Prof Nicole Webster: BSc (Hons I), PhD

Research interests

I obtained my PhD in marine microbiology from James Cook University in 2001, studying how microorganisms contribute to the health of coral reef invertebrates. Moving from the tropics to the poles, my postdoctoral research was undertaken at the University of Canterbury, investigating the utility of microbes as biomarkers for environmental stress in the Ross Sea, Antarctica. In 2005 I commenced a role as research scientist at the Australian Institute of Marine Science, and in 2017 I commenced a joint appointment as Professor at the Australian Centre for Ecogenomics, University of Qld. Throughout my research career, I have employed experimental and field-based ecological research combined with metagenomic, metatranscriptomic and advanced imaging approaches to uncover the contributions of microscopic life to the health, survival and adaptation of marine species. I have also had a strong focus on translating fundamental research outcomes into strategic tools for coral reef management. With an ever-growing desire to play a greater role in positioning science at the forefront of society's decision-making, in 2021 I commenced a position as Chief Scientist for the Australian Antarctic Division where I am looking forward to developing the innovative and collaborative pathways needed to improve our understanding, management and conservation of this wild and fragile ecosystem.

Current projects

GBR Microbial Observatories

  • This project is constructing the first Great Barrier Reef microbial genomics database to provide a framework to ascertain the environmental relevance / ecosystem consequences of changes in microbial community structure and function following environmental perturbation.

Defining Species & Functional Sensitivity Distributions for Microorganisms

  • This project is developing a unique molecular platform for deriving quantitative stress thresholds for microbial communities inhabiting key reef habitats (seawater, sediments, invertebrates).

Establishing a Model Reef Species for Microbial Symbiosis Research

  • This project is assessing the establishment and maintenance of microbial symbiosis in a model marine sponge species, visualizing physiological interactions between host and symbionts and assessing stability of the partnership under future climate conditions.

In situ Cultivation of Reef Symbionts

  • Development of a microscale isolation system (SYMBIO-CHIP) that will enable the first in situ cultivation and recovery of recalcitrant symbionts and unravel the microbial functions that support host's health and ecology.

International/national collaborations

  • Prof. Michael Wagner - University of Vienna, Austria (symbiosis, metabolic syntrophy)
  • Prof. Dominik Heider - Uni of Marburg Germany (machine learning)
  • Prof. Thomas Rattei - University of Vienna, Austria (computational biology)
  • Assoc Prof. Miguel Lurgi, Wales (ecological networks)
  • Prof. Albert Folch - University of Washington, USA (nanofabrication / engineering)
  • Prof. James Bell - Victoria University, New Zealand (sponge ecology)
  • Prof Torsten Thomas - Uni NSW (sponge microbial symbiosis)

Key outcome areas

  • Australian State and Commonwealth government stakeholders
  • Philanthropy
  • United Nations - Integrated Marine Assessment

Publications (2021)

  • Robbins, S.J., Song. W., Engelberts, J.P., Glasl, B., Slaby, B., Boyd, J., Marrangon, E., Botte, E.S., Laffy, P., Thomas, T. and Webster, N.S. (2021) A genomic view of the microbiome of coral reef demosponges. ISME J. 15:1641-1655. DOI.org/10.1038/s41396-020-00876-9.
  • O’Brien, P.A., Andreakis, N., Tan, S., Miller, D.J., Webster, N.S., Zhang, G. and Bourne, D.G. (2021) Testing cophylogeny between coral reef invertebrates and their bacterial and archaeal symbionts. Molecular Ecology. 30(15): 3768-3782. DOI.org/10.1111/mec.16006.
  • Marangon, E., Laffy, P.W., Bourne, D.G. and Webster, N.S. (2021). Microbiome-mediated mechanisms contributing to the environmental tolerance of reef invertebrate species. Marine Biology. 168, 89. DOI.org/10.1007/s00227-021-03893-0.
  • Hudspith, M., Rix, L., Achlatis, M., Bougoure, J., Guagliardo, P., Clode, P.L., Webster, N.S., Muijzer, G., Pernice, M. and de Goeij, J.M. (2021) Subcellular view of host-microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan-microbe symbiosis. Microbiome. 9(1): 1-15. DOI.org/10.1186/s40168-020-00984-w.
  • Nguyen, M.T.H.D., Wemheuer, B., Laffy, P.W., Webster, N.S., and Thomas, T. (2021) Taxonomic, functional and expression analysis of viral communities associated with marine sponges. Peer J. 9, e10715. DOI.org/10.7717/peerj.10715.

See more of Prof. Nicole Webster’s publications on Google Scholar.

on