Marine Ecosystem Assessment for the Southern Ocean: framework and outcomes of the MEASO 2018 conference

Thursday 24 May 2018, 11:30am–12:30pm

This week’s seminar will be presented by Dr Andrew Constable (AAD & ACE-CRC). Andrew is a quantitative marine ecologist and co-leads the Ocean Carbon and Ecosystem program at ACE. Together with Drs Jess Melbourne-Thomas, Rowan Trebilco and Mike Sumner (AAD, ACE-CRC & IMAS) (and many others) he has been working on big picture assessments of ecosystems in the Southern Ocean. In this presentation, Andrew will provide an overview of the first MEASO conference that took place in Hobart in April 2018.

Abstract: A first Marine Ecosystem Assessment for the Southern Ocean (MEASO) is under development to facilitate contributions from the Antarctic and Southern Ocean marine science community to the 6th Assessment Review (AR6) of the Intergovernmental Panel on Climate Change (IPCC), the IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC), and other recent initiatives to assess status and trends in global ecosystems. MEASO is not intended to supplant the specific scientific requirements for year to year management but to complement that work with long-term assessments. It is intended to provide a forward-looking assessment of what trends in Southern Ocean ecosystems are happening now and into the future, and what may need to be planned for, in terms of research and management. The aim is to have a quantitative assessment that enables managers to achieve consensus in adapting their management strategies to ecosystem change to continue to achieve their objectives for ecosystems. MEASO 2018 was an international conference held in Hobart in early April 2018. It was supported by IMBeR ICED and CLIOTOP, SOOS, SCAR, and the Australian Antarctic Program to share relevant science, enhance community input into the design and planning of the MEASO, and to develop a work plan. This presentation will summarise the outcomes of the conference, the draft framework for MEASO-1, and the manner in which the international community can become engages in the process. The first MEASO is expected to be published in the first quarter of 2019, for use in the IPCC AR6. Then work will commence toward subsequent MEASO iterations on a cycle that aligns with IPCC reporting (an updated MEASO, say, every 6 years).

We invite you to come along and find out more about this important initiative. All welcome!

The seminar will be held in the theatrette at the AAD (ground floor) on 24 May and will start at 11:30 am.

We are looking forward to seeing you there!

AAD Seminar Team

Marine Ecosystem Assessment for the Southern Ocean

Video transcript

Rowan: G’day everyone, I think we might get started. Thanks for coming along; I'm recognising a lot of faces in the audience and realised that most of you already know Andrew and what he does. But I keep this brief as some of you may not Andrew [know him]. Andrew is a Section Leader at the AAD and a program leader at the Antarctic Climate and Ecosystems CRC. He recently led the Marine Ecosystem Assessment of the Southern Ocean conference which happened last month here in Hobart which is what this talk is about and MEASO – as it is abbreviated to – has been in planning at least since 2013 is starting to come to fruition with the conference. You may have heard that the conference is widely regarded as a great success and also quite unique in several aspects notably the inclusiveness of it in terms of the wider scientific community. It had a strong international flavour and a strong emphasis on inclusion of early career researcher voices but also more generally in terms of stakeholders and interest groups through the policy forum. So I am looking forward to hearing what Andrew has to report.

Andrew: Thanks very much, Rowan. I had to run away to get my talk as it was not coming up on the screen. Thank you all for coming. It’s quite a pleasure sharing the stage with a Christmas tree. I remember some 14 years ago I was at a conference, an interesting conference in the US. It was looking at a similar sort of topic as this. One of the people who got up was quite a reputable ecosystem modeller and his introductory remark was: “Well if you thought your Christmases had not yet come, they are all going to come now.” And he still has not yet fulfilled this promise. The reason why I make this point is that this work is very hard and people have been talking about doing things like this for many, many years and I want to draw on that and the flavour of this talk – because I know that many of you were at the conference and participated in one thing or another – many of you will be familiar with the material and what I want to do really is to talk about is what brought us to the conference and where are we going now, and how do we deal with such a large problem. There are many aspects to this problem and that is what I really want to talk to you about in this talk. I am sharing this talk with Rowan, with Jess Melbourne Thomas and Mike Sumner because the four of us have been working for some time now in the background to determine what constitutes an ecosystem assessment. Rowan has a paper under review which looks at one aspect of that which relates to habitat. The other part of the conference had to do with evaluating species, and evaluating food webs and ecosystems generally. Why the name? The name that I started with was really long. Miso is in fact a soup if you look it up. It is a very easily digestible soup - as is this title - and it is very enjoyable. You can have it before breakfast, breakfast, lunch, dinner, after dinner … you can have it at any time. It is a nice savoury soup, quite filling and energizing. I like to think that this was like this conference was, and that its name will progress in that manner. It came from Jess when we were brainstorming potential titles and I think it has gravitated quite nicely to the acronym of MEASO.

So who was involved in this conference? There were two parts to it; the local organising committee which is on the left. We had our last meeting on Tuesday. The Wrap Up is more or less what I am going to talk about now. By in large the committee was a great success, pulling things together, bringing the expertise together, having ideas for the conference, formatting the conference and having it proceed very nicely. You see on this list that we have a diversity of representatives from our community and they were all very helpful in providing support; and as I did on Tuesday I want to give specific recognition to Wenneke ten Hout from the ACE-CRC who really should become a conference organiser because it went smoothly and it was an organisational success because of what she did. She was not there for the conference but all her preparatory work was great. - On the right hand side you'll see the international steering committee. They helped organise the general proceedings of the conference, particularly the talks, the structure of the talks and the posters. We thank them as well. That group is going to be very important as we are going through the production of the first MEASO. These are representatives from a variety of and Arctic research groups that are involved in marine ecosystem research.

These are our sponsors. I thought I am going to show you this just to indicate that we had a diverse group of sponsors across our stakeholders. So it wasn't just conservation or fisheries or particular agencies and so on. We had quite a diversity of sponsors and we thank them for that. Without them we would not have been able to have the key notes and the attention to the detail.

So why have a MEASO? Where did it all come from? What we are interested in when undertaking a marine ecosystem assessment in all its guises was really trying to assess some of those key questions that people are addressing in many forums nowadays. People call them ecosystems services and all sorts of things but I like to think of them as managing risks to our condition, our physical condition, here we are physically, and what is around us is our social condition - so it's our society - and it's our psychological condition. There are all sorts of ways one might look at psychology in the importance of ecosystems. I summarise it in these three terms. Of course there are many other things you might place on that list but from an individual point of view that is what we are going to be interested in. I also like to think that one of the important risks that we are trying to manage is what happens when we change our priorities in future. How much are we going to diminish our future amenities so that we can pursue what we might decide in the future to be important. I think that is also part of what we are trying to do. These days this is called intergenerational equity and all sorts of other terms. So that is what we are trying to do with the MEASO. What might it look like to help manage risk? And of course this is not going to play now… I had an audio… anyway it was a fire alarm. That is why I put up the sign don't panic. It's a test. So just imagine beep beep beep… when you hear that you all know what to do, and in order to manage risk that's what a fire alarm is for; it’s to manage the risk of fire destroying you. You know how to respond to that. I like to come back to that but just think about this as we go through the talk. How do we make something that is a satisfactory alarm for action?

One thing about a MEASO is that. Kathryn Woodthorpe who is the chair of the CRC, she put This one up as one of her first slides: “At the start of every disaster movie there is a scientist who is being ignored”. There are many ways that scientists can be ignored and one of the things we are trying to do with MEASO is trying to overcome the issue of the scientist being ignored and that there is no foundation to ignore them. How might we achieve that? This is a really important question when we start to think about it.

So here is another way of looking at Why a MEASO? On the left-hand side is a series of scales of science. We could do molecular science, we could do science on individual species, we do science on the ecosystem, we could science on a region which may have a number of ‘ecosystems’, and we might look at the Earth system. And as scientists we tend to choose a scale at which we work and one of the points of the last decade of discussions in many forums, many science forums under the International Council of Science, has been consideration about not only how do we get discussions amongst scientists across disciplines but also across scales of interest so that we get a much better fusion of knowledge across different scales. If we start to map then the scales at which people are operating, we can map that as the kind of impact they have on decision making or on the population. So you can see at the bottom scale of our interest in organisms, the ecology of organisms - we like to sit and watch whales - and you can see at the very top we might have the whole of the global population needs to have an interest in what we are achieving. Between that there are sort of different scales of interest and decision making and particularly focusing on the United Nations which are trying to engage all 196 countries that are involved in the United Nations, or just a few countries 26 countries, or 26 members I should say, involved in CCAMLR, for example. And there are more that are involved in the wider Antarctic Treaty System. On the bottom axis you see I have labelled that effort. How much effort in terms of science does it take to get consensus at those different scales? Think about the recent climate wars, and ongoing climate war, chances to get the whole public to agree on a prognosis for the future and who caused it is impossible. You get to the point when as much effort as you like is really not going to change the day. But how can you get consensus? That is that even if people don’t agree to the proposition they will still agree to actions being taken. That’s the important thing behind the MEASO; how can we get everybody to agree to proceed and the start of that is how do we get scientist to agree with a central estimation of risk rather than being in disagreement. That is one of the important issues to face.

Coming back to my fire alarm, Don’t Panic! The fire alarm is there for a reason. What does it actually mean in terms of managing risk? One of the great successes of fire alarms is universally it’s agreed what you do when you hear it. When people hear an alarm of one sort or another they know that they need to do something. They need to be vigilant and they need to act in response to a fire. Quite often the alarms will go off even if there is no fire. So there is a risk of something happening when you hear an alarm but there is also the alternative which is something is not going to happen but you are going to act anyway just in case. That’s what we are trying to do with the marine ecosystem assessment. Can we identify those risks to the things we hold dear and then take action in suitable time for us to make sure that if there is a problem then it’s not really going to arise.

So what is a MEASO? This was a definition we put up early in the meeting. We had a discussion paper at the conference – you are all welcome to the discussion paper if you like it; just let me know, and there is an appendix to this as well – and it was the centre point in the discussions in the margins. Even though there wasn’t a lot of time for broad discussions there was still a lot of discussion in the margins about what a marine ecosystem assessment should be and how might we progress towards that. Towards the end of this talk I will be talking about how we will progress it but this was an idea of an objective. The aim of a MEASO then is to provide policy makers with estimates of change relative to a baseline. An estimate of change may be fully quantitative. We can state precisely what the abundance of something might be relative to an initial abundance, or it might simply be that we are pretty confident that something changed into this direction and not that direction. So it becomes almost a binary type conclusion, but nevertheless we can provide policy makers with that sense of change and whether or not they need to take action. We would imagine then that this assessment will be a consensus amongst the scientific body that is interested in a region, a consensus on the estimate of change that will facilitate adapting to future ecosystem change. We can add to that to take also action on apparent change. But this was the focus for the conference. What we are trying to do is to facilitate adaptation in order to maintain a low risk of adverse impacts into the future. In the Southern Ocean, the most common point of discussion is to deal with fisheries but there are other factors going on globally that are worthwhile advertising that they will generate a risk of adverse impacts into the future. Human induced climate change and ocean acidification is part of that. We need to be able to develop that consensus on the basis of those estimates but also taking count of the uncertainties in the scientific information. This is not new. What I like to do now is to talk briefly about what where has this actually come from and even though there is a lot of new language and new thoughts around this problem, it has been going on for a long time. In the marine space, I had the great fortune of being involved in my early years with people, such as Bill, and one of Bill’s early mentors, Sydney Holt. In the two models of the IWC in its early days, particularly through the 1960s and 1970s, there was recognition that we were damaging the environment, in this case whales, and what do we need to do about it. How do we arrest the decline of the great whales and ensure their recovery given the uncertainties. Sydney and Bill, and Justin Cook and others were very formative in the approaches we can now look upon as risk assessment at a system level. These kind of discussions have been very formative not only in the IWC but when those ideas then were brought into CCAMLR, in fact in 1986 – I’m now just going to say a few words about what Bill has done in CCAMLR – in 1986, Bill handed in his PhD and at the same time he instituted the program of work that became known as the Working Group on Developing Approaches to Conservation or WGDAC for short. In 1987, those discussions began and that was the instigation of risk assessments to the system and what might you do about that. One of the great outcomes of that particular work was between Bill - and there were others in the area, Doug Butterworth, M. Voison, Andre Punt and others – were talking in the working group of krill we don’t have an estimate on the abundance of krill – well, we have some but they are not very good – but how might we use those to come up with a precautionary catch limit and take account of these risks. That was really important because what that meant was that by the time it got adopted in 1991, there was a rule in place that the Commission agreed as a whole that they, whatever the outcome of the application of that rule given the data, that would be the accepted catch limit. That made decision making in CCAMLR a breeze compared to other bodies that manage fisheries because the same method is applied to toothfish, to icefish, as well as krill, and that means that with the acquisition of the data and the processes of using the data and then applying the decision rule the catch limits are set and there is no argy-bargy, well… mostly no argy-bargy in the Commission. And that’s really important because it means that the scientists might disagree about the value of the different kinds of data but once you put it through the mill, and you have an answer, then you get a consensus outcome for action. That’s what we are trying to do in the marine ecosystem assessment. How can you actually pull together a lot of disparate data about the effects of climate change, the effects of fishing, the effects of tourism, the effects of stations and so on. How can you pull all of that together into a way that would mean that the decision then is an easy one to take. One of the great impediments of Sydney and Bill and Justin and others was at the time way back in the 1980s is the computational power wasn’t there. In fact when Sydney wrote the book, the bible for fisheries way back in the 1940s and early1950s, when they wrote that book with Ray Bevon, the Bevon Holt bible, they didn’t have computers. So they were coming up with ideas to try and work out how to do this. Fortunately now we do have the computing power. We do have statistical power. Even in though it’s in its infancy we have the capability to start bringing those ideas together in complex system ways. So how do we do that? That’s what we are trying to discuss.

One of the things that is really important in these discussions is how do we actually harmonise expressions of change? One of the things you may remember from an earlier slide is that we can go all the way from the UN down to the person on the cliff watching whales, and they’ll be talking different languages depending on the people they are amongst and the languages that they inherited. In fact, in fisheries it’s exactly the same; do you have an IWC pedigree or do you have a pedigree that emerges from stock assessments on coasts. You’ll have a different language even of stock assessments. We need to try and harmonise what we mean. Biodiversity means everything under the CBD and in other organisation biodiversity just means species richness. It’s trying to be very clear what we mean and what managers need to know. One of our tasks it to come up with a set of metrics that articulate in a simple way what is the state of the ecosystem in the various ways that managers might be thinking about them. We were discussing six; there may be others. There may be different language to this but each of these six expressions of change of six ecosystem dimensions have some sort of provenance from different conventions and different regulatory frameworks that we know about. So the physical environment, for many who work in system models if you know about the physics, then everything else will follow even though we are starting to know that biology can play a big part in physics at various scales. So it’s not entirely true that physics will carry through and govern everything else but nevertheless knowing about the physical environment is an important foundation. The second thing is what is the species pool that you might have present? And how do you do that in a way that you are choosing a species pool or you’re giving access to all species that are living in a place, just are they there? For example, one way of looking at species is what is the kind of environment that they might like to live in? And if you look at it that way, penguins could live in the Arctic and polar bears could live in the Antarctic. But they’re not there. How much do you deal with that? Not only are you dealing with species richness but you are looking at the effectiveness of – or the realisation of - a species being able to be present. And that can deal with in a continuous way, deal with endemic species, invasive species, globally distributed species and so on. The third dimension is about the structure and the function of the food web in the ecosystem as a whole. That is going to be important if you are looking at a variety of things in relation to say the krill-based food web or the fish-based food web. The next dimension is about energetics and production. How much is there? How much is going to be produced, how much biomass is going to be produced? That’s important from a global carbon cycle perspective and the extraction of carbon from the atmosphere which will help reduce human-induced climate change. But it’s also important to fisheries, it’s also going to be important to iconic species that we like to see and we like to conserve and we like to be able to understand. It’s also important to those; how much energy is left over for them. And the last two is something that is becoming much more important in our consideration of natural systems. The first one is about the frequency of extreme events that might be game changers. So in the first four quite often we think about it in average terms, we’ll think it’s like this and like this. But it may be that extreme events cause a system to change irreparably. We are starting to see that on the Great Barrier Reef. The last one is about human forces. I use the term ‘human forces’ deliberately here because for many people we’re now seeing in many science programs a fusion not only between the physics, chemistry and biology but also the social sciences. They are all part of that. There has been an image since the early 2000s that people are part of the ecosystem and therefore the requirements for people should be considered as part of the ecosystem outcome. That came from the Food and Agricultural Organisation in their ecosystem-based fisheries management discussions. But for me, if people are really part of the ecosystem, then there should have been some sort of co-evolutionary processes going on so that there has been some adaptation to people being in the system. There are very places around the world where I would say that the current human activities are such that the ecosystem has co-evolved so to account for those kinds of behaviours. I think people still stand above that but the idea for looking at what are the human forces on the system, and how might these human forces actually affect the risks to the things we hold dear which is where I started. It is not necessarily requiring that the ecosystem has co-evolved to adapt to those responses. So there are our considerations to our six dimensions that managers might be interested in. Those six dimensions are obviously interrelated. So if one changes, so if energetics goes up, then the food web / assemblage structure might change if the production has gone up only in a particular way. We need to think about that but to summarise the statements for managers is going to be important.

The MEASO framework aims to try and provide an assessment method. I stated at the outset that a lot of people don’t like this approach as a presentational approach but I’m using it here because I haven’t come up with something different. We have a group of people now, not formally a group of people, but a number of people thinking about what’s the best way of communicating these summaries of change on those six dimensions. On the left hand side you see the six dimensions represented. Each of these triangles, the apex of these triangles, its height above the apex is meant to indicate the magnitude of change, and the black bars indicate the uncertainty. For some things in some areas you might not have much uncertainty but for some other things there might be considerable uncertainty. So things like the species composition, invasive species might be important. If that is highly uncertain, then we might need to give attention to that and I come back to that later in the talk. But the aim is trying to have a simple graphic that could convey current change might be useful in the way it is displayed on the right so that you can start to see which area around the Southern Ocean might be most vulnerable to change and which areas we might have to concentrate on further. So each one of these plots that you see on the left, we could do one for now compared to say a hundred years ago. We could do one for 50 years time compared to now or we could do something for 100 years time compared to now. One of the points of attention we’re asking for people to think about is what’s going to happen in the next 20 to 30 years, because it takes about that long to change the direction in any international body. It’s not something that can be done overnight; it’s a long haul. So thinking about 20 to 30 years time is a good time frame to think about future change.

What are the gaps to fill? We have an idea about what things we want to measure, make statements about to help managers at a system level. What do we know now? On the left is a diagram of a food web with benthic-pelagic coupling; it’s primarily a pelagic food web that links to the benthos, and on the left hand side you see a krill pathway; in the middle you have a pathway going from the phytoplankton through copepods through fish to the higher predators, and then on the right you see the pathway that links the pelagic with the benthos – and there is dashed line around toothfish because it sit between the benthic environment and the pelagic environment feeding on both. What is interesting about those pathways for CCAMLR, for example, the Commission for the Conservation of Antarctic Marine Living Resources, is that this left hand pathway is the krill pathway, and that right pathway is the toothfish pathway. So if the krill side goes down for whatever reason leaving more production for the right, then toothfish might go up. Or if the toothfish side goes down, the krill side might go up. Maybe. Or there may be partitioning between the pathways that we need to know about. The circles are intended to indicate what part of this very simple food web do we have estimates of abundance for. I like to thank Nat for giving me a summary on quick notice on the estimates for whales, and one of the key groups of species that we are interested in here in the Antarctic Division is the productivity and population dynamics of whales. We’re seeking to conserve whales into the long term and not prejudice their recovery yet their estimates of abundance date longer than a decade ago and there are many uncertainties about those estimates from around the Southern Ocean. That is one of the groups of species that we are interested in and there’s been a lot of work on. We are also interested in krill. The status of estimates for krill are less than 10 years for some areas but mostly they are 10, 20 years old already. So we don’t have any global estimates of krill abundance at present and for many for many places we don’t have much knowledge about what they are doing over time either. Toothfish are in a similar situation. We’ve got the areas around the sub-Antarctic islands where we have good estimates of abundance but for other areas they are not so good. For the higher predators we’ve got recent estimates of abundance of penguins but seal abundances are quite dated now and we need to start thinking about that. Everything else we really don’t know what they are doing… If we look on the right, this is a map out of a paper that Rowan has under review and the red dots indicate areas where we’ve got individual taxa with estimates of abundance and we are monitoring those over time. That might be zooplankton out in the Indian Ocean through CPR, maybe seals on sub-Antarctic islands, penguins on sub-Antarctic islands – not necessarily both – penguins at land-based stations, seals at land-based stations, flying birds, and so on. So you see that for most of the Southern Ocean we are just tracking individual taxa; we’re not getting a good look at the system overall. On the western Antarctic Peninsula and the Scotia Arc the story is a little bit different and we have not tried to pull that together yet as an ecosystem assessment but that is a place where we can start. But you can see it’s mostly patchy. It’s interesting that if you did see Stacy McCormick’s talk at the conference it’s quite clear that the krill-based system is found on the west Antarctic Peninsula, the typical system you would read about in books and it’s not found anywhere else as a dominant part of the system. It has also got other things going on, fish and the like become important prey species. So there are lots of gaps to fill. (I skip that slide…)

One of the things that Jess raised in her talk to the policy forum which was on the Wednesday was this idea of deep uncertainty. We all talk about uncertainty and there are people going out to estimate uncertainty, which is an interesting concept. Identifying uncertainty and trying to resolve it, trying to resolve the errors in our estimation is difficult. But when there is disagreement about the processes by which those errors might even be estimated, then it causes great consternation and great difficulties. In CCAMLR, for example, it’s a very different environment to the Antarctic Treaty Consultative Meeting in that in CCAMLR each year they have to decide on catch limits for species and management actions that will appropriately conserve the Antarctic marine living resources. That’s a different type of environment where many nations are after the same species in the same locations; that means that you can have quite a lot of national conflict. Whereas in the Antarctic Treaty Consultative Meeting quite often the management relates to individual stations where it’s managed by a nation and the opportunities for conflict if you like between nations become much less. It’s more at the higher level than what occurs at CCAMLR. And that’s good to know about; it’s good to know what the political environment might be in order to try and tailer how the information gets managed.

But taken into account deep uncertainty is one of the things we need to talk about. One of the key messages out of Jess’s talk – and out of this particular slide - was that having systems that can adapt to change is going to be important. We need to add to that we need systems then that can adapt to prospective change. In other words that change is upon us, how are we going to adapt to that before it arrives because if we wait for the change to have happened and try to react, it’s probably the case that it’ll be too late to be able to do something about it or something that is effective and we end up chasing our tails. That’s why the 20 to 30 year horizon is a good one for the Southern Ocean because it is in that 20 to 30 time that we would expect to see a lot of dramatic changes in Southern Ocean ecosystems as a result of warming and ocean acidification.

What is a MEASO in practice? We have our map, we try to divide the map up into regions where the behaviour of the physics is likely to be consistent but different then between regions. So we got four of these. They are most aligned with the way various disciplines look at these areas. We can extract data out of a particular area that we might be interested in. This diagram comes out of Stacy McCormack’s work on food webs and the circles were put there by me to indicate that these are the parts of the food web where we got most data. You can see that there is a lot of the food web say out of the South Atlantic where we don’t have a lot of data. So we need to try and come up with a system assessment and start to look to the future about how the system will behave, and we need to take account of the fact that we don’t have a lot of data for most species that are present. So the aim of the MEASO is to suck in all the data that we can to look at the ecology of the system as best we can and then start to use the data with our understanding of ecology to deliver to the end users. Then we summarise that information into the various dimensions as to what is the state of that dimension and how is that state changing over time. As a result of that - given the uncertainties and risks that might be associated with those summaries of status and trends – we might set up a set of priorities that would alter management measures, we’ll generate some adaptation responses or we focus our research and observations to help fill the gaps. It’s a very typical adaptive system, the likes of what Bill and Sydney and Justin have worked on in the past and what we use in CCAMLR, except at a larger scale and in an individual fishery. What is important here is that this kind of process is well established in the physical sciences. We don’t have to think that this is new; we can look to see where it was successful. In the physical sciences, they ended up with a Nobel prize after the fourth assessment review at the Intergovernmental Panel for Climate Change. That was a fantastic result but that was after many, many decades of bickering and carrying on in the early decades. Coming through with a very coordinated response, coordinated approach to their field work, and each assessment cycle came up with the next set of priorities to work on for the next cycle. That’s a very smooth cycle, now to the extent that the modelling processes that feed into the assessments now have a regular cycle as well for looking at how well they do.

For ecology, let’s just blow that up, that’s what we are trying to do. In the middle, we have a computer – that’s where all the work is. We use the computing grunt that we have; we need appropriate assessment methods and ecosystem models and we suck in our field observations. These may be lots of different things; direct sightings, acoustics, isotopic signatures, satellite data, all sorts of things and we are trying to match them together. It’s great when they are taken coincidentally but if they weren’t, then we need to try and work out ways we can pull them together. We do that by looking at the ecology of the system; that’s a food web diagram up there, a very simple one that we work with but understanding the responses of species to physical variables is very important. Looking at how species co-vary over time may be all we have but how much do we expect that from a theoretical perspective. Some of the modelling that Bill is doing more recently on the individual base modelling for whales, and he’s worked it up with So on krill, there is work that Louise is doing on penguins, and so on. All that feeds into a better understanding of how we link all this data together. That is one of the big tasks we have ahead of us because that is modelling efforts are still at a rudimentary level. And then at the right hand side is well what to the end users need to know about. There are the six dimensions I mentioned before but the reporting on the six dimensions is something that we need to think about. One of the important aspects of a MEASO is that can we do something where we’re getting consensus among the scientific community. We’re not just getting a part of the community we’re getting the whole of the community to sign off on a report like the IPCC reports. Then that report can be what feeds into the different end users, feeds into CCAMLR, feeds into IWC, feeds into the IPCC, feeds into the UN, and various other bodies that are trying to do these assessments. There are a lot of these groups trying to do these assessments. So can we come up with one report rather than ending up with five, six, ten or more science reports that are all saying that they do the same thing but they have different outcomes. In the end, these bodies that are on the right, the end users, have to synthesise all those reports into a single document. So why don’t we do that for them because it is better the scientists synthesise the science than it is for policymakers to try and interpret and then synthesise after that. Quite often they won’t have the capability. So THAT’S the aim of the MEASO in practice. It is trying to that across all the variety of groups, not just those that are specifically in the Antarctic but also those that are coming out of the other ICSU processes, International Council of Science Unions, say through future Earth and other things, there are a lot of biogeochemical groups now as well.

So the conference, that’s all the background, that’s what we are trying to do, that’s the philosophy that we are trying to have. The conference was … initially we would have been happy with 40 people and in the end we ended up with 180. We had to change the idea from a working conference to a conference but with the idea to come out with a work program afterwards. Our earliest career researcher was Eila, Jess’s young bub, who was a great participant in the conference. As Rowan said one of the really neat things coming out of this conference was the engagement of early career researchers and mid-career researchers in trying to generate an agenda for their research futures. In summary, we’ve had 175 attendees, 23 different countries, I am not a Twitter follower but somebody sent me this, we had 164 users of Twitter so that means most of the attendees were twittering – I wasn’t one of them – and we had 591 reports but in the end we had over ¾ mill messages being read around the world. That was I think a pretty good outcome for the conference just knowing we were making so kind of connections. One of the great things that came out of the conference for me was the number of people that are interested in trying to make this kind of work happen and I think it does provide the opportunities for us to work together in an apolitical environment so we can freely talk about the biology and the requirements for conservation and so on. It is one of the things we are trying to have in CCAMLR for many years, a working group that would be able to deal with generally looking at these issues but that was never possible and so doing it externally is quite helpful.

Our journey at the conference was along four themes. The first theme was the MEASO itself, the assessment, but critically the – as you would have seen from the earlier slide – we had themes to talk about how do we get observations, sustained observations over time to better understand the dynamics of the system over time. How do we improve upon the responses of biota to change – they were two separate themes, and then we had a theme which was about the statistical and dynamic modelling we might to do facilitate assessments, not only assessments of change right now but also particularly assessments of change that we might foresee over the next 20 to 30 years. And in the middle we had a policy forum. The policy forum was important because it aimed to have end users and scientist be able to talk together about what their requirements were and the people that were invited to the policy forum weren’t there because of their organisational representation but more there because of the specific experiences that they might bring to the discussions. A lot of people were very appreciative of this opportunity. It doesn’t happen very often.

I am not going to go through these slides; they will be made available generally. What we also had an engagement of the association of Polar Early Career Scientists or APECS. We engaged APCES early on in the planning and we had a number of volunteers that would help with the organisation of the conference but we specifically had volunteers that help with the policy forum and with the four different themes. So they were providing summaries for us about what they thought were the important outcomes with respect to their themes. So they were listening around, talking around, and coming up with these summaries. What was really interesting is that – there is Alexa Hasselman here who did the Theme one on assessments;

we had Jilda Caccavo on responses,

we had Jennifer Freer on modelling and

then we had Juan Höfer on the observing systems. They came up with some interesting perspectives which weren’t the perspectives we would normally bring to these themes but clearly we could identify how they could see agendas for their future research on the back of what they were hearing what was most important. So they are going to form the corner stone for discussions about how we are going to maintain MEASO in the long term.

We are using the Southern Ocean Information Wiki – SOKi – to compile the information for MEASO and we are going to try and undertake the first MEASO over the course of this year.

So the requirements for a MEASO are firstly to identify the policy needs, and then what are the kinds of summaries that policy makers need not in general – this is on the left hand side – but also in specific components and how might we review and integrate the work. One of the other parts of the MEASO requirements is what additional work might there need to be in order to make the synthesis work in the end. So it’s not just reviewing what’s in the literature but it’s also instigating work to fulfil these needs. So our work program then is to do that work and the integration and any of the other work that we identify as important and then come up with a set of summaries - so the summaries of individual components – and they might be species, they might be physical parameters, and so on. We summarise those in terms of trends and then how do we synthesise that into those six dimensions or whatever dimensions we decide that – simple dimensions - that policy makers can understand, and we need to deliver that. The dashed line is a very important line. In the early parts of the discussions, we were discussing what would be the level of the assessment. And there was one definition which was being brought to the discussion which was an assessment which was the equivalent of how well are the policy makers and the different forums doing in terms of management and their uptake of science at a very high level. In the original foundation of MEASO discussions assessment was meant to mean estimation like a stock assessment. Can we start to estimate these things and can we deliver that to policy? And it became very clear from some of our scientists from around the world that there are some countries where they can’t step into the policy domain. There is a point to which they will engage but as soon as we start having an orientation which is specifically around the policy outcomes that should arise from the science they now withdraw. In order to get the scientific consensus, in other words that we don’t have another body here giving a different view of the science of change, status and trends, in order to have consensus across all the bodies we need to make sure that all bodies are able to engage, and we don’t exclude bodies that could then cause a confrontation later and the policy makers have to choose between the science. Bill can tell you many stories about when that happens – and it happened in CCAMLR for the first ten years – when that happens you make no progress because the science gets ignored. So how can we make sure that the scientists aren’t ignored? We need to build our consensus around that. So that dashed line is very important and we’re feeling our way as to where that actually resides. But I would suggest that it falls short of being able to advise the policy makers that they are falling short of their objectives.

So what’s our proposed time table for this year is that we need to develop our summaries of the data we have. That is already underway. One of the good things about MEASO was that there is recognition that this is a good next step after SCAR’s biogeographic atlas of the Southern Ocean. That went part way to where they wanted to go and the MEASO will go that extra step and will form a strong foundation for the Antarctic climate change and environment report which is managed by SCAR and it’s intended that this work will be the marine ecosystem component of that report. In October we’ll do a report for the Scientific Committee of CAMLR and hopefully get some feedback as to whether or not they find it useful and then we’ll go through a review process in November, so that is external review, peer review, and then revise and hopefully publish it in March next year in time for the assessment review number six of the IPCC.

So you’re not going to hear the animation on the right but that’s okay. Just coming back to where we are, we need to make sure that our science that delivers into policy has consensus so that it’s then not the policy makers that are choosing between the science. And it is up to us, I think, to put forward as best as we can the estimates of change in habitat species and the system as a whole and we give an idea about those uncertainties that can then form a strong basis for consensus in policy. We need to be able to communicate this in the best way. Lisa Roberts has been an associate of the Antarctic Division for many years, has been doing art work in one form or another and she does terrific graphics, graphic design, to help communicate very complex science. We certainly encourage more artists and communicators to get involved with this process. So at that point perhaps, if we ask questions, there is Rowan and Jess is here to also answer questions, and if you would like to participate in MEASO, there are many things that can be done. The aim is that a lot of people do a little, not a few people do a lot and the aim for it is to be ongoing. It is not just something that will happen every seven years; it is as we can update assessments, we will and it’s only every six or seven years in a cycle that we would then update the summaries for policy makers. Thank you!

[end transcript]