oscillator (VCO) from which the frequency is also divided down to 10 kHz with a variable divider. That divider is fairly simple to build from digital ICs, and is often controlled by digital (pushbutton) circuitry. The two 10 kHz signals are then fed into a phase comparator (Φ in Figure

5), the output of which is low-pass filtered and is used to control the VCO. This comprises the PLL frequency synthesised local oscillator.

The most suitable and economical receiver found on the market at the end of 1985 was the ICOM model IC-R71A with the high stability crystal option CR-64 and the computer interface connector IC-EX309. The high stability crystal was advertised as being accurate to 1 part in 108, but no indication was given over what period it maintained this accuracy. As mentioned previously, in situ the reference oscillator was locked to the ANARE laboratory clock to ensure a sufficient margin between the available and required accuracy. The CR64 crystal oscillator is selected to produce a frequency of sufficient stability on its own account. This is necessary as the PLL circuitry is otherwise prone to introduce a certain amount of fast jitter, even when locked to the external reference.

A block diagram of R71A with the modifications is given in Figure 6. The IC-R71As are designed in a slightly more complex manner than the norm. First of all, there are four IF frequencies. This is done to improve the image rejection and the IF bandwidth control. At first glance, it would seem that four different local oscillators (LO) are used. The apparent need to lock all four LOs to the external reference could appear difficult. However, the first and second LOs are derived from the same reference oscillator (only LO1 is variable), and the third and fourth local oscillators have the same frequency. The IF3 of 455 kHz is produced to allow the IF bandwidth to be varied by front-panel control through a standard 455 kHz ceramic filter. The same frequency (LO3=LO4) is used to first mix down, then back up to the original IF2 frequency. Thus, any error introduced in the mixing with LO3 is eliminated when mixed back with LO4.

A noteworthy design feature of the PLL dividing circuit is that it offers full micro processor control. This means that it is possible to select the frequency to be monitored via the controlling external computer. Preparation for this was initiated but not completed in the available time.

Two receivers were in fact purchased. As will be described in detail later, one receiver was tuned to the main carrier of the transmitter station under study, and the second was used to synthesise a stable BFO, hence with this dual receiver system only one HF frequency can be monitored at any one time. The second receiver was also given the local oscillator frequency of the first, thus effectively tuning it to the same station. The second receiver was then operated in the AM-mode, detecting the one-second time marks, enabling time-of-arrival variations as well as Doppler frequency shifts to be monitored.

2.3 AERIALS

With both receivers operating in the CW mode, a comparison was made between two different receiving aerials. The aerial used under most conditions was a large VEE configuration with sides each about 150 m in length. It dramatically outperformed the alternative shorter, so called 'long wire' aerial of about 50 m on the two lower VNG frequencies of 4.5 and 7.5 MHz. On the 12 MHz frequency the signal strengths were very similar, averaged over time, although not simultaneously.

2.4 HARDWARE MODIFICATIONS

There are two main modifications required to make the ICOM IC-R71A receivers suitable for the measurements of the Doppler shifts. Firstly, the reference oscillators in both receivers must be locked to the laboratory clock. Secondly, in the second receiver LO1 must be mixed with LO2 and divided by 2, to obtain an accurate BFO to beat with the received carrier of VNG (Appendix VI). The block diagram of the Doppler shift monitoring interfacing is shown in Figure 7a.

2.4.1 Reference oscillator

The first stage of locking the reference oscillators is to divide a conveniently available output frequency down to a more suitable frequency for use by the phase comparator. The ICOM's reference frequency is available as 10.24 MHz after division by 3 from IC5 on the PLL UNIT board. The reference of 1 MHz from the Systron-Donner clock is first band-pass filtered through a tuned balun (eliminating ground loop inductions) into a CMOS Schmitt-trigger.

Both are then divided down by mostly CMOS dividers (to improve rejection of HF interference from nearby ANARE transmitters) to a frequency of 20 kHz. It was purposely chosen to differ from the ICOM's internal PLL frequency (10 kHz) to reduce the chance of 'frequency beating'. After active low-pass filtering, the output of the phase-comparator is then presented to the ICOM's 'calibrator' potentiometer circuit. The potentiometer pull-up resistor R1 of 1 k Ω needs to be disconnected, as it loads the active low pass filter too much. The 3dB cut-off frequency was chosen to be 160 Hz. This is a compromise between the expected short term error of the Xtal of 0.20 Hz (1 part in 10 5 of 20 kHz) and the actual 20 kHz output frequency of the phase-comparator. The phase-jitter of the resulting reference frequency was negligible as measured on an ordinary CRO (i.e. less than about 2 $^\circ$ jitter).

2.4.2 Beat frequency oscillator

The second receiver's (ICOM#2) reference oscillator was also locked in the above manner. Then, to produce a frequency in the 9 MHz range to suit IF4, a mixing of LO1 and LO2 was required. The range of LO1, even when mixed with LO2, does not reach down to 9.0106 MHz. Hence, a synthesised frequency of 79 461.22 kHz is chosen for LO1. The ICOM#2 in the CW mode must actually be tuned (by the main dial) to 9.010.62, but the '2' (for 20 Hz) is not displayed on the front panel. Dialling the last 20 Hz can be verified either with an ordinary frequency counter on the output of the digital Δf interface to LSI#1, or by observing the chart recorder channel with the analogue Δf level (channel 2, Figure 2). After mixing with LO2 of 61.44 MHz we get 18 021.22 kHz. This is then divided down by 2 to arrive at 9010.61 kHz, which is 10 Hz above the heterodyned carrier of VNG. By comparison, the ICOM's standard BFO runs at 9.0098 MHz in the CW mode, producing an audio beat of 800 Hz. Figure 8 shows the bandwidths and centre frequencies of the IF stages in the IC-R71A.

In the mixing process, the amplifier stages IF1, IF2 and IF4 have inverted the spectrum of the received frequency. In other words, through these IF stages the original upper side-band (USB) is actually lower in frequency than the heterodyned carrier. For a positive Doppler shift to appear as an increase in '10 Hz+ Δ f frequency, we would have to choose the BFO to be 10 Hz above rather than below the carrier. This was in fact not done during the recordings of 1986-87, so all uncorrected Δ f data show an inversed polarity. The data shown in this report have been corrected.

In ICOM#2, the LO1 and LO2 are no longer connected to mixer 1 and mixer 2, but are rewired to the additional BFO mixer. LO1 and LO2 from ICOM#1 are then also fed into ICOM#2, effectively tuning it to the same HF signal. However, ICOM#1 is operated in the CW mode, and therefore tuned 900 Hz below what the AM mode requires. ICOM#2 is therefore actually mis-tuned by 900 Hz in the AM mode. As the bandwidth in the normal filter selection covers the 1 kHz audio plus 900 Hz sufficiently, this mis-tune has negligible effect.

The 18 MHz output of the additional BFO double-balanced mixer is fed into an active HF divider. This is a video opAmp which is used as an under-critical oscillator of which the output circuit is tuned to about 9 MHz. This divider is followed by a single stage amplifier, boosting the signal to more than what is required by the single side-band (SSB) product detectors. This BFO mixing circuit is fitted in a vacant location in ICOM#2. The output is wired to both receivers, making inter-comparison possible.

2.5 THE FREQUENCY METER

To measure the ' $10 \text{ Hz}+\Delta f$ ' signal and provide an analogue value of the Doppler shift (Δf) for use on the chart-recorder, a PLL frequency meter was built. The first stage is an active low-pass filter at 500 Hz. This removes the IF component in the signal from the SSB detector, but retains the fast response and boosts the signal to 5 V peak to peak (clipped). The output is also fed separately into an audio tape-recorder frequency modulator with a centre frequency of 3.375 kHz.

Initially an attempt was made to employ a frequency-to-voltage IC (LM331). This was rejected however, as the output is either too ripply or the response too slow, depending on the value of the output buffer capacitor chosen. This is due to the very low frequencies being measured (around 10 Hz).

Using the VCO control voltage of the PLL/VCO CMOS IC MC4046B, a compromise between the response time and low ripple could be much more easily found. The low-pass filter between the phase-comparator output and the VCO input is determined by data-sheet values for 10 Hz with a lock range of about 20 Hz. The buffered source follower (SF) output of the PLL IC is then fed into another active low-pass filter, designed to operate in the linear phase mode at 0.5 Hz. Its output carries the 10 Hz offset voltage, which can be eliminated by using a potentiometer between +5 V and ground (GND), set to the same voltage, and connected to the chart-recorder 'negative' input.

2.6 DIGITAL FREQUENCY RECORDINGS

The '10 Hz+ Δf ' was measured digitally by a standard DEC LSI-11 microcomputer as shown in the block diagram in Figure 2. This was achieved using the REQ A input of a DRVIIC parallel interface card.

3. TIME-OF-ARRIVAL MEASUREMENTS

3.1 INTRODUCTION

As has been noted earlier, a second receiver was required to synthesise a stable BFO for the Doppler frequency shift measurements. By feeding this second receiver the local oscillator frequency of the first, it could be tuned to the same station as the first receiver. The second receiver was operated in AM-mode detecting the one-second time marks.

A mini computer was used to sample the one-second time marks via a fast analog to digital interface with direct memory access. The unit chosen for this was a data translation model DT2758. A FORTRAN program was written to deduce the average arrival time of the first few zero-crossings of the 1000 Hz time marks. However, this time value includes a demodulation phase error due to frequency dependent refraction (i.e. dispersion) in the ionosphere. By software, an attempt was made to retrace the demodulation to the inferred start of the time mark.

Time measurement in this manner is considered more appropriate than the more common amplitude-envelope detectors. The latter are more adversely affected by signal fadings and rise-time distortion induced by narrow-band audio filters and rectifiers. Measuring the demodulation through a standard audio receiver circuit, and determining the start of the time mark retrospectively by software allows for considerably greater accuracy. Figure 9

illustrates how frequency selective fading introduces the above-mentioned time mark detection errors.

In order to maintain time accuracy, the triggering of the A-to-D converter was provided by a trigger burst synchronised to the external laboratory clock (see block diagram in Figure 7b). The length of the trigger burst is determined by the software, enabling the amount of collected data to fit the time needed for the required processing in the remainder of the one second period. To prevent the software time of day clock drifting with the unsynchronised mains power supply at the ANARE station, a substitute 50 Hz signal is also derived from the laboratory (Systron-Donner) clock to control the minicomputer's line-time-clock (LTC) (Figure 7c).

The A-to-D interface used can sample four channels simultaneously, enabling comparisons between propagations over more than one HF frequency used by the same station, or comparisons between both side-band demodulations. For this purpose, two small PLL exhalted carrier selective sideband (ECSS) short-wave receivers were obtained. However, time restrictions during the study period prevented these comparisons.

3.2 THE AUTOMATIC GAIN CONTROL

In order to make sensible time-of-arrival measurements further modifications are required to the receivers.

The IF automatic gain control (AGC) circuitry in the ICOM receivers not only reacts to the carrier, but also to the sidebands, to cater for the SSB modes. This is a disadvantage when monitoring the AM signal, during the Δt (time-of-arrival or TOA) measurements. Every second, when a time mark arrives, the AGC will adjust to the increased signal. However, due to the attack-time transient of the AGC, the detected audio signal envelope will also show a disturbing transient. This is of particular importance when tracing zero-crossings and monitoring the signal-to-noise ratios.

As ICOM#1 is operated in the CW mode with the narrow filter activated, both 1 kHz modulations in the sidebands are adequately supressed. Its AGC will then not be affected by the time-marks. Therefore, to remove the transients found in ICOM#2, its AGC is turned off, and the AGC of ICOM#1 is wired through and used instead. This is acceptable, since both receivers are tuned to the same HF frequency, and are sufficiently compatible in performance. Due to selective fading, the time mark amplitudes are still not perfectly levelled, but the transients are reduced to the remaining effect of the filtering in the audio amplifiers.

3.3 A-TO-D TRIGGERING

The trigger pulse train required for sampling the Δt time mark signal is limited to a rate of 25 kHz. That appears to be the limit of the LSI-11/02 using the provided software library package (DTLIB) in the fast-sweep mode. It suspends all other CPU operation, including the line-time-clock, and concentrates on data collection. Even the optional direct memory access (DMA) mode did not seem to be faster when sampling a single channel. The A-to-D card (data translation DT2758) can sample four channels simultaneously. Only when sampling more than one channel is the DMA mode faster than the fast-sweep mode. This is because the subsequent channels are sampled, converted and DMA stored by on-board control rather than by software or external triggering.

To produce a real-time accurate 25 kHz sampling train, a 400 kpps signal is derived from the divider chain which takes the 1 MHz reference from the Systron-Donner, and divides it down to 20 kHz. It is then gated with the '1-second' output of the Systron-Donner, producing a 25 kHz pulse train of 0.5 second duration. This is the default duration, allowing the LSI to

synchronise to the trigger sequence. Once synchronised, a LSI output signal (via a DRV11C parallel board) indicating 'sampling done', controls a subsequent gate which limits the duration of the pulse train even further.

This 'sampling done' signal is generated by software after the required number of time mark cycles have been sampled, and resets the set/reset flip-flop driving this gate (Figure 7b).

4. SOFTWARE DEVELOPED

4.1 DOPPLER MEASUREMENTS

Various versions of FORTRAN programs were developed to measure the variations in the carrier phase delay thus yielding the Doppler shifts (Δf). The last version is listed in Appendix IV.

The version named VNGFSD counts the programmable LSI clock (MDB KW11P) running at 10 kHz through an overflowing buffer ('repeater cycle'). Whenever a positive-going transition of the Δf signal is sensed on the parallel interface (DRV11C) REQ A status line, the clock buffer is sampled. By subtracting two consecutive values from the clock buffer, the previous '10 Hz+ Δf ' period is determined. However, the clockbuffer is interpreted by the FORTRAN program as an INTEGER value with a sign bit, so only fifteen bits can be used for counting the 10 kHz clock. The longest period it can measure is $2^{15}/10$ kHz=3.3 sec, or a Doppler shift of -9.7 Hz. This is more than sufficient for our use, but the resolution of 0.01 Hz (having nominally one thousand counts in each period of the 10 Hz signal) introduces a considerable error in the Δf standard deviation values, σ_f . Bringing the clock frequency up to 100 kHz does increase the resolution sufficiently, but limits the Δf shift range to -7 Hz. This could be overcome by starting the counter at the lowest integer value (-32768) rather than zero, thus doubling the count range (i.e. using all sixteen bits). However, the computing time required for testing and correcting for overflows often exceeds the one second available.

A version named TIMFSD (Appendix IV) was used to overcome computing time restrictions while using the clock running at 100 kHz. In this version, the KW11P clock (in the single cycle mode) was started at one positive going transition of the 10 Hz+Δf signal, and stopped at the next. The sixteen bit unsigned value was then converted to a floating-point value, allowing higher resolution. The unfortunate, but undramatic side effect is the halving of the number of samples taken, skipping each alternate 10 Hz+Δf period. The range is now also increased to 216/100 kHz=0.66 sec, corresponding to a Δf of -8.5 Hz. The initial software limit is set to + and -8 Hz, but later software revisions limits all Δf shifts to five times the previous minute's standard deviation σ_f (i.e. if five times σ_f at one stage is 3 Hz, and the sample taken is 5 Hz, the value recorded is 3 Hz). This variable limit method is adopted to prevent rare extreme excursions affecting the average value disproportionately. The number of occurrences of these clipped samples are given in the hourly summaries. Typically, over the average of eighteen thousand samples per hour, an average of one hundred are clipped, and one hundred are too long (i.e. less than 1.5 Hz), probably due to missed zero crossings. As no raw data were recorded in digital form, no study has been made of the effect on the averages when using this 'clipping' method.

Other versions of the programs selected the various output media, such as printer, chart recorder and finally the hard disk. This is indicated in the program names: $F=\Delta f$, S=signal-strength, P=print, C=chart, D=disk and CAL= a calibration version which displays averages over sixty samples on the VDU. In particular the printer version was written for the

foreground-background operating system RT11-FB, allowing the output to be spooled and printout to be time-shared with data collection.

At one stage during the development, the software-derived Δf value was recorded on the chart, allowing comparison with the output from the PLL frequency meter. After introducing software smoothing approximating the PLL low-pass filtering effect, the results were comfortingly similar.

The average Δf with σ_f , and the average signal strength (S) with σ_S over six hundred periods for VNGFSD or about three hundred periods for TIMFSD are presented in numerical value and as a print/plot for easy assessment of the effects of periods of geomagnetic activity. Similarly, a summary and average is given each hour. In VNGFSD no system clock was used and six hundred periods of '10 Hz+ Δf ' were counted as one minute of real time in the computer printout. To overcome this inaccuracy, TIMFSD uses the system line-time-clock (synchronised to 50 Hz derived from the Systron-Donner clock) to interrupt sampling at the correct intervals.

The version using the disk rather than the printer has an extra subroutine producing an unique filename every hour, or whenever the program is started. The filename is derived from the system date and hour, at the time of opening the file (e.g. 23JAN7.H12). The filename extension is modified every time the program attempts to create a file more than once during the same hour. It is recommended for future use, to reverse the filename format (i.e. 7JAN23.H12), thus yielding sequential disk directory listings.

4.2 TIME OF ARRIVAL MEASUREMENTS

Various versions of FORTRAN programs were developed to determine the variation of the group path delay and the modulation delay. They are all named BLEEP with a version number added (Appendix V).

The first part of the BLEEP programs verifies whether the A-to-D sampling trigger arrives every second for a maximum duration of 500 ms, and has a rate of 25 kHz. It then synchronises the program so, that every new cycle of audio sampling commences during the second half of the 1-second cycle (without trigger pulses), and idles until the exact start of the next 1-second mark of the Systron-Donner clock. This idling period can be adjusted by software parameters, and verified on a CRO which monitors a spare D-to-A channel which changes level during the periods of idling.

Due to ionospheric dispersion and other distortion and fading of the time mark modulation, simple demodulation and envelope detection will not necessarily give an accurate value of the group path delay (often called the time-of-arrival or TOA). To prevent noise falsely triggering an envelope detector, a level discriminator (Schmitt-trigger) with a fixed trigger level above the expected noise is normally used to detect the start of the time mark reception. Often, the audio detection is followed by a narrow band 1 Hz filter, to further reduce the effect of noise. Due to the rise-time restrictions of such a filter and the effects of unpredictable signal fading, the resulting TOA value using this method may be biased (i.e. too late) by an erratic number of 1 ms cycles (Figure 8). As we are looking at variations of much less than 1 ms, these errors cannot be removed by statistics.

The BLEEP programs attempt to reduce this error by measuring (every second) the actual noise level during a 3 ms slot commencing 4 ms before the expected TOA. The trigger level is then set to twice the peak noise level, ensuring a 6dB S/N ratio minimum. The BLEEP1 version then searches for a certain number of zero crossings following the trigger. The number collected is limited only by the time required to process the data before the next time mark arrives. It calculates the average location of the first zero crossing, by superimposing the subsequent crossings brought forward by the appropriate number of half cycles. The

actual start of the time mark is here assumed to have been a half cycle before that point (after the trigger), but drowned in the noise. This is illustrated by the dashed line in Figure 8. This we will call the modulation delay, to distinguish it from the total group path delay. The BLEEP1 program only collects a modulation delay estimation. A running average of the last sixty determinations of the modulation delay is output to the chart by this program.

The zero crossing timing calculations are limited in accuracy by the resolution available when sampling the audio at the rate of 25 kHz (twenty-five samples per 1 ms period). In BLEEP2 an array is generated with the number of occurrences of zero crossings in each of the twenty-five sampling slots. The peak slot is then regarded as the mean arrival time of the zero-crossings. Due to the transient zero-shifting of the signal in the band-passed audio section of the ICOM receiver, an erratic discrepancy of some significance is evident here. The calculated data were only shown on the VDU, and are not available in digital form, except for a period of about 10 minutes (printout). Over a typical example of sixty samples, the average Δt was 4.77 ms, with a σ =4.3, but about fifteen samples obviously skipped one (half-) cycle. This process was therefore rejected.

In BLEEP3 a different approach was tried, by summing the measured voltages over blocks of twenty-five samples. The level of each half-cycle peak is tested, to ensure it is higher than the noise threshold, in case we have a short time mark, or one of low amplitude. Note that except during BCD and quarter hour sequences, VNG transmits fifty-four normal marks of 50 ms, four short marks of 5 ms, and one skipped mark followed by the long 500 ms full mark. The resulting waveform represents a one-cycle average over the 25-30 ms sampling window, and from this the averaged modulation delay can be determined. The latter method was found to be consistent with observation of the time mark signal displayed on the CRO.

The modulation delay as determined from the zero-crossings of the demodulated time mark, is different from the group delay by a certain phase error Φ (Figure 10). The 1 kHz demodulated signal drifts within the envelope of the actual HF group signal. Hence, the phase error causes the 1 kHz signal to rise out of step with the commencement of the envelope. Ideally, the demodulated signal would step directly to the momentary value of that phase. The bandwidth limitations of both the transmitter and the receiver reduce that step with an inverse exponential factor. The resulting rise time will then reduce the peak amplitude of the first part cycle to such an extent, that it might drop below the noise discrimination level (solid line in 'Rx' of Figure 8). The resulting error still remains in the BLEEP programs, but the actual timing error as a result of missed peaks appeared to be only minor under typical S/N ratio conditions found at Macquarie Island (less than about ten degrees phase error under average conditions).

Determining the modulation delay using the zero-crossings is fairly easy, but determining the exact start of the group envelope is complicated by the noise preceding the measurement triggering point. There may be other factors, but it appears that the phase error is mainly due to the difference between the delay the modulation encounters and that encountered by the carrier, f_0 , resulting from the frequency dispersion in the ionosphere (Toman 1967, Cornelius 1979). The modulation consists of the upper side band (USB), f_0+1 kHz, and the lower side band (LSB), f_0-1 kHz (Figure 9). Even though the difference in frequency is relatively small, the ionospheric dispersion still causes them to follow different paths. Figure 10 illustrates the various terms using phasor diagrams. The phase difference resulting from the dispersion might be minimal in terms of time (δ), but is significant in terms of the phase relation ($\alpha\delta$) between the HF carrier and the side bands. This phase difference is carried through the AM demodulator to become a phase error (Φ) in the 1 kHz signal with respect to the HF envelope.

While program BLEEP1 only determines the modulation delay, programs BLEEP2 and BLEEP3 were written in an attempt to determine the group delay and the phase difference Φ . An estimation of the group delay is made by tracking back through the digitally sampled

values of the audio signal strength to the first zero crossing prior to the triggering point (i.e. the point exceeding 6 dB S/N). This result may be corrupted by noise, but considering the time available to run the program between the 1 second marks, no higher level of sophistication was attempted. The individual determinations were always averaged over sixty consecutive successful samples before being output to the chart as a deflection on the modulation delay trace (Figure 11). The average over sixty determinations reduces the effect of noise corruptions on the individual determinations of the group delay.

In BLEEP2 and BLEEP3, after taking the first sixty time marks, the averaged group delay value is used to limit the range of an acceptable group delay determination to within +/-1 ms of this value. Any time marks starting before or after 1 ms from the averaged group delay value are rejected as being due to noise. After a sixty sample averaged group delay has been determined, the measurement of a peak noise value is extended from the initial 3 ms of the initialised sampling window, to from the beginning of the initialised sampling window, to within 1 ms of the averaged group delay value.

In the case of sixty consecutive rejects, the acceptance window is widened to the original settings. In the case of BLEEP1 and BLEEP2, the window is selectable via the keyboard to between 10 and 150 ms, but, at least initially, the first 3 ms of this period is used to measure the peak noise level. In practise windows longer than 25-30 ms require more computing time than is available between the one second time pips for analysis. Longer windows could be used by skipping alternate time marks, thus allowing a longer time for analysis. Averaging too many zero-crossings to determine the modulation delay may however introduce an error due to 'fluttery' ionospheric conditions. Hence BLEEP3 commences with a 25 ms window which alters only during the lock to the smoothed group delay.

5. DATA COLLECTED AND PRELIMINARY ANALYSIS

The VNG timing signals are transmitted on 4.5 MHz (0945-2130 UT), 7.5 MHz (2245-2230 UT) and 12.0 MHz (2145-0930 UT) each day. Only one frequency was monitored at any one time. The experiment was operated intermittently between 19 August 1986 and 26 January 1987. Appendix I indicates which frequencies were monitored at what times during this period. During the data recording period the experiment was being upgraded. At various stages data were recorded on chart, printed, stored on disk and collected on audio tape. Figure 2 shows, in block diagram form, the most developed stage the experiment reached.

Initially Doppler frequency shift and HF signal strength data only were monitored on chart. Some 1135 hours of data spread over 84 days were collected in this manner. An LSI 11 computer was incorporated into the system on 8 October and the average and standard deviation of sixty samples of the Doppler frequency shift and HF signal strength were calculated and printed from this time. One thousand one hundred and forty-four hours of data in 67 days were collected in this form. On 26 October the H component of magnetic pulsations was added to the chart records as a general indicator of magnetic activity. This was discontinued on 10 January 1987. A hard disk storage system was incorporated with the computing system on 23 December 1986, and from this time the Doppler frequency shift and HF signal strength averages and standard deviation values were also stored in digital form. Digital collection of these data amounted to 698 hours over 35 days.

The Doppler shift and HF signal strength data were also recorded, in frequency modulated form, on audio tape along with the raw VNG time mark audio and a locally generated time code. Seventy hours of data over 15 days from 29 December were collected in this manner.

From 11 January a second computing system was used to estimate the time-of-arrival of the time pip. Between 11 and 17 January the modulation delay was recorded on chart for 96 hours. From 18 January to 26 January a sixty sample averaged group delay value was superimposed as a deflection on the modulation delay trace (Figure 11). One hundred and ninety-seven hours of data in this form were collected.

The digitally recorded 1 minute averages of the Doppler frequency shift are presented in the form of stacked diurnal plots in Appendix II. The regularity of the diurnal variation of the ionosphere's electron density and effective height is apparent in these plots. In the afternoons and evenings the dominant Doppler shift is negative, and after sunrise it is generally positive for quite some hours. Nighttime variations are generally negligible, but even the slightest disturbance during minor magnetic storms has a considerable effect on the Doppler shifts. An active geomagnetic pulsation period accompanied by a green aurora at Macquarie Island, shows up clearly on the Δf graph on the night of 2 January 1987.

Results of modulation and group delays are only available on charts. Numerical values were displayed on the VDU screen during the software development, showing the high reliability of the procedure used to obtain the group path delay and the accompanying modulation phase shift measurement. Not many time marks were missed or rejected, as is visible on the chart traces. Whenever a time mark is missed, the smoothed delay values are 'held'. The envelope timing (group delay) is shown every sixty time marks, equivalent to 61 seconds during good reception, as the fifty-ninth time mark every minute is not transmitted by VNG. If any time marks are missed or rejected, the group delay marks are further apart. As the chart shows (as in the sample of Figure 11), that did not happen very often. It clearly shows the success of this software approach.

6. FUTURE STUDIES

In the future, the first step would be to develop the software further, to store the Dt parameters on disk. Furthermore, there are two PLL-ECSS receivers (ESKA RX12PL) available, allowing comparisons between Δt of two different HF frequencies of VNG, and/or the USB versus LSB delays. Ultimately, a third ICOM receiver could be incorporated for inter-comparison of Δf for two HF carrier frequencies.

Using a later (and faster) model LSI, the two Δf and Δt measurements could be combined into one computer system. Software could run in a time-sharing mode with the Δt measurements interrupting the Δf tracing every second for a short duration. The receiver has interfacing for a digital remote control, enabling automatic HF radio frequency changes at the appropriate times. With the improvement of the software, and the elimination of the need for a chart recorder, this would allow long periods of unattended operation.

The studies could be extended to other ANARE stations, comparing the ionosphere's behaviour over different paths. The monitoring is of course not limited to VNG, and other stable transmitters could be considered. Ideally, a dedicated ANARE transmitter could be used, located in Hobart for instance, which is modulated with two (or more) different frequencies simultaneously. This would allow the group delay to be determined more accurately, comparing the modulation delays of the audio frequencies. In this way, the ambiguity (when the phase-shift exceeds 2π) of the results could be eliminated. Also, it would allow closer study of non-linear frequency/delay behaviour close to the maximum usable frequency (MUF). A similar study on a shorter ionospheric hop between two points on Macquarie Island commenced during the 1987 winter season, comparable to previous studies in Victoria (Baulch 1984).

The VNG frequency and time signal service utilised in this research was closed down on 1 October 1987.

Figure 1. The path under study.

Figure 2. Main block diagram of the experiment at its most developed stage.

Figure 3. Resolution enhancement fB/fo.

Figure 4. The Doppler monitor principle.

Figure 5. A normal heterodyne receiver with a phase locked loop local oscillator.

Figure 6. The ICOM R7IA block diagram. The boxed sections are the additional circuits required for the Dopper monitor.

A: Af signal interfacing

B: Δt sampling trigger

C: LSI clock signals

Figure 7. Interfacing block diagrams.

Figure 8. The IF band filters (frequencies in MHz).

Figure 9. Errors in determining the group delay by demodulating the time marks. The first cycle shows the phase error due to frequency dispersion of the VNG signal with sideband components. Fading aggravates the error in time detection, when using fixed threshold detectors.

Figure 10. The effect of frequency dispersion on the audio signal. The LSB travels faster and the USB travels slower than the carrier (by time δ). The phasor diagrams show an integral number of rotations of α t.

Figure 11. A chart record showing signal strength S, Doppler shift Δf and the modulation delay Δt , with the group delay indicated once every 60 seconds.

ACKNOWLEDGMENTS

During the stay at Macquarie Island, the assistance of Mr I. Grant was invaluable in getting the first FORTRAN programs off the ground. The assistance of Mr D. Barrett is gratefully acknowledged for indicating the difference between group delay and modulation delay.

REFERENCES

- Baulch, R.N.E. (1984). Studies of the ionosphere using oblique incidence CW transmission. PhD Thesis, Latrobe University.
- Cornelius, D.W. (1976). HF ionospheric Doppler studies. PhD Thesis, Latrobe University.
- Cornelius, D.W. and Essex, E.A. (1978). HF Doppler observations of 23 October, 1976 total solar eclipse over south-eastern Australia. *Journal of Atmospheric and Terrestrial Physics* 40:497-502
- Cornelius, D.W. (1979). Measurement of group path variations of an ionospheric propagated HF signal from its modulation envelope. Australian Telecommunications Research 13(1):
- Lambert, M., Jacklyn P. and Cohen, E.A. (1986). Total electron content of the ionosphere north of Macquarie Island. ANARE Research Notes Number 34. Antarctic Division, Kingston.
- Toman, K. (1967). Ionospheric phase and group path. *Journal of Atmospheric and Terrestrial Physics* 29:1019-1023.

Appendix I. The VNG frequencies monitored

The frequency monitored is given in MHz by the values indicated at the end of each line indicating a recording session. From 19 August to 8 September only chart recordings were made and from 8 October digital recordings were also collected. Periods when digital records only (i.e. no charts) were obtained are indicated by the dashed lines.

Appendix II. Stacked diurnal plots of the Doppler frequency shift values

Appendix III. Frequency spectrum analysed Doppler shifts

2Hz scale marks are shown every alternate 10 minutes.

	13,10		14.10Z		No parking and the	16.30	
-	13.00		9	15.20	reference are too		
	12.50		14.00	0.51		16.20	
	0		13.50	00		16.10	
	12.40	d or up or up or up or	13.40	15.00		16.00	
and dispersion	12,30	1		14.50		0	
	50	-	13.30	14.40		15.50	4
	12.20 5 7·5MHz		13.20			15.40	
	12.10 29/12/86			4) 14.30	1	15.30	

	g	02.00	03.00	04.10	- 04
	00.00 00.50	01.50	02.50 03	04.00	05.00 05.40
Lig		01.40	02.40	03.50	04.50
	23.50	01.30	02.30	03.40	
	23.40	01.20	02.20 0	03.30 Hz	04 40
	23.30 I2MHz	OI.IO	00	IZM	04 40
	23.20 29/12/86	IO 00.10	02.10	© 30/12/86	00.70

06.50	10.30		12.40	01.41
06.40		11.30	30	
06.30	10.20	11.20	12.30	14.00
90	00		12.20	13.50
06.20		01.11	12.10	13.40
06.10	10.00	11.00		13.
7Z	09.50 7.5MHz	00	12.00	13.30 7.5MH7
06/12/86	09.40	10.50	11.50	13.20
05.50	(a)	10.40		(8)

15.20	16.20	10.40	0	
15.10	16.10	10.30	01.40	
15.00	16.00	10.20	02:11	
14.50	15.50	01.01	11.20	
14.40	15.40	10.00 7.5MHz	01.11	
2786 7-5MHz	15.30	31/12/86 7-5	.50 11.00	
14.20		9 31/	10.50	

(13.00 13.10 13.20 13.30 13.40 13.50 14.00 14.10 14.20 14.30 14.40 14.50 15.00 15.10 15.20 15.30 15.40 15.50 16.00	06.30 06.40 06.50 07.00 07.10 07.20
--	-------------------------------------

12:10	13.10	14.20		15.30	
12:00	13.00	14.10		15.20	
11:50		14.00		15.10	
11:40	0 12.50	13.50		15.00	
11.30	12.40	13.40		14.50	
7.5MHz	12.30	13.30		14.40 7 7.5MHz	
1/1/87	12.20		1	(3) 1/1/87	

10.40 10.50 11.00Z 11.10 11.20 11.30 12.11/87 7.5MHz 14.10 14.20 14.30 14.40 15.50 15.10 15.20 15.30 15.40 15.50		16.50 7.5MHz	17.00	01.71	17.20	17.30
10.40 10.50 11.00Z 11.10 11.20 11.30 2/1/87 7.5MHz 13.50 14.00 14.10 14.20 14.30 14.40 2/1/87 7.5MHz						And South Children M. C. C. Leben
10.40 10.50 11.00Z 11.10 11.20 11.30 2/1/87 7.5MHz 13.50 14.00 14.10 14.20 14.30 14.40 15.00 15.10 15.20 15.30 15.40				4		
13.50 14.00 14.10 14.20 14.30 14.40 2/1/87 7·5MHz	10.40	10.50 7.5MHz	11.002	01.11	11.20	11.30
13.50 14.00 14.10 14.20 14.30 14.40 2/1/87 7.5MHz	A Locale					
15.00 15.10 15.20 15.30 15.40	13.50	14.00 7.5MHz	14.10	14.20	14.30	14.40
15.00 15.10 15.20 15.30 15.40						
	14.50 15.			15.20	15.30	

Appendix IV. FORTRAN program TIMFSD for determining Doppler frequency shift values

	Doppier frequency	y sillit values	
FORT	RAN IV V02.1-1 Sun 28-D	ec-86 07:22:56	PAGE 001
0001 C	PROGRAM TIMFSD		
C	Sjoerd Jongens December 1986 Modified from VNGDAT of Ian Gran	onwards nt, Oct '86	
C			
0000000	This program measures the dopple strength and prints/plots it to a form as well as hourly statistics. Freque previous minute's standard deviation an absolute maximum of 8 Hz. The clock used for period meausures.	natted Disk file ex ncy deviation limit on (limit = 5*sigm	very minute, its are set by aF); with
C	cycle. The minute and hour stats are time	d by the LTC.	
C	***************************************	*******	
C	THIS VERSION USES THE GRC 6 DATATRANS DT2758	600-LSI-11(1030)	INSTEAD OF
C	To be LINKed with SAMPLE and D	TLIB	
C			
0002	IMPLICIT INTEGER*2 (I,N) LOGICAL*1 TIMEST(8),DATEST(# FILNAM(15),F(2)	(10),STRING(84)	,SPACES(84),
0004 C	REAL*4 LSBVAL		
0005 0006 0007	INTEGER*2 AREA1(4),AREA2(4) COMMON IDP,AREA1 EXTERNAL TIMEMK,GTNAME	! For	timer subroutines
C	151 0		
0008	IFI = 0 CALL REPEAT(' ',SPACES,82)	! File	multiple tally
0010	SDF = 1.6	! Initial value fo	r sigmaF
C C 0011	"1030" FSR = 20Volts , resolutio LSBVAL = 20.0/4096.0	on 4096 bits	
0012 0013 C	CALL IPOKE("172542,"000000) TICK = 1.0/1E5	! Set ! clock tick for f-	clock preset buffer calculations
0014 C	TYPE *,'Hit <return> to HALT CALL IPOKE("44,"100.OR.IPEEK("</return>		

```
C
       Every hour:
   C
0015 90 CALL GTNAME(FILNAM)
                                              ! Obtain new filename
0016
        IF (IERR.EQ.0) GOTO 210
        IF (IERR.EQ.1) GOTO 900
0018
0020
        IF (IERR.EQ.2) GOTO 901
0022
        STOP 'Filename error test failed'
   C
   C
       Create new file:
0023 210 OPEN(UNIT=2,NAME=FILNAM,TYPE='NEW',ERR=902)
                                              ! Obtain channel#
   C
       ICHAN = ILUN(2)
   C
   C
       Notify the operator:
   C
        WRITE (5,650) (FILNAM(K),K=1,14),ICHAN
0024
0025 650 FORMAT(1H, 'Writing to: ',14A1,' on chan: ',12)
   C
0026
        CALL DATE(DATEST)
0027
        WRITE (2,630,ERR=903) (DATEST(K),K=1,9) ! File the header
0028 630 FORMAT (X,' Av.d-F SigmaF Aver.S SigmaS ',9A1,
     # ' |<-(-2)-Av.dF-(+2)->| 0<-----SigmF--(2)->|',
      # ' 0<--AvS--9--->| 0<-SigmS->|')
0029 IU = 0
0030
        IL = 0
0031
        IH = 0
     HTDEF = 0
0032
0033 HSIGM = 0
      HTS = 0
0034
0035 HSIGS = 0
                                              ! Set up for 1 hour
0036
        CALL ITIMER(1,0,0,0,AREA2,3,TIMEMK)
   C
   C
       Every minute:
   C
0037 100 TOTDEF = 0
0038 SIGMA = 0
        TOTS = 0
0039
0040 SIGS = 0
0041
        IM = 0
0042 SDF = AMIN1(SDF, 1.6)
                                              ! limit to +/- 8 Hz
                                        ! period for low f limit
0043 PERLO = 1.0/(10.0-5.0*SDF)
                                         ! period for high f limit
0044
        PERHI = 1.0/(10.0+5.0*SDF)
```

```
C
0045
       CALL ITIMER(0,1,0,0,AREA1,2,TIMEMK) ! Set up for 1 minute
   C
   C
       Every second period:
   C
   C
       Wait for leading edge of REQA bit in DRV11 status register
0046 200 IF (IPEEK("167770).AND."000200) GOTO 200
0048 300 IF (.NOT.(IPEEK("167770).AND."000200)) GOTO 300 ! Wait 1
   C
       Start (restart) the clock
   C
0050
      CALL IPOKEB("172540,"21)
                                             ! Single cycle on 100kHz
   C
   C
       Wait for leading edge of REQA bit in DRV11 status register
   C
0051 400 IF (IPEEK("167770).AND."000200) GOTO 400 ! Wait 0
0053 450 IF (.NOT.(IPEEK("167770).AND."000200)) GOTO 450
   C
   C
       Read the clock
   C
0055
      ICOUNT = IPEEK("172544)
   C
0056
      CALL IPOKE("172540,"0)
                                                     ! Stop the clock
   C
   C
       Read the signal strength on channel 1 (the 2nd)
   C
0057
        CALL SAMPLE(1,1,1,0,3,IS) ! Use ADAC LABDAC routine
   C
0058
        CALL IPOKE("172542,"0)
                                              ! Clear clock
preset buffer
   C
   C
       Work out the desired results
   C
0059
      STRENG = 10*LSBVAL*(IS+2)
                                           ! 0.9 = S9 (2=offset)
      IF (ICOUNT.EQ.0) GOTO 550
0060
                                           ! An overflow has occured
0062
        PERIOD = FLT16(ICOUNT)*TICK
                                            ! Real time (sec's)
       IF (PERIOD.LT.PERLO) GOTO 500 ! Limit 10-5*sigmaF [Hz]
0063
0065 550 PERIOD = PERLO
0066
                                       ! Lower F limit exc'd
0067 500 IF (PERIOD.GT.PERHI) GOTO 600 ! Limit 10+5*sigmaF [Hz]
0069 PERIOD = PERHI
```

```
! Upper F limit exc'd
0070
       IU = IU+1
0071 600 DELTAF = 1.0/PERIOD-10.0
0072 TOTDEF = TOTDEF+DELTAF
0073
       SIGMA = SIGMA+DELTAF**2 ! Reg'd for stand.dev.
  C
0074
       TOTS = TOTS+STRENG
       SIGS = SIGS+STRENG**2
0075
  C
0076
      IM = IM+1
0077
       IH = IH+1
                                     ! Read time mark
       ID = IDP
0078
                                 ! Clear time mark
      IDP = 0
0079
                                        ! Error return
       IF (ID.EQ.1) STOP 'QUEUE PROBLEMS'
0800
                                         ! Minute is up
     IF (ID.EQ.2) GOTO 110
0082
                                        ! Hour is up
0084
       IF (ID.EQ.3) GOTO 120
   C
0086
       GOTO 200
   C
                                ! Upon LTC minute
0087 110 CALL TIME(TIMEST)
   C
   C
      Prepare hourly stats:
   C
0088 HTDEF = HTDEF+TOTDEF
       HSIGM = HSIGM+SIGMA
0089
0090
       HTS = HTS+TOTS
       HSIGS = HSIGS+SIGS
0091
   C
     Calculate and print stats every minute:
   C
   C
0092
        AVDEF = TOTDEF/IM
0093
        SDF = SQRT((SIGMA-IM*AVDEF**2)/(IM-1))
   C
 0094
        AVS = TOTS/IM
        SDS = SQRT((SIGS-IM*AVS**2)/(IM-1))
 0095
   C
   C
      Print/plot routines
   C
        CALL SCOPY(SPACES, STRING) ! Clear string
 0096
        CALL INSERT('|',STRING,11,1) ! Zero mark Av.dF
 0097
        CALL INSERT("",STRING,11+INT(5*AVDEF+SIGN(0.5,AVDEF)),1)
 0098
        CALL INSERT('|',STRING,27,1) ! Zero mark SigmF
 0099
        CALL INSERT("*,STRING,27+INT(10*SDF+0.5),1) ! SigmF
 0100
```

```
0101
         CALL INSERT('|',STRING,52,1)
                                                  ! Zero mark AvS
 0102
         CALL INSERT("*",STRING,52+INT(10*AVS+0.5),1) ! Av.S
 0103
         CALL INSERT('|',STRING,72,1) ! Zero mark SigS
 0104
         CALL INSERT("",STRING,72+INT(20*SDS+0.5),1) ! SigS
    C
 0105
         WRITE(2,610,ERR=904) AVDEF,SDF,AVS,SDS,
       # (TIMEST(K),K=1,8),(STRING(K),K=1,82)
0106 610 FORMAT(X,F7.3,F7.3,F7.3,F7.3,' ',8A1,'
    C
    C
        Check keyboard entry <CR> for halting the program
    C
0107
        ISTAT = ITTINR()
0108
         IF (ISTAT.GT.0) GOTO 120
   C
0110
         GOTO 100
                                                  ! Next minute
   C
   C
   C
       Print hourly stats:
   C
0111 120 HTDEF = HTDEF/IH
       HSDF = SQRT((HSIGM-IH*HTDEF**2)/(IH-1))
0113
         HTS = HTS/IH
0114
         HSDS = SQRT((HSIGS-IH*HTS**2)/(IH-1))
0115
         WRITE(2,640,ERR=905) HTDEF,HSDF,HTS,HSDS,IU,IL,IH
0116 640 FORMAT(X,F7.3,F7.3,F7.3,F7.3,' Hourly statistics. Freq dev: ',
      # '# too high = ',13,'; # too low = ',13,'; # samples = ',15,
      # /)
   C
0117
        CLOSE(UNIT=2)
                                                           ! Close file
   C
        IF (ISTAT.GT.0) STOP 'Operator interrupt'
0118
0120
        GOTO 90
                                                           ! Next hour
   C
0121 900 STOP 'Some problem in encoding extension mod'
0122 901 STOP 'More than 10 files of the same hour'
0123 902 STOP 'Some problem in opening the new file'
0124 903 STOP 'Some problem in filing the header printout'
0125 904 STOP 'Some problem writing the minute string to file'
0126 905 STOP 'Some problem writing the hourly statistics to file'
0127
        END
   C
```

Local Variables, .PSECT \$DATA, Size = 000604 (194. words)

Name	Type	Offset	Name	Type	Offset	Name	Type	Offset
AVDEF	R*4	000462	AVS	R*4	000466	DELTAF	R*4	000454
HSDF	R*4	000500	HSDS	R*4	000504	HSIGM	R*4	000372
HSIGS	R*4	000402	HTDEF	R*4	000366	HTS	R*4	000376
ICHAN	1*2	000356	ICOUNT	1*2	000440	ID	1*2	000460
IERR	1*2	000352	IFI	1*2	000340	IH	1*2	000364
IL	1*2	000362	IM	1*2	000426	IS	1*2	000442
ISTAT	1*2	000476	- IU	1*2	000360	K	1*2	000354
LSBVAL	R*4	000334	PERHI	R*4	000434	PERIOD	R*4	000450
PERLO	R*4	000430	SDF	R*4	000342	SDS	R*4	000472
SIGMA	R*4	000412	SIGS	R*4	000422	STRENG	R*4	000444
TICK	R*4	000346	TOTDEF	R*4	000406	TOTS	R*4	000416

COMMON Block / /, Size = 000012 (5. words)

IDP I*2 000000 AREA1 I*2 000002

Name Type Offset Name Type Offset Name Type Offset

Local and COMMON Arrays:

Name	Type	Section C	OffsetSi	ze Dimensions	s	
AREA1	1*2	.\$\$\$\$.	000002	000010	(4.) (4)
AREA2	1*2	\$DATA	000314	000010	(4.) (4)
DATEST	L*1	\$DATA	000010	000012	(5.) (10)
F	L*1	\$DATA	000311	000002	(1.) (2)
FILNAM	L*1	\$DATA	000272	000017	(8.) (15)
SPACES	L*1	\$DATA	000146	000124	(42.) (84)
STRING		\$DATA	000022	000124	(42.) (84)
TIMEST		\$DATA	000000	000010	(4.) (8)

Subroutines, Functions, Statement and Processor-Defined Functions:

Name	Туре	Name	Туре	Name	Type	Name	Туре	Name	Туре
AMIN1	R*4	DATE	R*4	FLT16	R*4	GTNAME	R*4	INSERT	I*2
INT	1*2	IPEEK	1*2	IPOKE	1*2	IPOKEB	1*2	ITIMER	1*2
ITTINR	1*2	REPEAT	R*4	SAMPLE	R*4	SCOPY	R*4	SIGN	R*4
SQRT	R*4	TIME	R*4	TIMEMK	R*4				

SUBROUTINE TIMEMK(ID) 0001 C C COMMON IDPASS,IAREA(4) 0002 0003 IDPASS = ID 0004 IF (ID.NE.3) RETURN 0006 CALL ICMKT(0,IAREA) ! When hour up, cancel minute timer 0007 RETURN 8000 END

FORTRAN IV Storage Map for Program Unit TIMEMK

Local Variables, .PSECT \$DATA, Size = 000002 (1. words)

Name Type Offset Name Type Offset Name Type Offset ID I*2 @ 000000

COMMON Block / /, Size = 000012 (5. words)

Name Type Offset Name Type Offset Name Type Offset IDPASS I*2 000000 IAREA I*2 000002

Local and COMMON Arrays:

Name Type Section Offset ------Size----- Dimensions IAREA I*2 .\$\$\$. 000002 000010 (4.) (4)

Subroutines, Functions, Statement and Processor-Defined Functions:

Name Type Name Type Name Type Name Type Name Type ICMKT I*2

```
0001
         SUBROUTINE GTNAME(FILNAM, IERR)
   C
   C
0002
         LOGICAL*1 DATEST(10), TIMEST(8), FILNAM(15),
      # TEMP1(3), TEMP2(4), TEMP3(2), FILEN(7)
0003
         INTEGER*2 FILRAD(4)
   C
                                              ! Get current date
0004
         CALL DATE(DATEST)
                                              ! Get current time
0005
         CALL TIME(TIMEST)
   C
         CALL REPEAT(FILNAM, FILNAM, 0)
                                              ! Fill with null string
0006
                                              ! Start off with device
0007
         CALL INSERT('DL1:',FILNAM,1,4)
                                              ! Get day
         CALL SUBSTR(DATEST, TEMP1, 1, 2)
8000
                                              ! Enter day in filename
         CALL INSERT(TEMP1,FILNAM,5,2)
0009
         CALL SUBSTR(DATEST, TEMP2,4,3)
                                               ! Get month
0010
                                              ! Add month to filename
0011
         CALL INSERT(TEMP2,FILNAM,7,3)
                                              ! Get year
         CALL SUBSTR(DATEST, TEMP3, 9, 1)
0012
                                              ! Add year to filename
         CALL INSERT(TEMP3,FILNAM,10,1)
0013
                                               ! Indicate extension
         CALL INSERT('.H',FILNAM,11,2)
0014
                                              ! Add hour to extension
0015
         CALL INSERT(TIMEST, FILNAM, 13,2)
    C
    C
        Check if file exists:
    C
        Make a RADIX-50 version of the file name:
    C
    C
         DATA FILRAD/3RDL1,0,0,0/
0016
                                                        ! Get first half
         CALL SUBSTR(FILNAM, TEMP2, 5, 3)
0017
                                                        ! Convert to RADIX
         CALL IRAD50(6, TEMP2, IFILE)
0018
0019
          FILRAD(2) = IFILE
                                                        ! Get second half
0020
          CALL SUBSTR(FILNAM, TEMP2, 8, 3)
                                                        ! Convert also
          CALL IRAD50(6, TEMP2, IFILE)
0021
0022
          FILRAD(3) = IFILE
                                                        ! Get extension
0023 230 CALL SUBSTR(FILNAM, TEMP2, 12, 3)
                                                        ! Convert extension
          CALL IRAD50(3,TEMP2,IFILE)
0024
 0025
          FILRAD(4) = IFILE
    C
                                                        ! Get a free channel
 0026
          ICHECK = IGETC()
          IF(ICHECK.LT.0) STOP 'No free channel available'
 0027
                                                        ! See if file is there
          IOLD = LOOKUP(ICHECK,FILRAD)
 0029
                                                        ! File not found
 0030
          IF(IOLD.EQ.-2) GOTO 220
          IF(IOLD.LE.-3) STOP 'Unable to check old files'
 0032
    C
```

C	The Love Oxiot, Gridinge exterision.	
0034 0035	OTTLE OLOGEO(IOTILON)	! Close business
C		
0036 0037	ENCODE(1,650,F,ERR=900) IFI 650 FORMAT (I1)	! Change IFI to ASCII
0038	CALL INSERT(F,FILNAM,12,1)	! Modify extension
0039	IFI = IFI+1 IF(IFI.EQ.10) GOTO 901	
0042 C	GOTO 230	! Try again
0043	220 CALL IFREEC(ICHECK)	
0044 0045	IERR = 0 RETURN	! Everything's dandy
0046	900 IERR = 1	! ENCODE error
0047 0048	RETURN 901 IERR = 2	1 Too was stated
0049	RETURN	! Too many filenames
0050 C	END TOTAL BOOK STATE OF THE STA	
C		

FORTRAN IV Storage Map for Program Unit GTNAME

Local Variables, .PSECT \$DATA, Size = 000072 (29. words)

Name Type Offset Name Type Offset Name Type Offset

F R*4 000064 ICHECK I*2 000060 IERR I*2 @ 000002
IFI I*2 000070 IFILE I*2 000056 IOLD I*2 000062

Local and COMMON Arrays:

Name	Type	Section	Offset	Size Dime	ension	IS
DATEST	L*1	\$DATA	000004	000012	(5.) (10)
FILEN	L*1	\$DATA	000037	000007	(4.) (7)
FILNAM	L*1@	\$DATA	000000	000017	(8.) (15)
FILRAD	1*2	\$DATA	000046	000010	(4.) (4)
TEMP1	L*1	\$DATA	000026	000003	(2.) (3)
TEMP2	L*1	\$DATA	000031	000004	(2.) (4)
TEMP3	L*1	\$DATA	000035	000002	(1.) (2)
TIMEST	L*1	\$DATA	000016	000010	(4.) (8)

Subroutines, Functions, Statement and Processor-Defined Functions:

Name	Type	Name	Type	Name	Туре	Name	Type	Name	Type
						IGETC SUBSTR			

Appendix V. FORTRAN program BLEEP3 for determining the modulation and group delay

FORTE	RAN IV V02.1-1 Fri 23-Jan-87 16:39:39 PAGE 001
0001 C	PROGRAM BLEEP3
C	Sjoerd Jongens January 1987
000000	This program measures the VNG 1 second "bleep"-delay in relation to a local (laboratory) clock, which needs to provide a sampling trigger burst (25kHz) on the DT2758 RTC trigger input of less than 0.5 secs, or until halted by this program's dropping of CSR1 on a DRV11C parallel interface (could be altered to a D>A channel).
000000	This version takes one bleep at a time, and stores the corrected value in a 60 bleep array for smoothing. The sample buffer is adjusted to keep track of delay drift. After it has collected the first 60 bleeps, and determined the average delay, it locks onto that value allowing +/- 1ms only.
0002 0003 0004 C	IMPLICIT INTEGER*2 (I,N) DIMENSION DELAY(60), ENVLPS(60) BYTE CURSOR(5)
0005 0006 0007 0008	INTEGER*2 AREA(4) ,IBUF(4000) ,NUMBER(60) ,IBFTOT(25) INTEGER*2 NSIGN(25) ,NSPRED(37) COMMON /TIME/ITEL EXTERNAL ITOUT
C 0009 0010 0011 0012 0013	CURSOR(1)="033 CURSOR(2)="133 CURSOR(3)="001 CURSOR(4)="101 CURSOR(5)="200
0014 0015 C	TYPE *,'An ICOM R71A loudspeaker polarity is assumed (neg.)' NPOLRC = -1 ! Receiver pol.
0016	TYPE *,'The delay is *assessed in a window of 25ms, after at least 3ms of
0017 0018	TYPE *,'noise determination.' TYPE *,'Adjustments are made *for smooth delay drifts, with allowance for only 1ms'
0019	TYPE *, *'either way compared with the smoothed delay (60 bleeps).'

```
0020
   C
0021
         MSEC = 25
         NBUFS = 25*MSEC
0022
         NBUF = NBUFS+80
0023
   C
0024
         CALL IPOKE("44,"100.OR.IPEEK("44))
                                                  ! For RT11FB halt test
   C
   C
   C
       Synchronise the program to the external trigger (occuring
         1/second)
   C
       Find the gap after the 25kHz burst:
   C
    C
0025
         CALL IPOKE("167770,"2)
                                                    Enable trigger
   C
0026 IC = 0
                                                   ! Pre-check one cycle
   C
0027
         TYPE *, 'Bleeps here when trigger-burst cycle is found OK:'
         TYPE *.''
0028
   C
   C
        Use LTC for time-out checks:
   C
                                                   ! Ensure LTC is on
0029 90 CALL ISYLTC(1)
0030
         CALL ITIMER(0,0,1,0,AREA,6,ITOUT)
                                                    ! Set up for 1 sec
0031 100 ICMF = 0
0032
        ITEL = 0
   C
    C
        See if trigger burst appears during 1 tick period (1/50th sec):
    C
        Get dummy DMA samples using the DT2758 ext. trigger
    C
        Ignore DTLIB errors while entering during burst.
    C
0033
         CALL RTS (ITEST,1,,,0,,,,9,ICMF,IBEF)
                                                    ! Set up for sampling
                                                    ! Set up for 1 tick
0034
         CALL ITIMER (0,0,0,1,AREA,2,ITOUT)
                                                    ! Check if completed
0035 102 IF (ICMF.NE.0) GOTO 101
                                                    ! Check if time-out
0037
         IF (ITEL.EQ.0) GOTO 102
0039
         CALL RTS(,,,,,,-1,,)
                                                    ! Clear RTS
                                                    ! Clear the ticker
0040 101 CALL ICMKT (2,AREA)
    C
                                                    ! Trigger or error?
0041
         IF (IBEF.EQ.0) GOTO 150
                                                    ! Error = trigger
0043
       IF (ICMF.LT.0) GOTO 150
                                                    ! Try another tick
0045
         IF (ITEL.EQ.2) GOTO 100
```

```
0047
         IF (ITEL.EQ.6) STOP 'No trigger pulse seen for 1 sec'
    C
    C
0049 150 CALL ICMKT(0,AREA)
                                              ! Clear all timers
   C
    C
        Find the end (absence) of the burst:
   C
0050
         CALL ITIMER(0,0,1,0,AREA,5,ITOUT)
                                                   ! Set up for 1 sec
   C
0051 155 ICMF = 0
0052
         ITEL = 0
0053
         CALL RTS (ITEST,1,,,0,,,,8,ICMF,IBEF)
         CALL ITIMER(0,0,0,1,AREA,3,ITOUT)
0054
                                                   ! Set up for 1 tick
0055 162 IF (ICMF.NE.0) GOTO 161
                                                   ! Completed?
0057
         IF (ITEL.EQ.0) GOTO 162
                                                ! Time-out?
0059
         CALL RTS(,,,,,,-1,,)
                                                   ! Clear RTS
0060 161 CALL ICMKT(3,AREA)
                                                   ! Clear the timer
   C
0061
         IF (IBEF.EQ.0) GOTO 155
                                                  ! Got a trigger
0063
         IF (ICMF.LT.0) GOTO 155
                                                   ! Error = triager
0065
         IF (ITEL.EQ.0) GOTO 155
                                                   ! Ticked off?
0067
         IF (ITEL.EQ.5) STOP 'No gap found within 1 second'
   C
0069
         CALL ICMKT(0, AREA)
                                                   ! Clear all timers
   C
0070
         IF (IC.EQ.10) GOTO 200
                                                   ! After header print
   C
0072
         IF (IC.GE.1) GOTO 198
                                                  ! Print header
   C
   C
        See if trigger burst arrives again within 1/2 second:
   C
0074
         ICMF=0
0075
         ITEL=0
   C
0076
         CALL RTS (ITEST,1,,,0,,,,9,ICMF,IBEF)
0077
         CALL ITIMER (0,0,0,26,AREA,4,ITOUT)
                                                 ! Set up for 26 ticks
0078 172 IF (ICMF.NE.0) GOTO 171
                                                ! Completed?
0800
         IF (ITEL.EQ.0) GOTO 172
                                                  ! Time-out?
0082
         CALL RTS(,,,,,,-1,,)
                                                ! Clear RTS
0083 171 CALL ICMKT (0,AREA)
                                                  ! Clear all timers
   C
0084
         IF (IBEF.NE.0) STOP 'No sample obtained after 1/2 sec gap'
0086
        IF (ICMF.LT.0) STOP 'DTLIB error checking the gap'
```

```
0088
       IF (ITEL.EQ.4) STOP 'No trigger pulse seen after 1/2 sec gap'
  C
0090 CALL ITTOUR("007)
                               ! Ring bell
0091
       IC = 1
                                        ! Indicate test passed OK
0092
       GOTO 90
  C
0093 198 TYPE *,' '
0094 TYPE *,'Hit <RETURN> to halt...'
0095
0096
     TYPE*, 'DELAY ZEROC PHASE S/N No.cycles'
0097 TYPE *, '[ms] [ms] [deg] [dB] #'
0098 33 FORMAT ('+ MISSED one... error', 12)
0099 20 FORMAT ('+',F4.1,F6.1,I8,F6.1,I4./,
    # F6.2,F6.2,I7,F7.1,I4)
0100
       GOTO 197
0101 1
      CALL PRINT(CURSOR)
                                        ! After bleeps lost
0102 197 TYPE *, ' = last bleep'
    TYPE *, '
0103
                           = last 60 bleeps'
0104 CALL PRINT(CURSOR)
                              ! Move cursor up
  C
     IC = 10
0105
                              ! Indicate header is printed
  C
  C
  C
0106
       DO 5 I = 1,60
       DELAY(I) = 3.
0107
0108
       ENVLPS(I) = 3.
0109 5 NUMBER(I)= 0
0110
       SMOOTH = 0.
0111
       ARRIVE = 0.
0112
       MPHASE = 0
       IPHASE = 1
0113
0114
       IPSIGN = NPOLRC
    MIN = 0
0115
0116
       IV = 0
0117
    NSTART = 1
     NNOISE = 75
0118
     NERR = 0
0119
  C
0120
    NBUF = NBUFS+NNOISE+5
0121
     LOCK = NBUF
  C
0122
       GOTO 90
                                        ! Wait for end of trigger
```

```
C
   C
   C
       Now take a FAST SWEEP sample series, using the trigger burst:
   C
   C
0123 199 WRITE (5,33) NERR
0124
         IF (IV.GT.0) IV = IV+1
                                                  ! Smooth valid?
0126
         IF (IV.GT.61) GOTO 1
                                              ! Missed >60 bleeps
0128 200 CALL ISYLTC(1)
                                                  ! Turn LTC on
0129
         CALL ISLEEP(0,0,0,2)
                                                ! Allow WRITE to finish
0130
         CALL ISYLTC(0)
                                                 ! Turn LTC off
0131
         ICMF = 0
0132
         CALL RTS (IBUF,NBUF,,,0,,,,5,ICMF,IBEF) ! Sample FAST SWEEP
0133
         CALL LWAIT (ICMF,0)
   C
0134
         IF (ICMF.LT.0) STOP 'DTLIB error while sampling bleep'
   C
0136
         CALL IPOKE("167770,"0)
                                                  ! Reset trigger disable
0137
         CALL IPOKE("167770,"2)
                                                  ! Enable next second
   C
   C
       Now output it to the D>A for the CRO:
   C
   D
       DO 300 I=1,250
   C
   D300 CALL IPOKE("176750,IBUF(I))
   C
   C
       CALL IPOKE("176750,"0)
                                               ! Zero output
   C
   C
   C
       Determine peak noise level during first 3ms (75 samples) or up:
   C
   C
0138
        INOISE = 1
                                                 ! Default value
   C
0139
        IF (IV.EQ.0) GOTO 787
                                                  ! Smooth valid?
0141
         NNOISE = INT(25.*(ARRIVE-1.0)+0.5)
                                                 ! Allow 1ms gap
0142
        NNOISE = MAX0 (NNOISE,75)
                                                 ! Set lower limit
   C NSTART = NNOISE-74
                                                  ! New start point (opt.)
0143
        NBUF = NBUFS+NNOISE+5
                                                 ! New buffer size
0144
        NBUF = MINO (NBUF, 4000)
                                                 ! Set upper limit
0145
        LOCK = NNOISE+50
                                                 ! Allow 2ms window
   C
```

```
0146 787 DO 350 ITALLY= NSTART, NNOISE
0147 350 INOISE = MAX0 ((IABS(IBUF(ITALLY))),INOISE)
   C
       Set threshold:
   C
                                              ! Set 6dB S/N ratio
0148
       INOISL = 2*INOISE
      INOISL = MAX0 (INOISL,10)
                                          ! Minimum of 0.05V
0149
   C
   C
   C
      Find START of signal after the noise sampling:
      ************
   C
   C
                                               ! ERROR "NO BLEEP" NO.1
        NERR = -1
0150
                                               ! Starting @ NNOISE+1
0151 710 ITALLY = ITALLY+1
                                               ! Start later than 2ms?
        IF (ITALLY.GT.LOCK) GOTO 199
0152
   C
0154 IF (IABS(IBUF(ITALLY)).LE.INOISL) GOTO 710 ! Exc'ds noise limit?
                                               ! When?
0156 ITALST = ITALLY
                                               ! Get polarity
        ISR = ISIGN(1,IBUF(ITALLY))
0157
   C
   C
     Go back to where this cycle started:
   C
0158 713 ITALLY = ITALLY-1
        NERR = -2
                                               ! ERROR "NO BLEEP" NO.2
0159
        IF (ITALLY.LE.NNOISE) GOTO 199
                                               ! Passed the start?
0160
                                               ! ERROR "NO BLEEP" NO.3
0162 NERR = -3
0163
        IF ((ITALST-ITALLY).GT.25) GOTO 199
                                               ! More than 1 cycle?
   C
         IF (IABS(IBUF(ITALLY)).LT.10) GOTO 715 ! Below minimum noise?
0165
0167 IS1 = ISIGN(IBUF(ITALLY))
0168
         IS2 = ISIGN(IBUF(ITALLY-1))
        IF (IS1.EQ.IS2) GOTO 713
                                           ! Sign change?
0169
0171 715 IBEGIN = ITALLY-1
                                               ! When?
   C
                                         ! Back to start
0172 ITALLY = ITALST
   C
   C
      If already collected 60 bleeps, go to phase matching:
   C
                                         ! Smooth valid?
0173 IF (IV.GT.0) GOTO 5000
   C
   C
       Average all the zero-crossings (when not yet smoothed):
   C
```

```
C
0175
0176
         NC = 1
0177
         TT = 0.
0178
         SMAXST = 0
0179 730 SMAXST = SMAXST+IMAXS
                                        ! For averaging
0180
         IMAXS = 1
0181
         IPREV = ITALLY
   C
   C
       The phase delay is worked out: (when ITALLY=1: t=0), crossing=
   C
       midway ITALLY and ITALLY+1 for every second zero crossing;
   C
       t=(ITALLY-1+(0.5/2))/25kHz [msec],
   C
       reduced by number of half cycles:
   C
0182
         T = ((ITALLY-0.75)/25.)-(NC*0.5)
                                         ! The time for this crossing
0183
         T = AMAX1(T,3.0)
                                                 ! Minimum= noise window
0184
         TT = TT + T
                                                 ! For the averaging
   C
0185 780 ITALLY = ITALLY+1
                                                 ! Next sample
0186
         IF (ITALLY.GE.NBUF) GOTO 900
                                           ! Reached bleep end?
   C
0188
         IMAXS = MAX0 ((IABS(IBUF(ITALLY))),IMAXS)! Get maximum signal
0189
         IS1 = ISIGN(1,IBUF(ITALLY))
0190
         IS2 = ISIGN(1,IBUF(ITALLY+1))
0191
         IF (IS1.EQ.IS2) GOTO 780
                                                 ! Sign change?
0193
         N = N+1
                                                 ! Increment averaging
tally
0194
         NC = NC+1
                                                 ! Increment half cycle
count
0195 740 IF ((ITALLY-IPREV).LT.23) GOTO 730
                                                 ! Missed any crossings?
0197
         NC = NC+1
                                                 ! Correct the 1/2 cycle
count
0198
         IPREV = IPREV+25
                                             ! Correct the reference
0199
        GOTO 740
                                                 ! Try again
0200 900 PHADEL = TT/N
                                                 ! For this bleep
0201
        SMAXAV = SMAXST/N
                                             ! Average max signal
0202
        CYCLES = N/2.
        NCYCLS = INT(CYCLES+0.5)
0203
                                       ! Continue with # whole cycles
0204
        GOTO 910
   C
```

```
C
   C
       Do phase matching when smooth is valid (delay is well averaged)
   C
   C
   C
       Add all the samples for each 1kHz cycle in each bleep (25 smples)
   C
0205 5000 SMAXST = 0.
   C
0206
        DO 5750 L=1,25
0207 5750 IBFTOT(L) = 0
0208
        CN = (NBUF+1-IBEGIN)/25.
0209 NUMB = INT(CN)
                                                ! # of 1kHz cycles
0210 NERR = -4
                                                ! ERROR "NO BLEEP" NO.4
0211 IF (NUMB.LT.1) GOTO 199
                                                ! Enough cycles?
0213
        NCYCLS = 0
   C
   C Store samples in new array, starting with this sample:
   C
0214 DO 5720 K= IBEGIN+1, IBEGIN+(NUMB*25), 25
                                                          ! Take cycles
0215
        IMAXS = 0
0216
        DO 5730 L= 1, 25
                                                ! Take samples
0217 I = K+L-2
        IBFTOT(L) = IBFTOT(L) + IBUF(I)
0219 5730 IMAXS = MAX0 (IABS(IBUF(I)), IMAXS) ! Peak cycle signal
                                                ! Acceptable signal?
0220
        IF (IMAXS.GE.NOISL) GOTO 5725
0222
                                                ! Eliminate if not
        IMAXS = 0
        NCYCLS = NCYCLS+1
                                                ! Tally rejects
0223
0224 5725 SMAXST = SMAXST+IMAXS
0225 5720 CONTINUE
                                                ! Correct # cycles
        NCYCLS = NUMB-NCYCLS
0226
                                                ! Adjust for averaging
0227 NUMB = NCYCLS
                                                ! Prevent ./. 0
0228
        NUMB = MAX0(NUMB,1)
0229
        SMAXAV = SMAXST/NUMB
                                                ! Average signal
   C
   C Output the averaged cycle to the CRO:
   C
   D
       DO 2500 L=1,25
                                      ! Calculate average
       BUFAV = IBFTOT(L)/NUMB
                                                ! To D>A Ch0
   D2500 CALL IPOKE("176750,INT(BUFAV+0.5))
                                                ! Zero when done
   D
       CALL IPOKE("176750,"0)
   C
```

```
C
       Determine the zero crossing(s) of the summed samples:
   C
   C
0230
        LOCK = 1
0231
        JUMP = 1
0232
        AVZER1 = 0.
0233
        AVZER2= 0.
   C
0234 5780 IS1 = ISIGN(1,IBFTOT(LOCK))
0235
        IS2 = ISIGN(1,IBFTOT(LOCK+1))
0236
        IF (IS1.NE.IS2) GOTO (5800,5810),JUMP
                                                ! Sign change?
0238 5805 LOCK = LOCK+1
        IF (LOCK.LT.25) GOTO 5780
                                            ! Reached cycle end?
0241
        NERR = -5
                                                 ! ERROR "NO BLEEP" NO.5
0242
        IF (JUMP.EQ.0) GOTO 199
                                         ! Seen any 0-x at all?
0244
        GOTO 5820
   C
0245 5800 AVZER1= FLOAT(LOCK)
                                                ! First zero crossing
       AVZER2= AVZER1
                                                 ! In case no second 0-x
0247
        JUMP = 2
                                                ! Change the GOTO addr.
0248
        GOTO 5805
   C
0249 5810 AVZER2= FLOAT(LOCK)-12.5
                                                 ! Second zero crossing
   C
   C
       Take the average of the two 0-x's:
0250 5820 AVZERA = (AVZER1+AVZER2)/2.
   C
   C
       Determine the polarity of the cycles before the 1st 0-x,
   C
       which should be same as start cycle of envelope:
   C
0251
        IPSIGN = ISIGN(1,IBUF(1))
                                                ! Sign of average start
   C
   C
       IF (IPSIGN.NE.ISR) CALL ITTOUR("007) ! What if not?
   C
0252
        PHADEL = (IBEGIN+AVZERA-1.)/25.-0.5 ! Phased delay
   C
   C
   C
       Calculate average (smoothed) delays:
   C
   C
   С
       Calculate the Signal-to-Noise ratio (dB):
   С
```

```
0253 910 SNOISE = FLOAT(INOISE)
                                             ! Prevent Log errors
        SMAXAV = AMAX1(SMAXAV, 1.0)
0255 STON = 20.*(ALOG10(SMAXAV/SNOISE))
                                             ! ERROR "NO BLEEP" NO.6
0256
        NERR = -6
                                             ! Check minimum S/N
0257
        IF (STON.LT.6.0) GOTO 199
   C
0259 MIN = MIN+1
                                             ! Got 60 yet?
        IF (MIN.LT.61) GOTO 998
0260
                                       ! Smooth is valid
0262 IV = 1
                                             ! Reset index
0263
        MIN = 1
   C
    C
       Work out the smoothed (sliding average) delays:
   C
                                            ! Reset error tally
0264 998 IF (IV.GT.0) IV= 1
        ENVLPC = IBEGIN/25.
                                         ! Retraced start.envelope
0266
0267 3000 IF (PHADEL.GE.ENVLPC) GOTO 3500 ! Out of phase by n cycles?
0269
        PHADEL = PHADEL+1.0
        GOTO 3000
0270
   C
0271 3500 IF ((PHADEL-ENVLPC).LE.0.5) GOTO 3600 ! Within 180 degrees?
        PHADEL= PHADEL-0.5
 0273
 0274
        GOTO 3500
    C
 0275 3600 IF (NPOLRC.NE.IPSIGN) GOTO 3700 ! Opposite polarity?
         PHADEL = 2*ENVLPC+1.0-PHADEL ! Adjust delay to phase
 0277
    C
                                            ! Number of cycles seen
 0278 3700 NUMBER(MIN) = NCYCLS
                                       ! Weigh this bleep-phase
 0279 DELAY(MIN) = NCYCLS*PHADEL
                                              ! Corrected envelopes
         ENVLPS(MIN) = ENVLPC
 0280
    C
 0281
       ISNUMB = 0
         SMOOTH = 0.
 0282
 0283
        ARRIVE = 0.
    C
 0284 DO 4000 I= 1,60
                                              ! Total # cycles
         ISNUMB = ISNUMB+NUMBER(I)
 0285
                                              ! Weighed phase delays
         SMOOTH = SMOOTH+DELAY(I)
 0286
                                              ! Totaling envelopes
 0287 4000 ARRIVE = ARRIVE+ENVLPS(I)
    C
                                              ! Weighed phase delays
         SMOOTH = SMOOTH/ISNUMB
 0288
```

```
SMOOTH = AMAX1(SMOOTH,3.0) ! Set lower limit
0289
   C
0290
        ARRIVE = ARRIVE/60.
                                              ! Envelope arrival
0291
        ARRIVE = AMAX1(ARRIVE,3.0)
                                              ! Set minimum
   C
0292
        IPHASE = INT(360.*AMOD((PHADEL-ENVLPC),1.))
0293
        MPHASE = INT(360.*AMOD((SMOOTH-ARRIVE),1.))
   C
0294
        IF (IV.GT.0) GOTO 6000
                                             ! Smooth valid?
0296
        SMOOTH = 3.
0297
        ARRIVE = 3.
0298
        MPHASE = 0
   C
0299 6000 IF (IV.EQ.0) GOTO 8000
                                             ! Smooth valid?
0301
        IF (MIN.GT.1) GOTO 7000
                                         ! End of minute?
   C
   C
       Place the smoothed phased delay on CH1 of A>D for 1 sec:
   C
0303 ISM = INT((SMOOTH-3.0)*409.6+0.5)
0304
        ISM = MINO(ISM,2047)
0305
        CALL IPOKE("176752,ISM)
0306 GOTO 8000
   C
       Place the smoothed arrival on 2nd channel (CH1) of A>D:
   C
0307 7000 ISM = INT ((ARRIVE-3.)*409.6+0.5) ! 8V = 4ms after noise
0308
        ISM = MIN0 (ISM, 2047)
0309
        CALL IPOKE ("176752,ISM)
   C
0310 8000 WRITE(5,20)
     # ENVLPC,PHADEL,IPHASE,STON,NCYCLS,ARRIVE,SMOOTH,MPHASE
   C PRINT *,ISPHAS,AVZER1,AVZER2,AVZERA
0311
        CALL PRINT(CURSOR)
                                             ! Move cursor up
   C
   C
   C
      Indicate end of bleep calculations:
   C
0312
        CALL IPOKE("176750,400)
                                          ! +2V to CRO
0313
      CALL IPOKE("176750,-400)
                                        ! -2V to CRO
  C
0314 IST = ITTINR()
0315
        IF (IST.GT.0) GOTO 600
                                             ! Check keyboard
  C
```

FORTRAN IV Storage Map for Program Unit BLEEP3

Local Variables, .PSECT \$DATA, Size = 021442 (4497. words)

Name	Type	Offset	Name	Type	Offset	Name	Туре	Offset
ARRIVE	R*4	021174	AVZERA	R*4	021332	AVZER1	R*4	021322
AVZER2	R*4	021326	CN	R*4	021306	CYCLES	R*4	021276
ENVLPC	R*4	021346	1	1*2	021166	IBEF	1*2	021164
IBEGIN	1*2	021240	IC	1*2	021156	ICMF	1*2	021160
IMAXS	1*2	021256	INOISE	1*2	021222	INOISL	1*2	021226
IPHASE	1*2	021202	IPREV	1*2	021260	IPSIGN	1*2	021204
ISM	I*2	021354	ISNUMB	1*2	021352	ISR	1*2	021232
IST	1*2	021356	IS1	1*2	021234	IS2	1*2	021236
ITALLY	1*2	021224	ITALST	1*2	021230	ITEST	1*2	021162
IV	1*2	021210	JUMP	1*2	021320	K	1*2	021314
L	1*2	021304	LOCK	1*2	021220	MIN	1*2	021206
MPHASE	1*2	021200	MSEC	1*2	021150	N	1*2	021242
NBUF	1*2	021154	NBUFS	I*2	021152	NC	1*2	021244
NCYCLS	I*2	021302	NERR	1*2	021216	NNOISE	1*2	021214
NOISL	1*2	021316	NPOLRC	1*2	021146	NSTART	1*2	021212
NUMB	I*2	021312	PHADEL	R*4	021266	SMAXAV	R*4	021272
SMAXST	R*4	021252	SMOOTH	R*4	021170	SNOISE	R*4	021336
STON	R*4	021342	T	R*4	021262	TT	R*4	021246

COMMON Block /TIME /, Size = 000002 (1. words)

Name Type Offset Name Type Offset Name Type Offset

ITEL I*2 000000

Local and COMMON Arrays:

Name	Type	Section	OffsetSize Dimensions			
AREA	1*2	\$DATA	000746	000010	(4.) (4)	
CURSOF	L*1	\$DATA	000740	000005	(3.) (5)	
DELAY	R*4	\$DATA	000000	000360	(120.) (60)	
ENVLPS	R*4	\$DATA	000360	000360	(120.) (60)	
IBFTOT	1*2	\$DATA	020646	000062	(25.) (25)	
IBUF	1*2	\$DATA	000756	017500	(4000.) (4000)	
NSIGN	1*2	\$DATA	020730	000062	(25.) (25)	
NSPRED	1*2	\$DATA	021012	000112	(37.) (37)	
NUMBER	R I*2	\$DATA	020456	000170	(60.)(60)	

Subroutines, Functions, Statement and Processor-Defined Functions:

Name	Type	Name	Type	Name	Type	Name	Type	Name	Туре
ALOG10				AMOD		FLOAT		IABS	
ISLEEP	1*2	ISYLTC	1*2		1*2		1*2	ITTINR	1*2
RTS	_	LVVAII	12	IVIAAU	12	WIIINO	12	FINI	N 4

```
0001
     SUBROUTINE ITOUT(ID)
  C
  C
0002
     COMMON /TIME/ITEL
 C
  C
0003
     IF (ITEL.NE.0) RETURN
                     A ! Already done?
0005
     ITEL = ID
                     ! Tell test loop
0006
     RETURN
0007
     END
    ************
```

FORTRAN IV Storage Map for Program Unit ITOUT

Local Variables, .PSECT \$DATA, Size = 000002 (1. words)

Name Type Offset Name Type Offset Name Type Offset

ID I*2 @ 000000

COMMON Block /TIME /, Size = 000002 (1. words)

Name Type Offset Name Type Offset Name Type Offset

ITEL I*2 000000

Appendix VI. Schematic diagrams of the auxilliary circuits required

FREQ METER & TRIGGERING 045-4-003

